JPS63276016A - Stereoscopic microscope - Google Patents

Stereoscopic microscope

Info

Publication number
JPS63276016A
JPS63276016A JP11077887A JP11077887A JPS63276016A JP S63276016 A JPS63276016 A JP S63276016A JP 11077887 A JP11077887 A JP 11077887A JP 11077887 A JP11077887 A JP 11077887A JP S63276016 A JPS63276016 A JP S63276016A
Authority
JP
Japan
Prior art keywords
lens
optical
point
prism
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11077887A
Other languages
Japanese (ja)
Inventor
Minoru Otsuka
実 大塚
Eiichi Murakami
栄一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11077887A priority Critical patent/JPS63276016A/en
Publication of JPS63276016A publication Critical patent/JPS63276016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To form the shape in which length of a lens barrel is longer and the diameter is small, and which is suitable for observing a deep hole part, by providing one or plural pieces of optical axis deflecting optical elements and a relaying lens between an objective lens and an eyepiece of each sequence. CONSTITUTION:An object placed at a point P0 is brought to an image formation at a point P1 by an objective lens 1, but during this time, an optical path is curved to the inside of an internal angle by an optical path deflecting prism 2, and also, inclined backward by an inclination prism 3. Thereafter, a luminous flux of an object image is corrected by a field lens 4, and brought to an image formation again at a point P2 by a relaying lens 5. During such a time, the optical axis is corrected suitably by an eye width adjusting prism 6 which is set so as to be freely rotatable centering around the optical axis X-X in order to fit it to the eye width of an observer, and the image at the point P2 is observed through an eyepiece 7. In such a way, the length of a lens barrel can be increased without deteriorating a state of the image, therefore, a deep hole part can be observed easily.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は2系列の光学系を用いた実体顕微鏡、特に制限
された狭く奥深い空間内に鏡筒を挿入して使用するのに
好適ないわゆる深穴観察用の実体顕微鏡に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a stereomicroscope using a two-line optical system, and a so-called stereomicroscope that is particularly suitable for use by inserting a lens barrel into a restricted narrow and deep space. Concerning a stereomicroscope for deep hole observation.

[従来技術] 従来、深穴用実体顕微鏡としては、通常の実体顕微鏡の
対物レンズ先端に倍率1倍以下の補助レンズをつけるこ
とにより作動距離を増大して深穴用に対応させたものや
、マイナス・パワーおよびプラス・パワーの2群のレン
ズ等の光学系を追加してバックフォーカスを長くしたも
のなどが知られている。
[Prior Art] Conventionally, stereoscopic microscopes for deep holes have been made compatible with deep holes by increasing the working distance by attaching an auxiliary lens with a magnification of 1x or less to the tip of the objective lens of an ordinary stereomicroscope. It is known that the back focus is lengthened by adding an optical system such as two lens groups of negative power and positive power.

[発明が解決しようとする問題点] 上述従来例は現用の実体顕微鏡をほぼそのまままたは局
部的に改良するだけで簡単に構成できるが、前者のよう
に補助レンズを付加すると倍率が低下するため、接眼レ
ンズ倍率を上げてこれに対応しても、像の見えは著るし
く減小する。また、後者のようにバックフォーカスを長
くする方法によれば、画質はほぼ同等とすることはでき
るが、追加するレンズやプリズム等の光学素子による干
渉が多く、更に大幅に鏡筒長誉伸ばすことは困難である
という問題があった。
[Problems to be Solved by the Invention] The above-mentioned conventional example can be easily constructed by using a currently used stereomicroscope almost as is or by only locally improving it, but adding an auxiliary lens as in the former case reduces the magnification. Even if the eyepiece magnification is increased to accommodate this, the visibility of the image is significantly reduced. Furthermore, if the latter method is used to lengthen the back focus, the image quality can be almost the same, but there is a lot of interference from optical elements such as additional lenses and prisms, and the length of the lens barrel can be further extended significantly. The problem was that it was difficult.

本発明の目的は、上述従来例の問題点に鑑み、実体顕微
鏡において、比較的簡単な対応により性能を損なわずに
、鏡筒の長さがより長く径が小さい、深穴部観察により
適した形状にすることにある。
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a stereomicroscope that has a longer lens barrel and a smaller diameter, which is more suitable for deep hole observation, without compromising performance through relatively simple measures. It's about giving shape.

[問題点を解決するための手段および作用]上記目的を
達成するため本発明では、焦点面において光軸が交叉す
る2系列の光学系を有する実体顕@鏡において、各系列
の対物レンズと接眼レンズとの間に1または複数個の光
軸変向用光学素子、中継レンズを備えている。
[Means and effects for solving the problem] In order to achieve the above object, the present invention provides a stereoscopic microscope having two series of optical systems whose optical axes intersect at the focal plane. One or more optical axis deflecting optical elements and a relay lens are provided between the lens and the lens.

この構成において、光軸変向用光学素子を介して両系列
の光路を、例えば鏡筒中心方向へ、変向させることによ
り拡がりつつある光路間の間隔を狭めるようにしている
。さらに中継レンズで再結像させることにより接眼レン
ズに至る光路を長くするようにしている。したがって、
見えを損なうことなく、鏡筒径を小さくしかつ鏡筒長を
大幅に長(することが図られている。
In this configuration, the distance between the expanding optical paths is narrowed by deflecting the optical paths of both series, for example, toward the center of the lens barrel via the optical axis deflecting optical element. Furthermore, by re-imaging with a relay lens, the optical path to the eyepiece is lengthened. therefore,
The aim is to reduce the diameter of the lens barrel and significantly increase the length of the lens barrel without compromising visibility.

[実施例コ 第1図は本発明の一実施例に係る実体顕@鏡の光学系の
配置図で、同図(a)は正面図、同図(b)は側面図で
ある。この実体顕微鏡は、実体視をするために必要な内
向角をもつ同種2系列の光学系により構成されている。
Embodiment FIG. 1 is a layout diagram of an optical system of a stereoscopic microscope according to an embodiment of the present invention, in which FIG. 1(a) is a front view and FIG. 1(b) is a side view. This stereoscopic microscope is composed of two optical systems of the same type having an inward angle necessary for stereoscopic vision.

同図において、1は対物レンズ、2は光軸を曲げるため
の光路変向プリズム、3は像を見易い位置に設定するた
めの傾角プリズム、4は対物レンズ1の結像位置を示す
点P、の近傍に設置されたフィールドレンズ、5は点P
1における物体像を点P2に再結像するための中継レン
ズ、6は観察者の両眼が像を捕捉しやすいように調整す
るための眼幅調整プリズム、7は接眼レンズである。眼
幅調整プリズム6は入射光および出射光に対して所定の
角度をもちかつ互いに平行に配置された2つの反射面を
有する。
In the figure, 1 is an objective lens, 2 is an optical path deflection prism for bending the optical axis, 3 is an inclined prism for setting the image at a position where it is easy to see, 4 is a point P indicating the imaging position of the objective lens 1, Field lens installed near , 5 is point P
6 is a relay lens for re-focusing the object image at point P2; 6 is an interpupillary distance adjusting prism for adjusting the image so that both eyes of the observer can easily capture the image; and 7 is an eyepiece lens. The interpupillary distance adjusting prism 6 has two reflective surfaces arranged parallel to each other and having a predetermined angle with respect to the incident light and the outgoing light.

この構成において、点P0に置かれた物体は対物レンズ
1により点P1に結像するが、この間、光路は、光路変
向プリズム2により内向角内側に曲げられ、更に傾角プ
リズム3により後方に傾けられる。その後、物体像の光
束は、フィールドレンズ4により修正され、中継レンズ
5により点P2に再結像される。この間、光軸は、観察
者の眼幅に合せるため光軸X−Xを中心として回転自在
に設定された眼幅調整プリズム6により適宜修正される
。そして、点P2における像は接眼レンズ7を通して観
察される。
In this configuration, an object placed at point P0 is imaged at point P1 by the objective lens 1, but during this time, the optical path is bent inward by the optical path deflection prism 2, and further tilted backward by the tilting prism 3. It will be done. Thereafter, the light beam of the object image is corrected by the field lens 4 and re-imaged by the relay lens 5 onto a point P2. During this time, the optical axis is appropriately corrected by the interpupillary distance adjustment prism 6 which is rotatably set around the optical axis XX in order to match the interpupillary distance of the observer. The image at point P2 is then observed through the eyepiece lens 7.

[実施例の変形例コ なお、本発明は前述の実施例に限定されることなく適宜
変形して実施することができる。
[Modifications of Embodiments] The present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications.

例えば、上述実施例においては光路変向プリズムを1個
使用したが、何段階かに絞るときは複数個の使用が可能
である。具体的には第2図に示すように、光束A、Bを
実線で示したプリズムで光束の断面A、、B、で示され
る位置に移動し、そしてこの位置から内向角により断面
A2.82で示される位置に移動した光束を破線で示し
たプリズムで断面A、Bで示される元の位置に戻しある
いは他に設定した任意の位置に位置させるように、各光
路それぞれに2個の光路変向プリズムを配置することが
可能である。
For example, although one optical path deflecting prism is used in the above embodiment, a plurality of optical path deflecting prisms can be used when narrowing down to several stages. Specifically, as shown in Fig. 2, the beams A and B are moved to the positions indicated by the cross sections A, B, of the beams using a prism indicated by a solid line, and from this position, the cross section A2.82 is moved by the inward angle. Two optical path changers are installed in each optical path so that the light flux that has moved to the position indicated by is returned to the original position indicated by cross sections A and B using the prism indicated by the broken line, or to any other set position. It is possible to arrange a facing prism.

また、内向角により各光軸が離れてゆく光学系の途中に
、第3図(a)に示すように光路変向素子を配置して2
光束A、Bを断面(光束)AI。
In addition, as shown in Fig. 3(a), an optical path changing element is placed in the middle of the optical system where each optical axis is separated by the inward angle.
Cross section (luminous flux) AI of luminous fluxes A and B.

B1で示される位置に移動するとともに光束A、、B工
の光軸が鏡筒中心軸に対して、それぞれ平行となるよう
にし、ざらに傾角プリズム以前に光路変向素子を配置し
て第3図(b)に示すように実体視するに支障のない位
置に戻すなどの方法も可能である。
While moving to the position indicated by B1, the optical axes of the beams A, B are made parallel to the lens barrel center axis, and an optical path deflecting element is roughly placed before the tilting prism. It is also possible to return it to a position that does not interfere with stereoscopic viewing, as shown in Figure (b).

また、上述実施例においては、像を見易くするために接
眼部を傾角プリズム3により後方向に折り曲げたいわゆ
る曲胴型の実体顕微鏡について述べたが、傾角プリズム
を除いて、接眼部が上方にあるいわゆる直胴型にするこ
ともできる。  ゛[発明の効果] 以上説明したように本発明によれば、従来の実体顕微鏡
の2光束を鏡筒の中心方向に変向させることにより鏡筒
径を細くでき、また中間レンズを付加することにより、
像の性悪を損なわずに鏡筒長を増大できるため、深穴部
の観察が容易となる。
Furthermore, in the above embodiment, a so-called curved-body type stereomicroscope was described in which the eyepiece was bent backward by the tilting prism 3 in order to make the image easier to see. It can also be of the so-called straight-body type. [Effects of the Invention] As explained above, according to the present invention, the diameter of the lens barrel can be reduced by deflecting the two light beams of a conventional stereomicroscope toward the center of the lens barrel, and it is also possible to add an intermediate lens. According to
The length of the lens barrel can be increased without impairing image quality, making it easier to observe deep holes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る実体顕微鏡の光学系
の配置図で、同図(a)は正面図、同図(b)は側面図
、 第2図は第1図の装置の変形例に係る光路変向を説明す
るための模式図、そして 第3図(a)および(b)は、それぞれ第1図の装置の
他の変形例に係る光路の変向および復元を説明するため
の模式図である。 1:対物レンズ、2:光路変向プリズム、3:傾角プリ
ズム、4:フィールドレンズ、5:中継レンズ、6:眼
幅調整プリズム、7:接眼レンズ、Po :物***置、 Pl :結像位置、P2 :再結像位置、A、A1.A
2.B、Bl、B2  :光束(の断面)。
FIG. 1 is a layout diagram of the optical system of a stereomicroscope according to an embodiment of the present invention, in which (a) is a front view, (b) is a side view, and FIG. 2 is the apparatus of FIG. 1. FIGS. 3(a) and 3(b) are schematic diagrams for explaining optical path redirection according to a modified example of FIG. FIG. 1: Objective lens, 2: Optical path changing prism, 3: Tilt angle prism, 4: Field lens, 5: Relay lens, 6: Interpupillary distance adjustment prism, 7: Eyepiece lens, Po: Object position, Pl: Imaging position, P2: Re-imaging position, A, A1. A
2. B, Bl, B2: (cross-section of) luminous flux.

Claims (1)

【特許請求の範囲】 1、対物レンズと接眼レンズとを有し焦点面において光
軸が交叉する2系列の光学系を備え、該2系列の光学系
それぞれが該対物レンズと該接眼レンズとの間に1また
は複数個の光軸変向用光学素子、中継レンズを具備する
ことを特徴とする実体顕微鏡。 2、前記2系列の光学系それぞれの一部の光軸が前記光
軸変向用光学素子により互いに平行となる特許請求の範
囲第1項記載の実体顕微鏡。 3、前記対物レンズと前記接眼レンズとの間に更に眼幅
調整用光学素子を有し、該眼幅調整用光学素子が、該眼
幅調整用光学素子に対する入射光および出射光に対して
所定の角度をもちかつ互いに平行に配置された2つの反
射面を有するものである特許請求の範囲第1項記載の実
体顕微鏡。
[Scope of Claims] 1. Two systems of optical systems each having an objective lens and an eyepiece, the optical axes of which intersect at the focal plane, each of the two systems having an objective lens and an eyepiece lens. A stereoscopic microscope characterized by comprising one or more optical axis deflecting optical elements and a relay lens between them. 2. The stereoscopic microscope according to claim 1, wherein optical axes of a part of each of the two optical systems are made parallel to each other by the optical axis changing optical element. 3. An optical element for adjusting interpupillary distance is further provided between the objective lens and the eyepiece, and the optical element for adjusting interpupillary distance has a predetermined value for incident light and emitted light with respect to the optical element for adjusting interpupillary distance. 2. A stereoscopic microscope according to claim 1, which has two reflective surfaces arranged parallel to each other and having an angle of .
JP11077887A 1987-05-08 1987-05-08 Stereoscopic microscope Pending JPS63276016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077887A JPS63276016A (en) 1987-05-08 1987-05-08 Stereoscopic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11077887A JPS63276016A (en) 1987-05-08 1987-05-08 Stereoscopic microscope

Publications (1)

Publication Number Publication Date
JPS63276016A true JPS63276016A (en) 1988-11-14

Family

ID=14544366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077887A Pending JPS63276016A (en) 1987-05-08 1987-05-08 Stereoscopic microscope

Country Status (1)

Country Link
JP (1) JPS63276016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320462A (en) * 1995-05-25 1996-12-03 Minolta Co Ltd Projection optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320462A (en) * 1995-05-25 1996-12-03 Minolta Co Ltd Projection optical device

Similar Documents

Publication Publication Date Title
US4601550A (en) Stereo-microscope with a common objective lens system
US5539572A (en) Microscope illumination and stereo viewing
JPS58203411A (en) Stereo microscope
US4383741A (en) Binocular night telescope
US4640588A (en) Stereoscopic microscope including a rotatable light beam distributing means with a surface having distributing and non-distributing areas
US4704012A (en) Stereoscopic microscope
JPH11160625A (en) Afocal zoom system
US4398788A (en) Binocular viewing device
EP0844505A2 (en) Variable-inclination-angle lens-barrel for microscopes and microscope system
JPH0760218B2 (en) Single objective binocular stereo microscope
US4802749A (en) Surgical microscope
US4547047A (en) Microscope tube system
US4217025A (en) Stereoscopic microscope
US3788727A (en) Optical system of a binocular microscope
JP4225802B2 (en) Illumination insertion device for optical observation equipment
US4783160A (en) Stereoscopic microscope
JPS63276016A (en) Stereoscopic microscope
EP0644688A1 (en) Rear focus type zoom lens including optical view finder integral therewith
JP2017508530A (en) Endoscope with depth determination
EP0173345B1 (en) Method and apparatus for simultaneously observing a transparent object from two directions
US20180045945A1 (en) Monocular microscope for producing 3d image
JP3454851B2 (en) Stereo microscope
JPH0766107B2 (en) Variable viewing angle observation optical system
JPS6217722A (en) Single objective stereoscopic vision binocular microscope
JP3072930B2 (en) Stereo microscope