JPS63276275A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63276275A
JPS63276275A JP11190987A JP11190987A JPS63276275A JP S63276275 A JPS63276275 A JP S63276275A JP 11190987 A JP11190987 A JP 11190987A JP 11190987 A JP11190987 A JP 11190987A JP S63276275 A JPS63276275 A JP S63276275A
Authority
JP
Japan
Prior art keywords
layer
source
drain electrodes
type
ohmic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11190987A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishiuchi
石内 宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11190987A priority Critical patent/JPS63276275A/en
Publication of JPS63276275A publication Critical patent/JPS63276275A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide source and drain electrodes ohmic to low contact resistance, by forming the source and drain electrodes of an ohmic metal deposited within grooves having a depth reaching at least the surface of an undoped GaAs layer. CONSTITUTION:An N<+> type Al0.3Ga0.7As layer 3 and an N<+> type GaAs layer 4 are deposited sequentially on a semi-insulating GaAs substrate 1. Apertures are formed in regions 5 where source and drain electrodes are to be formed. The N<+> type GaAs layer 4 and the N<+> type Al0.3Ga0.7As layer 3 are etched, and AuGe is deposited in the etched section by vacuum vapor deposition for providing an AuGe-Ni layer 6. The AuGe-Ni layer 6 is removed except the regions 5 where source and drain electrodes are to be formed. The structure is then heat treated within the atmosphere of hydrogen to form an alloy layer 8, whereby ohmic source and drain electrodes 10 and 11 are formed. After an aperture is provided in the N<+> type GaAs layer 4, a gate electrode 12 is formed therein.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にアルミニウムガリウム
ヒ素(Aj’x Ga1−)(As ) /ガリウムヒ
素(GaAs)のへテロ接合を有するトランジスタの構
造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device, and particularly to a structure of a transistor having a heterojunction of aluminum gallium arsenide (Aj'x Ga1-) (As)/gallium arsenide (GaAs). Regarding.

〔従来の技術〕[Conventional technology]

従来この種のトランジスタのソース・ドレイン電極とし
てのオーミック電極の形成は第3図に示し如く、不純物
がドープされたn型A!xGat−xAs(以下n型A
ffGaAsと記す)3A上又はn型AfGaAs3A
上設けられなn+型G a A s N4上に金ゲルマ
ニウムニッケル(AnGe−Ni )6などを被着し、
熱処理によりGaAs基板1とAuGeとの合金層8を
形成してオーム性接触を得ることにより行われている。
Conventionally, the ohmic electrodes used as the source and drain electrodes of this type of transistor were formed using n-type A! impurity-doped ohmic electrodes, as shown in FIG. xGat-xAs (hereinafter n-type A
ffGaAs) 3A or n-type AfGaAs3A
Gold germanium nickel (AnGe-Ni) 6 or the like is deposited on the n+ type GaAs N4 provided above,
This is done by forming an alloy layer 8 of the GaAs substrate 1 and AuGe through heat treatment to obtain ohmic contact.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のオーミック電極の形成方法では、n型A
lGaAs3AとアンドープGaAs層2とのへテロ構
造を有するトランジスタの場合、電子のチャネル層は、
このヘテロ界面のいわゆる二次元電子ガス層(2DEG
層)であるため、オーミック金属と半導体の合金層8が
この2 D E G層より深く存在しなければならず、
このため、合金層8を深くするためにオーミック金属の
厚さを通常のGaAs層  MESFETの場合よりも
厚くする必要がある。
In the conventional ohmic electrode formation method described above, n-type A
In the case of a transistor having a heterostructure of lGaAs3A and undoped GaAs layer 2, the electron channel layer is
The so-called two-dimensional electron gas layer (2DEG) at this hetero interface
layer), the alloy layer 8 of ohmic metal and semiconductor must exist deeper than this 2D E G layer,
Therefore, in order to deepen the alloy layer 8, it is necessary to make the ohmic metal thicker than in the case of a normal GaAs layer MESFET.

そのため後工程でのオーミック電極近傍でのゲート電極
形成予定領域でホトレジストを用いたパターニングの際
に、ウェハー表面の凹凸、すなわちオーミック金属膜と
GaAs基板表面との高低差により、安定した微細パタ
ーンの形成ができないという欠点があった。
Therefore, when patterning using photoresist in the area where the gate electrode is planned to be formed near the ohmic electrode in the subsequent process, a stable fine pattern can be formed due to the unevenness of the wafer surface, that is, the height difference between the ohmic metal film and the GaAs substrate surface. The drawback was that it was not possible.

これは、トランジスタの性能に大きな影響を及ぼすソー
スシリーズ抵抗(Rs)を小さくするために、ソース電
極に近づけてゲート電極を形成しようとする時に顕著で
あり、従ってあまりソース電極に近づけてゲート電極を
形成できないためR5が大きくなるという欠点もあった
This is noticeable when trying to form the gate electrode close to the source electrode in order to reduce the source series resistance (Rs), which has a large effect on the performance of the transistor. There was also a drawback that R5 became large because it could not be formed.

本発明の目的は、ソース電極に近接したゲート電極を容
易に形成できしかもソースシリーズ抵抗の低減された半
導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device in which a gate electrode close to a source electrode can be easily formed and the source series resistance can be reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半絶縁性GaAs基板上に形成
されたアンドープGaAs層と、該アンドープGaAs
層上に形成されたAlGaAs層と、前記アンドープG
aAs層とAlGaAs層にオーミック接続するソース
・ドレイン電極とを有する半導体装置であって、前記ソ
ース・ドレイン電極は、少くとも前記アンドープGaA
sJIの表面に達する深さを有する溝に埋め込まれたオ
ーミック金属から構成されているものである。
A semiconductor device of the present invention includes an undoped GaAs layer formed on a semi-insulating GaAs substrate, and an undoped GaAs layer formed on a semi-insulating GaAs substrate.
The AlGaAs layer formed on the layer and the undoped G
A semiconductor device having source/drain electrodes ohmically connected to an aAs layer and an AlGaAs layer, wherein the source/drain electrodes include at least the undoped GaA layer.
It consists of an ohmic metal embedded in a groove deep enough to reach the surface of the sJI.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。以下第2図
(a)〜(c)を併用してその製造方法と共に説明する
FIG. 1 is a sectional view of an embodiment of the present invention. The manufacturing method will be explained below with reference to FIGS. 2(a) to 2(c).

まず第2図(a)に示すように半絶縁性のGaAs基板
1上にアンドープGaAs層を約1μrn、さらにシリ
コン(Si)をn型不純物として3X1018cm−3
ドーピングしたn+型A e O03G a O,? 
A 8層3を300人、さらに同じくSiを3X10”
cm−3ドーピングしたn生型Ga A 8層4を50
0人を各々連続してMBE法により成長する。
First, as shown in FIG. 2(a), an undoped GaAs layer of about 1 μrn is formed on a semi-insulating GaAs substrate 1, and silicon (Si) is added as an n-type impurity to a thickness of 3×1018 cm−3.
Doped n+ type A e O03G a O,?
A: 300 people with 8 layers 3, and 3×10” Si
50 cm-3 doped n-type Ga A 8 layers 4
0 people are each successively grown using the MBE method.

次に第2図(b)に示すように、ソース・ドレイン電極
形成予定領域5を開口するパターニングをホトリソグラ
フィーにより行い、リン酸:過酸化水素水:水=4:1
:90のエッチャントを用いてn+型GaAs層4及び
n)型A j’ o5 G a (T、7A s 騙3
を約800人エツチングし、このエツチング呈と同じ厚
さになるようにA u G eを600人、Niを20
0人真空蒸着法にて被着し、AuGe−Ni層6を形成
する。次でソース・ドレイン電極形成予定領域5以外の
A u G e −N i Nをリフトオフ法により除
去する。
Next, as shown in FIG. 2(b), patterning is performed by photolithography to open the regions 5 where source/drain electrodes are to be formed. Phosphoric acid:hydrogen peroxide:water=4:1
:90 etchant to form n+ type GaAs layer 4 and n) type A j' o5 Ga (T,7A s 3
Approximately 800 layers of etching were performed, and 600 layers of AuG and 20 layers of Ni were added to the same thickness as the etching.
The AuGe--Ni layer 6 is formed by a zero-person vacuum evaporation method. Next, the A u G e -N i N other than the region 5 where the source/drain electrodes are to be formed is removed by a lift-off method.

次に第2図(c)に示すように、水素雰囲気にて450
°Cで2分間熱処理を行い、合金層8を形成することに
よりオーミックなソース・ドレイン電極10.11が形
成される。この時、ソース・ドレイン間はほぼソース・
ドレイン電極部を含めて平坦となる。
Next, as shown in Figure 2(c), 450
Heat treatment is performed at .degree. C. for 2 minutes to form alloy layer 8, thereby forming ohmic source/drain electrodes 10.11. At this time, the distance between the source and drain is almost source/drain.
It becomes flat including the drain electrode part.

次に第1図に示すように、n+型GaAs層4に開口部
を設けたのちゲート電極12を形成する。この時、ソー
ス・ドレイン電極10.11を含む表面は平坦化されて
いるめ微細なパターニングはきわめて容易に行うことが
できる。しかもソース電極10に近接してゲート電極1
2を形成できるため、チャネル抵抗が小さくなり、また
2D、EGlに確実にオーミックコンタクトがとれるた
めに安定したコンタクト抵抗が得られ、従ってR’sの
低い良好な性能を有するトランジスタができる。 − 〔発明の効果〕 以上説明したように本発明は、ソース・ドレイン電極を
・、少なくともアンドープ・G a A 、s屑の表面
に達する深さを有する溝に埋め込まれたオーミック金属
から構成することにより、確実にしがち低接触抵抗にて
チャネル層にオーミックなソース・ドレイン電極が形成
できる。また、ゲート電極形成予定領域近傍が−きわめ
て平坦となっているために、ソース電極に近接したゲー
ト電極を容易に形成できる効果がある。この為チャネル
抵抗も小さくでき、従ってR5が小さく、雑音特性や利
得のすぐれた良好な半導体装置が得られる。
Next, as shown in FIG. 1, an opening is provided in the n+ type GaAs layer 4, and then a gate electrode 12 is formed. At this time, since the surface including the source/drain electrodes 10.11 is flattened, fine patterning can be performed extremely easily. Moreover, the gate electrode 1 is located close to the source electrode 10.
Since 2D and EG1 can be formed, the channel resistance becomes small, and since ohmic contact can be made reliably with 2D and EG1, stable contact resistance can be obtained. Therefore, a transistor with low R's and good performance can be obtained. - [Effects of the Invention] As explained above, the present invention provides that the source/drain electrodes are made of an ohmic metal embedded in a groove having a depth that reaches at least the surface of undoped Ga, S scraps. As a result, ohmic source/drain electrodes can be formed in the channel layer with low contact resistance. Furthermore, since the vicinity of the region where the gate electrode is to be formed is extremely flat, there is an effect that the gate electrode can be easily formed close to the source electrode. For this reason, the channel resistance can also be made small, so that a good semiconductor device with small R5 and excellent noise characteristics and gain can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図(a )〜
(c)は本発明の一実施例の製造方法を説明するための
工程順に示した半導体チップの断面図、第3図は従来の
半導体装置の断面図である。 1・・・GaAs基板、2・・・アンドープG a A
 s層、3 =−n+型A e O,3G a o、7
A s R14−n+型(Jr a A s層、5・・
・オーミック電極形成予定領域、6・・・AuGe−N
i層、8・・・合金層、9・・・二次元電子ガス層(2
DEG層)、10・・・ソース電極、11・・・トレイ
ン電極、12・・・ゲート電極。
Fig. 1 is a sectional view of one embodiment of the present invention, Fig. 2(a) -
(c) is a cross-sectional view of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of a conventional semiconductor device. 1...GaAs substrate, 2...Undoped GaA
s layer, 3 = -n+ type A e O, 3G a o, 7
As R14-n+ type (Jra As layer, 5...
- Ohmic electrode formation area, 6...AuGe-N
i layer, 8... alloy layer, 9... two-dimensional electron gas layer (2
DEG layer), 10... source electrode, 11... train electrode, 12... gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性GaAs基板上に形成されたアンドープGaA
s層と、該アンドープGaAs層上に形成されたAlG
aAs層と、前記アンドープGaAs層とAlGaAs
層にオーミック接続するソース・ドレイン電極とを有す
る半導体装置において、前記ソース・ドレイン電極は、
少くとも前記アンドープGaAs層の表面に達する深さ
を有する溝に埋め込まれたオーミック金属から構成され
ていることを特徴とする半導体装置。
Undoped GaA formed on a semi-insulating GaAs substrate
s layer and AlG formed on the undoped GaAs layer.
aAs layer, the undoped GaAs layer and AlGaAs
In a semiconductor device having source/drain electrodes that are ohmically connected to a layer, the source/drain electrodes are
A semiconductor device comprising an ohmic metal embedded in a groove having a depth reaching at least the surface of the undoped GaAs layer.
JP11190987A 1987-05-08 1987-05-08 Semiconductor device Pending JPS63276275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11190987A JPS63276275A (en) 1987-05-08 1987-05-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11190987A JPS63276275A (en) 1987-05-08 1987-05-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63276275A true JPS63276275A (en) 1988-11-14

Family

ID=14573160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11190987A Pending JPS63276275A (en) 1987-05-08 1987-05-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63276275A (en)

Similar Documents

Publication Publication Date Title
JPS59168677A (en) Manufacture of semiconductor device
JP3233207B2 (en) Method for manufacturing field effect transistor
JPH05121448A (en) Compound semiconductor device and its manufacture
US5231040A (en) Method of making a field effect transistor
US5837570A (en) Heterostructure semiconductor device and method of fabricating same
JPS63276275A (en) Semiconductor device
KR940010557B1 (en) Semiconductor device
JP2000223504A (en) Field-effect semiconductor device and its manufacture
JP3023933B2 (en) Method for manufacturing semiconductor device
KR100261461B1 (en) Method of making compound semiconductor device with asymmetry recess structure
EP0552763A2 (en) Compound semiconductor device with self-aligned gate and method of producing this compound semiconductor device
JP3074807B2 (en) Method for manufacturing field effect transistor
EP0394590A2 (en) Field effect transistors and method of making a field effect transistor
US5177026A (en) Method for producing a compound semiconductor MIS FET
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JPS63228762A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH03231424A (en) Manufacture of compound semiconductor device
JPH02262342A (en) Manufacture of semiconductor device
JPH04145629A (en) Field effect transistor and its manufacture
JPS63107066A (en) Heterojunction type bipolar semiconductor
JPH0439941A (en) Field-effect transistor
JPS63236369A (en) Semiconductor device
JPH0258339A (en) Semiconductor device and manufacture thereof
JPH04321236A (en) Manufacture of field-effect transistor