JPS63273323A - Apparatus for film formation - Google Patents

Apparatus for film formation

Info

Publication number
JPS63273323A
JPS63273323A JP10638887A JP10638887A JPS63273323A JP S63273323 A JPS63273323 A JP S63273323A JP 10638887 A JP10638887 A JP 10638887A JP 10638887 A JP10638887 A JP 10638887A JP S63273323 A JPS63273323 A JP S63273323A
Authority
JP
Japan
Prior art keywords
plasma
film
sample
thermal expansion
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10638887A
Other languages
Japanese (ja)
Inventor
Hideo Yoshihara
秀雄 吉原
Takashi Okubo
大久保 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10638887A priority Critical patent/JPS63273323A/en
Publication of JPS63273323A publication Critical patent/JPS63273323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of defects during the film formation by providing a material having a thermal expansion coefficient identical to the film to be deposited on the part to be exposed to a plasma, and heating this material, thereby improving the adhesion of the film to be deposited. CONSTITUTION:Oxygen and a microwave are introduced into a plasma generating chamber 1 through a gas introducing system 5 and a waveguide 3, respectively, and a magnetic field is generated by a magnet 8. An oxygen plasma is generated by the microwave and magnetic field utilizing an electron cyclotron resonance. Then, a monosilane gas SiH4 is introduced into a gas introducing system 10 at the sample chamber side, thereby forming a silicon oxide SiO2 on a sample 12. In this case, the part directly exposed to the plasma is all covered with quartz. Accordingly, since there is no difference between the thermal expansion coefficients of the silicon oxide and the quartz, the silicon oxide film having adhered to the apparatus wall of an ECR-type plasma deposition apparatus causes no peeling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマを利用する膜形成装置、例えばEC
R型プラズマ堆積装置を用いて半導体集積回路用膜形成
において、膜中の欠陥を少なくするために欠陥発生原因
を少なくする構造とした膜形成装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to film forming apparatuses using plasma, such as EC
The present invention relates to a film forming apparatus having a structure that reduces the causes of defects in order to reduce defects in the film when forming a film for semiconductor integrated circuits using an R-type plasma deposition apparatus.

(従来技術及び発明が解決しようとする問題点)薄膜を
低温で形成するため、近年プラズマのエネルギを利用し
て成膜する装置が多く利用されている。特に、マイクロ
波と磁界による電子サイクロトロン共鳴(ECR)を利
用してプラズマを生成するECR型プラズマ堆積装置を
用いると高品質の膜が常温で形成できるので注目を集め
ている( S、 Matsuo and M、Kiuc
ht : Low TemperatureChew+
1cal  Deposition  Method 
 Iltilizing  anElectron  
Cyclotron  Re5onance  P1a
ssa+ Jpn。
(Prior Art and Problems to be Solved by the Invention) In order to form thin films at low temperatures, many film forming apparatuses using plasma energy have recently been used. In particular, ECR-type plasma deposition equipment, which generates plasma using electron cyclotron resonance (ECR) using microwaves and magnetic fields, is attracting attention because high-quality films can be formed at room temperature (S, Matsuo and M , Kiuc
ht: Low TemperatureChew+
1cal Deposition Method
Illtilizing an Electron
Cyclotron Re5onance P1a
ssa+ Jpn.

J、Appl、 Phys、、vol、 22.No、
4(1983) pp、L210) 。
J. Appl. Phys., vol. 22. No,
4 (1983) pp, L210).

第4図は従来のECR型プラズマ堆積装置の構成を示す
0図において1はプラズマ生成室、2はマイクロ波導入
窓、3はマイクロ波導波管、4は水冷部、5はガス導入
系、6はプラズマ引き出し窓部、7はプラズマ、8は励
磁用コイル、9は試料室、10は試料室側ガス導入系、
11はシャッタ、12は試料、13は試料台、14は排
気系、15はプラズマである。
Fig. 4 shows the configuration of a conventional ECR type plasma deposition apparatus, in which 1 is a plasma generation chamber, 2 is a microwave introduction window, 3 is a microwave waveguide, 4 is a water cooling section, 5 is a gas introduction system, and 6 is a plasma extraction window, 7 is a plasma, 8 is an excitation coil, 9 is a sample chamber, 10 is a gas introduction system on the sample chamber side,
11 is a shutter, 12 is a sample, 13 is a sample stage, 14 is an exhaust system, and 15 is a plasma.

この装置を動作するには、プラズマ生成室1にガス導入
系5で所望のガスを導入し、マイクロ波導波管3とマイ
クロ波導入窓2を通してプラズマ生成室1にマイクロ波
を導入しコイル8に電流を流し磁界を形成し、電子サイ
クロトロン共鳴でプラズマ生成室1にプラズマを生成す
る0次に、試料室9に試料室側ガス導入系10を通して
膜形成用ガスを導入する、励磁用コイル8で形成された
発散磁界でプラズマ15を引き出し、シャンク11を開
き試料台13の上の試料12に膜を形成する。
To operate this device, a desired gas is introduced into the plasma generation chamber 1 using the gas introduction system 5, and microwaves are introduced into the plasma generation chamber 1 through the microwave waveguide 3 and the microwave introduction window 2, and then into the coil 8. A current is applied to form a magnetic field, and plasma is generated in the plasma generation chamber 1 by electron cyclotron resonance.Next, a film forming gas is introduced into the sample chamber 9 through the sample chamber side gas introduction system 10, using an excitation coil 8. Plasma 15 is extracted by the generated divergent magnetic field, shank 11 is opened, and a film is formed on sample 12 on sample stage 13.

例えば、酸化シリコンSfOオを形成するには、ガス導
入系5から酸素0.を導入し酸素プラズマを形成し、試
料室側ガス導入系10からモノシランガスSin、を導
入し、発散磁界で引き出した酸素プラズマ15とモノシ
ランガスを反応させ試料12上に酸化シリコンの膜を形
成する。窒化シリコンSi3N4を形成するにはガス導
入系5から窒素ガスを導入し窒素プラズマを形成する。
For example, in order to form silicon oxide SfO, 0.00% of oxygen is supplied from the gas introduction system 5. is introduced to form oxygen plasma, monosilane gas Sin is introduced from the sample chamber side gas introduction system 10, and the oxygen plasma 15 extracted by a divergent magnetic field is reacted with the monosilane gas to form a silicon oxide film on the sample 12. To form silicon nitride Si3N4, nitrogen gas is introduced from the gas introduction system 5 to form nitrogen plasma.

この窒素プラズマとモノシランガスを反応させ窒化シリ
コン5iJ4膜を形成する。この時膜形成温度は常温で
あり、通常試料台は冷却されているか、積掻的に加熱し
ていない、このようにして形成した酸化シリコン膜と窒
化シリコン膜は熱酸化、CVDで形成したと同等又はそ
れ以上に高品質の膜である。
This nitrogen plasma and monosilane gas are reacted to form a silicon nitride 5iJ4 film. At this time, the film formation temperature is room temperature, and the sample stage is usually cooled or not heated cumulatively.The silicon oxide film and silicon nitride film formed in this way are thought to have been formed by thermal oxidation or CVD. The membrane is of equal or higher quality.

以上述べたように、ECR型プラズマ堆積装置の特徴は
常温で良質な酸化シリコン、窒化シリコン等の膜が形成
できる。
As described above, the feature of the ECR type plasma deposition apparatus is that it can form high-quality films of silicon oxide, silicon nitride, etc. at room temperature.

ECR型プラズマ堆積装置のプラズマ生成室1゜試料室
9.プラズマ引き出し窓部6.シャッタ11は、一般に
ステンレス鋼で作られており、試料台13の上には絶縁
のため石英板が設けられている。
Plasma generation chamber 1° sample chamber 9 of ECR type plasma deposition apparatus. Plasma drawer window 6. The shutter 11 is generally made of stainless steel, and a quartz plate is provided on the sample stage 13 for insulation.

マイクロ波導入窓2には石英板が用いられている。A quartz plate is used for the microwave introduction window 2.

ECR型プラズマ堆積装置を用いて膜形成を行うと、プ
ラズマ生成室l、マイクロ波導入窓2゜プラズマ引き出
し窓6.シャッタ11.並びに試料台13にも膜が付着
する。膜形成を数十回行うと、上記の部分にもかなりの
膜が付着する0例えば、酸化シリコン、窒化シリコンの
膜の場合、プラズマ生成室1.マイクロ波導入窓2.プ
ラズマ引き出し窓部6.試料台13に付着し、この付着
した膜が剥離し膜中の欠陥となる。特に、この剥離の原
因としては、上記の部分と付着した膜の熱膨張係数の相
違と付着した膜の密着性が悪いためと考えられる。
When film formation is performed using an ECR type plasma deposition apparatus, a plasma generation chamber 1, a microwave introduction window 2, a plasma extraction window 6. Shutter 11. The film also adheres to the sample stage 13. If film formation is performed several dozen times, a considerable amount of film will adhere to the above areas. For example, in the case of a film of silicon oxide or silicon nitride, the plasma generation chamber 1. Microwave introduction window 2. Plasma drawer window 6. It adheres to the sample stage 13, and this adhered film peels off, resulting in defects in the film. In particular, this peeling is thought to be due to the difference in thermal expansion coefficient between the above-mentioned portion and the attached film and poor adhesion between the attached film.

以上述べたように、今までのECR型プラズマ堆積装置
では数十回の膜堆積で大幅に欠陥が増加するという問題
があった。
As described above, conventional ECR type plasma deposition apparatuses have had a problem in that the number of defects increases significantly after several dozen film depositions.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもので
、その目的は、ECR型プラズマ堆積装置において膜堆
積中の欠陥発生の原因となる装置内各部の膜の剥離を防
止するため、プラズマに曝される部分に堆積する膜と同
等の熱膨張率を有する物質を設け、更にこの物質を加熱
できる機構を設けて、堆積する膜の付着性を向上し、膜
形成中の欠陥発生を防止することにより、欠陥の発生の
少ない装置を提供することにある。
(Object of the Invention) The present invention was proposed to improve the above-mentioned drawbacks, and its purpose is to prevent film peeling in various parts of the ECR type plasma deposition apparatus, which causes defects during film deposition. In order to prevent this, a material with the same coefficient of thermal expansion as the film to be deposited is provided in the area exposed to plasma, and a mechanism that can heat this material is also provided to improve the adhesion of the film to be deposited and reduce the temperature during film formation. The object of the present invention is to provide an apparatus with fewer defects by preventing the occurrence of defects.

(問題点を解決するための手段) 上記の目的を達成するため本発明はプラズマを利用する
膜形成装置において、プラズマ生成室の内壁のプラズマ
に曝される箇所を、試料に堆積する膜の熱膨張率と同等
またはこれに極めて近い熱膨張率を有する物質で被覆す
るか、又は該物質で構成することを特徴とする膜形成装
置を発明の要旨とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a film forming apparatus using plasma, in which a portion of the inner wall of a plasma generation chamber exposed to plasma is heated to heat the film deposited on a sample. The gist of the invention is a film forming apparatus characterized by being coated with or made of a material having a coefficient of thermal expansion equal to or very close to the coefficient of thermal expansion.

換言すれば、プラズマに曝される部分に堆積する膜と同
等の熱膨張率を持つ物質を設け、更に、この物質を加熱
できる機構を設けたことを最も主要な特徴とする。従来
のECR型プラズマ堆積装置ではプラズマ生成室とプラ
ズマ引き出し窓にステンレス鋼を用いていたので、堆積
する膜の熱膨張率とステンレス鋼の熱膨張率(l0XI
O−’/”C: )が大きく異なり温度変化に伴い大き
な応力が付着した膜とステンレス鋼の界面に発生した。
In other words, the most important feature is that a material having a coefficient of thermal expansion equivalent to that of the film deposited is provided in the area exposed to plasma, and a mechanism is further provided to heat this material. Conventional ECR-type plasma deposition equipment uses stainless steel for the plasma generation chamber and plasma extraction window, so the coefficient of thermal expansion of the deposited film and the coefficient of thermal expansion of stainless steel (l0XI
O-'/''C: ) was greatly different and a large stress was generated at the interface between the attached film and the stainless steel due to the temperature change.

この応力が膜堆積中にプラズマ生成室やプラズマ引き出
し窓に付着した膜の剥離を生じさせ、欠陥発生の原因と
なっていた。一方、本発明のECR型プラズマ堆積装置
では、熱膨張率に差が殆どないので、温度変化に伴う界
面の応力の発生も少ない、従って、膜堆積中のプラズマ
生成室やプラズマ引き出し窓からの剥離も殆どないので
、欠陥発生も非常に少ない、更に、プラズマ生成室の前
記の熱膨張率の等しい物質を加熱することにより、プラ
ズマ生成室やプラズマ引き出し窓、試料台に膜が強固に
付着し、膜堆積中に剥離することが無くなる。
This stress causes peeling of the film attached to the plasma generation chamber or the plasma extraction window during film deposition, causing defects. On the other hand, in the ECR type plasma deposition apparatus of the present invention, since there is almost no difference in the coefficient of thermal expansion, there is little generation of stress at the interface due to temperature changes. Furthermore, by heating the material in the plasma generation chamber with the same coefficient of thermal expansion, the film firmly adheres to the plasma generation chamber, the plasma extraction window, and the sample stage. Peeling during film deposition is eliminated.

以上述べたように、本発明はECR型プラズマ堆積装置
において、膜堆積中に剥離して欠陥発生の原因となるプ
ラズマ生成室、プラズマ引き出し窓、シャッタ、試料台
に堆積している膜と同等の熱膨張率の物質を設けたこと
により、膜堆積中の器壁からの膜の剥離を殆ど無くして
いる。
As described above, the present invention provides an ECR-type plasma deposition apparatus that is capable of removing a film that is equivalent to the film deposited on the plasma generation chamber, plasma extraction window, shutter, and sample stage, which can peel off during film deposition and cause defects. By providing a material with a high coefficient of thermal expansion, peeling of the film from the vessel wall during film deposition is almost eliminated.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

なお実施例は一つの例示であって、本発明の精神を逸脱
しない範囲で、種々の変更あるいは改良を行いうろこと
は言うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

(実施例1) 第1図は本発明の第一の実施例を説明する図であり、図
において、1はプラズマ生成室、2aは石英製のマイク
ロ波導入窓、3はマイクロ波導波管、4は水冷部、5は
ガス導入系、6はプラズマ引き出し窓部、7はプラズマ
、8はマグネット、9は試料室、10は試料室側ガス導
入系、11はシャッタ、12は試料、13は試料台、1
4は排気系、101は石英製遮蔽板、102は石英板、
103は石英のリングである。
(Example 1) FIG. 1 is a diagram explaining the first embodiment of the present invention, in which 1 is a plasma generation chamber, 2a is a microwave introduction window made of quartz, 3 is a microwave waveguide, 4 is a water cooling section, 5 is a gas introduction system, 6 is a plasma extraction window, 7 is a plasma, 8 is a magnet, 9 is a sample chamber, 10 is a sample chamber side gas introduction system, 11 is a shutter, 12 is a sample, 13 is a Sample stand, 1
4 is an exhaust system, 101 is a quartz shielding plate, 102 is a quartz plate,
103 is a quartz ring.

プラズマ生成室1に酸素をガス導入系5に導入し、マイ
クロ波導波管3でマイクロ波を導入しマグネット8で磁
界を発生する。マイクロ波と磁界により電子サイクロト
ロン共鳴を利用して酸素プラズマを生成する。試料室側
ガス導入系10にモノシランガス5iHaを導入する。
Oxygen is introduced into the plasma generation chamber 1 through the gas introduction system 5, microwaves are introduced through the microwave waveguide 3, and a magnetic field is generated using the magnet 8. Oxygen plasma is generated using electron cyclotron resonance using microwaves and a magnetic field. Monosilane gas 5iHa is introduced into the sample chamber side gas introduction system 10.

試料12上に酸化シリコンSingを形成する。Silicon oxide Sing is formed on the sample 12.

この場合、プラズマに直接曝される部分はすべて石英で
覆われている。従って、酸化シリコン(0,35X10
−’/”C)と石英(0,35X10−’/’C)との
熱膨張率に差がないので、ECR型プラズマ堆積装置の
器壁に付着した酸化シリコン膜は剥離しにくい、このよ
うな構造のECR型プラズマ堆積装置を用いて、酸化シ
リコン膜を数百回堆積させても大幅な欠陥低減化が図ら
れた。また、酸化シリコン膜の性質も熱酸化膜と同様の
特性を示した。
In this case, all parts directly exposed to plasma are covered with quartz. Therefore, silicon oxide (0,35X10
Since there is no difference in thermal expansion coefficient between quartz (0.35 Using an ECR-type plasma deposition system with a similar structure, a significant reduction in defects was achieved even after depositing a silicon oxide film several hundred times.Also, the properties of the silicon oxide film were similar to those of a thermal oxide film. Ta.

(実施例2) 第2図は、本発明の他の実施例であり、図において、1
はプラズマ生成室、2はマイクロ波導入窓、2bは堆積
物と同等の熱膨張率を持つ絶縁物でアルミナ(4,6X
10−”〜5.5X10−”/”C) 、3はマイクロ
波導波管、4は水冷部、5はガス導入系、6はプラズマ
引き出し窓部、7はプラズマ、8はマグネット、9は試
料室、10は試料室側ガス導入系、12は試料、13は
試料台、14は排気系、15はプラズマ、101はSi
C製5の絶縁物(熱膨張率: 5.11XIO−’/”
C) 、 102はSiC製のシャッタ、103はSi
C製のカバー、104はヒータである。ヒータ104の
構造は加熱線を絶縁物で被い、さらに加熱線及び絶縁物
を保護するために金属線で被った同軸型ケーブル状のシ
ースヒータである。
(Example 2) FIG. 2 shows another example of the present invention, in which 1
2 is a plasma generation chamber, 2 is a microwave introduction window, and 2b is an insulator with a coefficient of thermal expansion similar to that of the deposit, made of alumina (4.6X
10-"~5.5X10-"/"C), 3 is a microwave waveguide, 4 is a water cooling part, 5 is a gas introduction system, 6 is a plasma extraction window part, 7 is a plasma, 8 is a magnet, 9 is a sample 10 is a sample chamber side gas introduction system, 12 is a sample, 13 is a sample stage, 14 is an exhaust system, 15 is a plasma, 101 is a Si
Insulator made of C 5 (coefficient of thermal expansion: 5.11XIO-'/''
C), 102 is a shutter made of SiC, 103 is a Si
The cover made of C, 104, is a heater. The structure of the heater 104 is a coaxial cable-like sheath heater in which a heating wire is covered with an insulating material, and further covered with a metal wire to protect the heating wire and the insulating material.

Arガスをガス導入系5より導入しプラズマ生成室1内
にArガスのプラズマを生成する。一方、反応性ガスの
メタンC1,とシランガス5iHaを試料室側ガス導入
系IOから導入する。プラズマ生成室lから引き出され
たArガスプラズマと上記のガスと反応させて炭化シリ
コンの膜を形成する。この時、プラズマ生成室内のヒー
タ104で炭化シリコンの絶縁物101を400°C程
度に加熱することにより、この絶縁物と付着したSiC
膜は強固に付着しているので、殆ど剥離は起こらない、
また、マイクロ波導入窓にアルミナA1□03 (4,
6X 10− ’〜5.5 X 10−”7°C)を用
いているので、5iC(5,77X10−’/ ”C)
との熱膨張率の差が小さくここでの剥離も殆ど起こらな
かった。
Ar gas is introduced from the gas introduction system 5 to generate Ar gas plasma in the plasma generation chamber 1. On the other hand, reactive gases such as methane C1 and silane gas 5iHa are introduced from the sample chamber side gas introduction system IO. The Ar gas plasma drawn from the plasma generation chamber 1 is reacted with the above gas to form a silicon carbide film. At this time, by heating the silicon carbide insulator 101 to about 400°C using the heater 104 in the plasma generation chamber, this insulator and the attached Si
The film is firmly attached, so peeling hardly occurs.
In addition, alumina A1□03 (4,
6X 10-' to 5.5 X 10-''7°C), so 5iC (5,77
The difference in thermal expansion coefficient was small, and almost no peeling occurred here.

このようにして形成したSiC膜は、膜堆積中に器壁か
らの剥離がなく膜中の欠陥は殆ど存在しなかった。更に
、この条件で膜を数百回以上形成しても膜中の欠陥は増
加しなかった。
The SiC film thus formed did not peel off from the vessel wall during film deposition and had almost no defects in the film. Furthermore, even if the film was formed several hundred times or more under these conditions, the number of defects in the film did not increase.

ヒータ104は、プラズマから発生するノイズを防止す
るため、シースヒータの外被をプラズマ生成室と同電位
にする。
The heater 104 sets the outer cover of the sheath heater to the same potential as the plasma generation chamber in order to prevent noise generated from plasma.

(実施例3) シリコンSi (2,5X 10−”/ ”C)または
窒化シリコンSi!<(2,46X10−’〜4.I 
Xl0−’/”C)の膜を堆積するには、実施例2の絶
縁物101の代わりに窒化シリコン5i3N4(2,4
6X10−’〜4.L Xl0−’/”C)を用いれば
良い、この場合、欠陥に対し同様の効果があった。
(Example 3) Silicon Si (2,5X 10-”/”C) or silicon nitride Si! <(2,46X10-'~4.I
To deposit a film of Xl0-'/''C), silicon nitride 5i3N4 (2,4
6X10-'~4. L Xl0-'/''C) may be used; in this case, the same effect on defects was obtained.

(実施例4) 第3図は、本発明の一実施例であって、図において、1
はプラズマ生成室、2はマイクロ波導入窓、3はマイク
ロ波導入窓、4は水冷部、5はガス導入系、6はプラズ
マ引き出し窓部、7はプラズマ、8はマグネット、9は
試料室、10は試料室側ガス導入系、12は試料、13
は試料台、14は排気系、15はプラズマ、101は堆
積物と同等の熱膨張率を持つ絶縁物のアルミナ及びSt
(: 、 102は堆積物と同等の熱膨張率を持つSi
C製のシャッタ、103は堆積物と同等の熱膨張率を持
つ絶縁物のStC。
(Embodiment 4) FIG. 3 shows an embodiment of the present invention, in which 1
is a plasma generation chamber, 2 is a microwave introduction window, 3 is a microwave introduction window, 4 is a water cooling section, 5 is a gas introduction system, 6 is a plasma extraction window, 7 is a plasma, 8 is a magnet, 9 is a sample chamber, 10 is the sample chamber side gas introduction system, 12 is the sample, 13
14 is a sample stage, 14 is an exhaust system, 15 is a plasma, and 101 is alumina and St, which are insulators with the same coefficient of thermal expansion as the deposit.
(: , 102 is Si with the same coefficient of thermal expansion as the deposit
The shutter 103 is made of StC, which is an insulator having the same coefficient of thermal expansion as the deposit.

104a、 104b、 104cはヒータである。104a, 104b, and 104c are heaters.

Arガスをガス導入系5より導入しプラズマ生成室1内
にArガスのプラズマを生成する。一方、反応性ガスの
メタンCL とシランSiH4を試料室側ガス導入系1
0から導入する。プラズマ生成室1から引き出されたA
rガスプラズマと上記のガスと反応させて炭化シリコン
の膜を形成する。この時、ヒータ各部104a、 10
4b、 104cでSiC製の絶縁物101゜102、
103を500°C程度に加熱することにより、この絶
縁物(4,6Xl0−”〜5.5 Xl0−’/’C)
と付着LJ、:SiCWa(5,77X10−’/”C
) ハ強固に付着しているので、殆ど剥離は起こらない
Ar gas is introduced from the gas introduction system 5 to generate Ar gas plasma in the plasma generation chamber 1. On the other hand, the reactive gases methane CL and silane SiH4 were introduced into the gas introduction system 1 on the sample chamber side.
Introduce from 0. A pulled out from plasma generation chamber 1
The r gas plasma is reacted with the above gas to form a silicon carbide film. At this time, each part of the heater 104a, 10
4b, 104c, SiC insulators 101°102,
By heating 103 to about 500°C, this insulator (4,6Xl0-"~5.5Xl0-'/'C)
and attached LJ, :SiCWa (5,77X10-'/”C
) Since it is firmly attached, there is almost no peeling.

このようにして形成したSiC膜は、膜堆積中に器壁か
らの剥離がなく膜中の欠陥は殆ど存在しなかった。更に
、この条件で膜を数百回以上形成しても膜中の欠陥は増
加しなかった。
The SiC film thus formed did not peel off from the vessel wall during film deposition and had almost no defects in the film. Furthermore, even if the film was formed several hundred times or more under these conditions, the number of defects in the film did not increase.

(発明の効果) 以上説明したように、本発明によれば、プラズマを利用
する膜形成装置において、プラズマ生成室の内壁のプラ
ズマに曝される箇所を、試料に堆積する膜の熱膨張率と
同等またはこれに極めて近い熱膨張率を有する物質で被
覆するか、又は該物質で構成することにより、ECR型
プラズマ堆積装置の膜堆積中の欠陥が大幅に低減できる
ので、半導体集積回路の低温プロセスにおける歩留りの
向上、X線マスク基板に通用した時の強度向上と歩留り
向上、機械部品の耐蝕性・耐摩耗性コーテイング膜の品
質向上と歩留り向上ができるという効果がある。
(Effects of the Invention) As explained above, according to the present invention, in a film forming apparatus that uses plasma, the portion of the inner wall of the plasma generation chamber exposed to plasma is determined by the coefficient of thermal expansion of the film deposited on the sample. Defects during film deposition in an ECR type plasma deposition apparatus can be significantly reduced by coating with or consisting of a material with a coefficient of thermal expansion that is the same or very close to this, so it can be used in low-temperature processes for semiconductor integrated circuits. It has the effect of improving the yield in the manufacturing process, improving the strength and yield when used for X-ray mask substrates, and improving the quality and yield of corrosion-resistant and wear-resistant coating films for mechanical parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の膜形成装置の第1の実施例、第2図は
本発明の第2の実施例、第3図は本発明の第3の実施例
、第4図は従来のECR型プラズマ堆積装置の構成を示
す。 1・・・・プラズマ生成室 2・・・・マイクロ波導入窓 3・・・・マイクロ波導波管 4・・・・水冷部 5・・・・ガス導入系 6・・・・プラズマ引き出し窓部 7・・・・プラズマ 8・・・・マグネット 9・・・・試料室 10・・・・試料室側ガス導入系 11・・・・シャッタ 12・・・・試料 13・・・・試料台 14・・・・排気系 15・・・・プラズマ 2a・・・・石英製のマイクロ波導入窓2b・・・・堆
積物と同等の熱膨張率を持つ絶縁物101  ・・・石
英、 SiC,5IJa製遮蔽板102 ・・・石英、
 SiC,SIsMa製の板103  ・・・石英、 
SiC+ SI3N4製のリング104、104a、 
104b、 104c  ・・・ヒータ特許出願人 日
本電信電話株式会社 第1図 10・−p室側教導樋 第2図 第3図 第4図
Fig. 1 shows a first embodiment of the film forming apparatus of the present invention, Fig. 2 shows a second embodiment of the invention, Fig. 3 shows a third embodiment of the invention, and Fig. 4 shows a conventional ECR. The configuration of a type plasma deposition apparatus is shown. 1... Plasma generation chamber 2... Microwave introduction window 3... Microwave waveguide 4... Water cooling section 5... Gas introduction system 6... Plasma extraction window section 7... Plasma 8... Magnet 9... Sample chamber 10... Sample chamber side gas introduction system 11... Shutter 12... Sample 13... Sample stage 14 ...Exhaust system 15...Plasma 2a...Microwave introduction window 2b made of quartz...Insulator 101 having the same coefficient of thermal expansion as the deposit...Quartz, SiC, 5IJa Shielding plate 102 made of quartz,
Plate 103 made of SiC, SIsMa...quartz,
Rings 104, 104a made of SiC+ SI3N4,
104b, 104c ... Heater patent applicant Nippon Telegraph and Telephone Corporation Fig. 1 10 - P room side guidance trough Fig. 2 Fig. 3 Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)プラズマを利用する膜形成装置において、プラズ
マ生成室の内壁のプラズマに曝される箇所を、試料に堆
積する膜の熱膨張率と同等またはこれに極めて近い熱膨
張率を有する物質で被覆するか、又は該物質で構成する
ことを特徴とする膜形成装置。
(1) In a film forming apparatus that uses plasma, the part of the inner wall of the plasma generation chamber that is exposed to plasma is coated with a material that has a coefficient of thermal expansion that is equal to or very close to that of the film deposited on the sample. 1. A film forming device characterized by comprising:
(2)プラズマ生成室の内壁の全部あるいは一部に加熱
機構を設けたことを特徴とする特許請求の範囲第1項記
載の膜形成装置。
(2) The film forming apparatus according to claim 1, characterized in that a heating mechanism is provided on all or part of the inner wall of the plasma generation chamber.
(3)プラズマ生成室を加熱するための加熱線を絶縁物
質で被い、さらに該加熱線及び絶縁物質を保護するため
の金属線で被つて同軸型に形成すると共に、該金属材料
の部分を、膜形成装置と同電位とすることを特徴とする
特許請求の範囲第1項記載の膜形成装置。
(3) The heating wire for heating the plasma generation chamber is covered with an insulating material, and the heating wire and the insulating material are further covered with a metal wire to form a coaxial type, and the part of the metal material is covered with an insulating material. The film forming apparatus according to claim 1, wherein the film forming apparatus has the same potential as that of the film forming apparatus.
JP10638887A 1987-05-01 1987-05-01 Apparatus for film formation Pending JPS63273323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10638887A JPS63273323A (en) 1987-05-01 1987-05-01 Apparatus for film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10638887A JPS63273323A (en) 1987-05-01 1987-05-01 Apparatus for film formation

Publications (1)

Publication Number Publication Date
JPS63273323A true JPS63273323A (en) 1988-11-10

Family

ID=14432316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10638887A Pending JPS63273323A (en) 1987-05-01 1987-05-01 Apparatus for film formation

Country Status (1)

Country Link
JP (1) JPS63273323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174223A (en) * 1988-12-27 1990-07-05 Sumitomo Metal Ind Ltd Plasma vapor growth device, usage thereof and formation of film
JPH04123257U (en) * 1991-04-16 1992-11-06 ソニー株式会社 Bias ECR plasma CVD equipment
EP0562035A1 (en) 1990-12-11 1993-09-29 Lam Research Corporation Minimization of particle generation in cvd reactors and methods
US5504019A (en) * 1990-11-16 1996-04-02 Seiko Epson Corporation Method for fabricating a thin film semiconductor
US6464843B1 (en) 1998-03-31 2002-10-15 Lam Research Corporation Contamination controlling method and apparatus for a plasma processing chamber
US6673198B1 (en) 1999-12-22 2004-01-06 Lam Research Corporation Semiconductor processing equipment having improved process drift control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101421A (en) * 1981-12-11 1983-06-16 Canon Inc Manufacturing device of deposited film
JPS6076126A (en) * 1983-10-03 1985-04-30 Nec Corp Thin film forming device
JPS6134931A (en) * 1984-07-26 1986-02-19 Canon Inc Manufacture of silicon film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101421A (en) * 1981-12-11 1983-06-16 Canon Inc Manufacturing device of deposited film
JPS6076126A (en) * 1983-10-03 1985-04-30 Nec Corp Thin film forming device
JPS6134931A (en) * 1984-07-26 1986-02-19 Canon Inc Manufacture of silicon film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174223A (en) * 1988-12-27 1990-07-05 Sumitomo Metal Ind Ltd Plasma vapor growth device, usage thereof and formation of film
US5504019A (en) * 1990-11-16 1996-04-02 Seiko Epson Corporation Method for fabricating a thin film semiconductor
EP0562035A1 (en) 1990-12-11 1993-09-29 Lam Research Corporation Minimization of particle generation in cvd reactors and methods
EP0562035B2 (en) 1990-12-11 2001-09-05 Lam Research Corporation Minimization of particle generation in cvd reactors and methods
JPH04123257U (en) * 1991-04-16 1992-11-06 ソニー株式会社 Bias ECR plasma CVD equipment
US6464843B1 (en) 1998-03-31 2002-10-15 Lam Research Corporation Contamination controlling method and apparatus for a plasma processing chamber
US6673198B1 (en) 1999-12-22 2004-01-06 Lam Research Corporation Semiconductor processing equipment having improved process drift control
US6881608B2 (en) 1999-12-22 2005-04-19 Lam Research Corporation Semiconductor processing equipment having improved process drift control

Similar Documents

Publication Publication Date Title
JP2532401Y2 (en) Bias ECR plasma CVD equipment
JP3699142B2 (en) Thin film forming equipment
US3477872A (en) Method of depositing refractory metals
JP3161394B2 (en) Plasma CVD equipment
KR101234492B1 (en) A method for processing a substrate
JPS63273323A (en) Apparatus for film formation
TWI288185B (en) Processing apparatus and processing method
JPH0377655B2 (en)
JPS63121667A (en) Device and method for forming thin film
JPH0790591A (en) Microwave plasma cvd system and formation of deposited film
JPS60115235A (en) Formimg method of insulation film on compound semiconductor substrate
JP2844693B2 (en) Method of forming high melting point metal film
JPH084039B2 (en) Plasma generation method and thin film deposition method
JPH0237963A (en) Electrical heating member
JPH01188678A (en) Plasma vapor growth apparatus
JP3419992B2 (en) Ceramic members
KR100972110B1 (en) Electrode for apparatus of fabricating semiconductor
JP3029953B2 (en) Semiconductor wafer heat treatment equipment
CN101276733B (en) Method for fabricating plasma reactor parts
Isoldi et al. Replacement of Waveguides by a Resonant Cavity in a Microwave CVD Reactor
JP3190100B2 (en) Carbon material production equipment
JPH0361377A (en) Microwave-plasma film depositing device
JP2579166B2 (en) Plasma CVD apparatus and film forming method
JP2647849B2 (en) Method for manufacturing silicon nitride film
JP3486292B2 (en) Cleaning method of metal mesh heater