JPS63273000A - Impeller of compressor - Google Patents

Impeller of compressor

Info

Publication number
JPS63273000A
JPS63273000A JP62104380A JP10438087A JPS63273000A JP S63273000 A JPS63273000 A JP S63273000A JP 62104380 A JP62104380 A JP 62104380A JP 10438087 A JP10438087 A JP 10438087A JP S63273000 A JPS63273000 A JP S63273000A
Authority
JP
Japan
Prior art keywords
blade
rotor
solid portion
embedding
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104380A
Other languages
Japanese (ja)
Inventor
Kenichi Okuno
研一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62104380A priority Critical patent/JPS63273000A/en
Publication of JPS63273000A publication Critical patent/JPS63273000A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce the rigidity of a blade embedding solid portion and improve vibration attenuation effect by providing a means for equalizing respective sectional secondary moments of a blade embedding solid portion of a fit body fitted in a rotor embedding groove and a blade effective portion connected to said solid portion. CONSTITUTION:A rotor 1 is formed on the outer periphery with a plurality of rotor embedding grooves 2 at predetermined axial intervals. And fit bodies 3 are fitted respectively in said grooves 2, while blade effective portions 4 are connected respectively to the fit bodies 3. Also, the fit body 3 is formed of a blade embedding solid portion 3a connected to the blade effective portion 4 and a blade embedding fit portion 3b bulging from said solid portion 3a to the peripheral direction of rotor 1. Thus, respective sectional secondary moments of said solid portion 3a and blade effective portion 4 of fit body 3 are set equal to each other. And gaps 7 having a predetermined dimension delta are formed between said solid portion 3a and groove 2 opposed thereto.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、軸流圧縮機等に採用される圧縮機1lIHに
係り、特にI!lI9!において発生する振動を効果的
に減衰し得る圧縮機動翼に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a compressor 11IH employed in an axial flow compressor, etc., and particularly relates to an I! lI9! The present invention relates to a compressor rotor blade that can effectively damp vibrations generated in a compressor.

(従来の技術) 軸流圧縮機等の圧縮機動翼の構造は一般に第4図に例示
するように、ロータ1の外周部に所定間隔を・おいて軸
方向に複数のロータ植込溝2を形成し、この0−夕植込
溝2に嵌合体3が嵌入される。嵌合体3は、四右効部4
を一体に接合したN植込ソリッド部3aと、翼植込ソリ
ッド部3aからロータ1の周方向に膨出した翼植込嵌合
部3bとから成る。
(Prior Art) Generally, the structure of a compressor rotor blade such as an axial flow compressor, as illustrated in FIG. The fitting body 3 is fitted into this zero-seam planting groove 2. The fitted body 3 has four right-handed parts 4
It consists of an N-embedded solid part 3a which is integrally joined to the blade-embedded solid part 3a, and a vane-embedded fitting part 3b that bulges out in the circumferential direction of the rotor 1 from the vane-embedded solid part 3a.

動翼本体となる翼有効部はその機能上の制約から従来の
タービン動黄と比較して翼厚が薄く構成されており、こ
の翼有効部によって圧縮機に吸い込まれた気体に仕事が
付与され、気体は圧縮される。
Due to functional constraints, the blade effective part, which is the main body of the rotor blade, is thinner than that of conventional turbine rotors, and this blade effective part imparts work to the gas sucked into the compressor. , the gas is compressed.

一方、翼有効部を所定位置に固定する嵌合体3の翼植込
ソリッド部3aの高ざ1−1は、高速回転時における体
積力を可及的に低減するために小さく設定され、また翼
有動部4に作用する遠心力がN植込嵌合部3bに均等に
伝達されたときにロータ1が強麿的に十分耐え(7る必
要最小高さに調整されている。
On the other hand, the height 1-1 of the blade embedded solid part 3a of the fitting body 3 that fixes the blade effective part in a predetermined position is set small in order to reduce the body force as much as possible during high-speed rotation, and the blade The rotor 1 is adjusted to the required minimum height so that it can withstand sufficiently when the centrifugal force acting on the active part 4 is evenly transmitted to the N-type fitting part 3b.

ところで、回転翼を有する流体機器においては、一般に
流体の流れの不均一さに起因してその運転に支障をぎた
′?i場合がある。特に圧縮機動翼においは、いわゆる
サージング現牟によって軸振動成分およびΦ力等により
励振力が作用し、さらにこの励振力が配管を含めた#f
M器系仝休に体わる固有振動数とも競合覆る結果、比較
的低い振動数で振動を生じ、同1、iに特定の周期で吐
出JE力および叶出吊が変動する場合がある。
By the way, in fluid equipment having rotary blades, the operation of the equipment is generally hindered due to non-uniformity of fluid flow. There are cases. In particular, on compressor rotor blades, excitation force acts on shaft vibration components and Φ force due to the so-called surging phenomenon, and this excitation force also acts on #f including piping.
As a result of competition with the natural frequency associated with the M system's rest, vibrations occur at a relatively low frequency, and the discharge JE force and leaf suspension may fluctuate at a specific period.

上記のような振動に対処するために、圧縮別動Wは、そ
のW植込嵌合部3bと0−夕植込満2との間の摩擦によ
る振動の減衰作用によって振幅を抑制し、W有効部4に
作用する振動応力の低減を図っている。
In order to cope with the above-mentioned vibrations, the compression separate movement W suppresses the amplitude by a vibration damping effect due to the friction between the W implant fitting part 3b and the 0-Yu implant 2, and the W This is intended to reduce the vibration stress acting on the effective portion 4.

(発明が解決しようとする問題点) しかしながら、従来の圧縮機のvJ翼構造においては、
ロータ植込溝に嵌入された翼植込ンリツド部およびN植
込嵌合部の剛性が田有動部の剛性と比較して極めて大ぎ
い。そのために、実際に振動が発生した場合の変形モー
ドは第5図に破線で例示するように舅有動部のみが大き
く変形することとなり、N植込嵌合部とロータ植込溝と
の摩擦による振動の減衰効果は極め°て少ない。
(Problems to be solved by the invention) However, in the vJ blade structure of the conventional compressor,
The rigidity of the blade implanted lid part and the N implanted fitting part fitted into the rotor implanted groove is extremely large compared to the rigidity of the field moving part. Therefore, when vibration actually occurs, the deformation mode is such that only the leg moving part is greatly deformed, as illustrated by the broken line in Figure 5, and the friction between the N stud fitting part and the rotor implant groove is The vibration damping effect caused by this is extremely small.

上記構造の圧縮機動翼において前記の励振力が翼有動部
に作用すると、第5図の通り大きな変形を生じ、特に励
振周期と翼有動部の固有振動数とが共振した場合には、
相開的に増加する振動応力と部材の疲労のためにW有効
部の基端部が9期に破損に至る可能性がある。とりわけ
ガスタービンにおいては、その圧縮機は最上流部に配置
されているため、その破損により生じた金属片は下流部
のタービンまで流下し、タービン全体のKl($2とい
う重大事故を誘発する可能性がある。
When the excitation force acts on the moving part of the compressor blade having the above structure, a large deformation occurs as shown in Fig. 5, and especially when the excitation period and the natural frequency of the moving part resonate,
There is a possibility that the proximal end of the W effective part will break in the 9th stage due to the progressively increasing vibration stress and member fatigue. In particular, in gas turbines, the compressor is located at the most upstream part, so metal fragments caused by its damage may flow down to the downstream turbine, causing a serious accident with a total loss of Kl ($2) for the entire turbine. There is sex.

このように従来の圧縮機動翼においては、その構成材料
の特性による振動減衰作用と構成材料相互の摩擦による
振動減衰作用とを利用しているに過ぎないため、総合的
に減衰効果が極めて低いという問題点がある。
In this way, conventional compressor rotor blades only utilize the vibration damping effect due to the characteristics of the constituent materials and the vibration damping effect due to friction between the constituent materials, so the overall damping effect is extremely low. There is a problem.

上記問題点を解決するために、タービンfJJ 胃にお
いては、隣接する動翼を相互にレーシングワイヤで結束
する防振構造を採用したり、または第6図で例示するよ
うに各衷心動部4の上端部に板状のスナバカバー5を装
着して振動域*’g!1構とする対策もなされている。
In order to solve the above problems, in the turbine fJJ stomach, a vibration isolation structure is adopted in which adjacent rotor blades are tied together with racing wires, or as illustrated in FIG. Attach a plate-shaped snubber cover 5 to the upper end to increase the vibration range*'g! Measures have also been taken to reduce the number of buildings to one.

振動発生時には、隣接するスナバカバー5の接触面6に
おけるff、擦および衝突による振動の減衰を図ってい
る。
When vibration occurs, vibrations due to ff, friction, and collision on the contact surfaces 6 of the adjacent snubber covers 5 are attenuated.

しかしながら、上記構成の減衰機構をそのまま圧縮m動
翼に採用りることは不可能である。すなわち、F1縮機
lll翼においでは翼右動部4の厚さが軽量であり、そ
の頂部にスナバカバー5を装着すると、回転による遠心
力が増大し、兎有動部4のす端部4aの応力が許容応力
を超える危険性がある。
However, it is impossible to directly apply the damping mechanism having the above structure to a compression m rotor blade. In other words, in the F1 compressor Ill wing, the thickness of the wing right moving part 4 is light, and when the snubber cover 5 is attached to the top, the centrifugal force due to rotation increases, and the end part 4a of the rabbit moving part 4 is There is a risk that the stress will exceed the allowable stress.

一方、スナバカバー5の遠心力をJ:り低減するために
習有動部4の中間部位にスナバカバー5を取付けた場合
は、流体の流通に障害となり、翼の圧縮性能が低下する
原因となり、その性能低下は一般に1〜3%にも達し、
実用上好ましくない。
On the other hand, if the snubber cover 5 is attached to the intermediate part of the driven moving part 4 in order to reduce the centrifugal force of the snubber cover 5, it will impede fluid circulation and cause a decrease in the compression performance of the blade. Performance degradation generally reaches 1-3%,
Practically unfavorable.

本発明は上記の問題点を解決するためになされたもので
あり、動翼による流体の圧縮性能を低下させることなく
、動翼に作用する振動を効果的に減衰し得る圧縮機動翼
を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a compressor rotor blade that can effectively damp vibrations acting on the rotor blade without reducing the fluid compression performance of the rotor blade. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明に係る圧縮機動翼は、圧縮機ロータの外周部に所
定開隔をおいて軸方向に複数のロータ植込溝を形成し、
翼り動部を一体に接合した翼植込ソリッド部と翼植込ソ
リッド部からロータの周方向に膨出するN植込嵌合部と
から成る嵌合体を上記ロータ植込溝に■大して構成され
る圧縮機動内において、上記嵌合体の四植込ソリッド部
の断面二次モーメントと、翼右動部の断面二次モーメン
トとを等しく設定するとともに、m1li′i込ソリッ
ド部外面と、対向する〇−タ植込満内面との間に間隙を
形成したことを特徴とする。
(Means for Solving the Problems) A compressor rotor blade according to the present invention has a plurality of rotor implant grooves formed in the axial direction at a predetermined interval on the outer circumference of the compressor rotor,
A fitted body consisting of a blade embedded solid part that integrally joins the blade moving part and an N embedded fitting part that bulges out in the circumferential direction of the rotor from the blade embedded solid part is arranged in the rotor embedded groove. In the compressor machine, the moment of inertia of the four embedded solid parts of the fitted body and the moment of inertia of the wing right moving part are set to be equal, and the outer surface of the solid part with m1li'i and the 〇-A gap is formed between the implant and the full surface.

(作用) 上記構成の圧縮R動響によれば、翼構造ソリッド部とW
有効部との断面二次モーメントが等しく設定されて一体
に接合され、かつ翼構造ソリッド部とロータ植込溝との
間に間隙が設けられているため、翼構造ソリッド部の剛
性は従来と比較して低下し、翼有動部と黄植込ソリッド
部とは一体になって振動による変形作用を受ける。その
ため、従来と比較して変形時に苦有動部の基端の接合部
に作用する応力が低下し、接合部の金属疲労が防止され
る。また、舅桶込ソリッド部は、対向するロータ植込溝
の内縁と衝突を繰り返し、その衝撃による減衰作用によ
って振動は急速に減衰される。
(Function) According to the compressed R dynamic with the above configuration, the wing structure solid part and the W
Since the moment of inertia of the effective section and the effective section are set equal and they are joined together, and a gap is provided between the wing structure solid section and the rotor installation groove, the stiffness of the wing structure solid section is lower than before. The blade moving part and the yellow embedded solid part are integrally subjected to deformation action due to vibration. Therefore, compared to the conventional case, the stress acting on the joint at the proximal end of the moving part during deformation is reduced, and metal fatigue at the joint is prevented. In addition, the solid part with the toe bucket repeatedly collides with the inner edge of the opposing rotor installation groove, and the vibration is rapidly attenuated by the damping effect of the impact.

さらに、翼構造ソリッド部を遊嵌状態にしたことにより
X植込嵌合部がロータ植込溝に対して微動できるように
なるため、両省間に生じるl?擦による減衰作用も増加
し、振動は効果的に減衰される。
Furthermore, by making the blade structure solid part into a loosely fitted state, the X-embedded fitting part can move slightly with respect to the rotor-embedded groove, so the l? The damping effect due to friction is also increased, and vibrations are effectively damped.

(実施例) 次に、本発明の一実施例について添付図面を参照して説
明する。
(Example) Next, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明に係る圧縮Ia動翼の一実施例を示す断
面図である。なお、第4図〜第6図に示す従来例と同一
要素には同一符号を付している。
FIG. 1 is a sectional view showing an embodiment of a compression Ia rotor blade according to the present invention. Note that the same elements as those in the conventional example shown in FIGS. 4 to 6 are given the same reference numerals.

本実施例の圧縮機動翼は、ロータ1の外周部に所定間隔
をおいて軸方向に形成された複数のロータ植込溝2と、
このロータ植込溝2に嵌入される嵌合体3と、嵌合体3
に一体に接合された翼有効?l 4とから構成される。
The compressor rotor blade of this embodiment includes a plurality of rotor installation grooves 2 formed in the axial direction at predetermined intervals on the outer circumference of the rotor 1,
A fitting body 3 fitted into this rotor implantation groove 2 and a fitting body 3
Is it possible to use a wing that is integrally joined to a wing? It consists of 4.

さらに、嵌合体3は、衷右動部4ど接合する翼構造ソリ
ッド部3aと、翼植込ンリッド21<3aからロータ1
の周方向に膨出する翼構造1!;合部3bとから成る。
Furthermore, the fitted body 3 includes a blade structure solid part 3a that joins the lateral movement part 4, and a rotor 1 from the blade implant lid 21<3a.
Wing structure 1 that bulges out in the circumferential direction! ; and a joining part 3b.

1■合体3のW植込ソリッド部3aの断面二次モーメシ
トと■有効部4の断面二次モーメントは等しく設定され
る。具体的には、翼植込ンリッド部3aとvIJ植込嵌
合部3bとの境界部Aの高面積を減少きせることによっ
て、その部分の断面二次モーメントを翼有動部4の振動
方向に対する断面二次モーメントに等しく調整している
。また、翼構造ソリッド部3aと、対向するロータ植込
溝2との間には間隙7が形成される。
1) The cross-sectional moment of inertia of the W implanted solid portion 3a of the combined body 3 and (2) the cross-sectional moment of inertia of the effective portion 4 are set to be equal. Specifically, by reducing the high area of the boundary part A between the blade implantable lid part 3a and the vIJ implantable fitting part 3b, the moment of inertia of that part is reduced with respect to the vibration direction of the blade driven part 4. Adjusted to be equal to the moment of inertia. Further, a gap 7 is formed between the blade structure solid portion 3a and the opposing rotor installation groove 2.

本実施例に係る圧縮機動翼において、運転中にリーーシ
ング等が発生し、動翼に励振力が作用し、または動翼の
共振現宋が発生した場合、翼構造ソリッド部3aと一体
になって柔構造を構成した翼右動部4は、第2図におい
て破線で例示するように、嵌合体3の境界部へを節とし
た振動モードを形成する。そのため、従来のようにW有
効部4の基端部4aに振動変形による応力が集中するこ
とが少なく、基端部4aの金属疲労が防止される。
In the compressor rotor blade according to this embodiment, if leasing or the like occurs during operation, excitation force acts on the rotor blade, or resonance occurs in the rotor blade, the rotor blade becomes integral with the blade structure solid portion 3a. The wing right movement section 4 having a flexible structure forms a vibration mode with a node at the boundary of the fitted body 3, as illustrated by the broken line in FIG. Therefore, stress due to vibration deformation is less likely to concentrate on the base end 4a of the W effective portion 4 as in the prior art, and metal fatigue of the base end 4a is prevented.

また、翼構造ソリッド部3aは、対向するロータ植込溝
2に繰り返して衝突するため、その衡撃ににる減衰作用
によって振動が効果的に減衰される。
Further, since the blade structure solid portion 3a repeatedly collides with the opposing rotor installation groove 2, vibrations are effectively damped by the damping effect caused by the equal impact.

また、(2)有効部4の最大振幅に対応して境界部へに
発生する応力を部材の許容応力以内に収めるように間隙
7の1払δを設定することにより、共振時においても動
Wの破損という事態を回避することができる。
(2) By setting the δ of the gap 7 so that the stress generated in the boundary part corresponding to the maximum amplitude of the effective part 4 is within the allowable stress of the member, the dynamic W It is possible to avoid the situation of damage.

さらに本実施例では、兎有効部4自体には流体の流れを
阻害する障害物を何ら装着するものではなく、嵌合部の
形状のみを変更している。したがって、動翼による流体
の圧縮性能を低下させることな(、振動を効果的に減衰
さゼることができる。
Furthermore, in this embodiment, no obstacle to obstruct the flow of fluid is attached to the effective part 4 itself, and only the shape of the fitting part is changed. Therefore, vibrations can be effectively damped without reducing the fluid compression performance of the rotor blades.

次に、本発明の他の実施例を第3図に従って説明する。Next, another embodiment of the present invention will be described with reference to FIG.

本実施例においては、翼構造ソリッド部3aの高81−
1を、第1図に示す実施例と比較して半径り向に廷伸し
ている。
In this embodiment, the height 81-
1 has been extended in the radial direction compared to the embodiment shown in FIG.

この場合、翼構造ソリッド部3aに一体に接合された川
石動部4の見掛は上の剛性はさらに低下し、振動発生時
に基端部4ak:発生する応)Jは、第1図に示す実施
例の場合と比較してさらに低減される。また、ロータ植
込溝2に対する翼構造ソリッド部3bの衝突が容易にな
るため、その衝撃による振動の減衰効果が高まる。
In this case, the apparent stiffness of the river stone moving part 4 integrally joined to the wing structure solid part 3a is further reduced, and when vibration occurs, the base end part 4ak: generated (response) J is as shown in FIG. This is further reduced compared to the example. Furthermore, since the blade structure solid portion 3b collides easily with the rotor implant groove 2, the effect of damping vibrations caused by the impact is enhanced.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り、本発明の圧縮ti動翼によれば、!F
2植込ソリッド部と専有動部との断面二次モーメントが
等しく設定され、かつ嬰植込ソリッド部とロータ植込溝
との間に間隙が設けられているため、翼構込ソリッド部
の剛性は従来と比較して大幅に低下する。そのため、動
翼部に励振力が作用した場合は、W植込ソリッド部と専
有動部とは一体となって間隙の範囲内で変形する。
As explained above, according to the compression Ti rotor blade of the present invention,! F
2. The moment of inertia of the solid part and the dedicated moving part are set equal, and a gap is provided between the solid part and the rotor groove, so the rigidity of the solid part of the wing is increased. is significantly lower than before. Therefore, when an excitation force is applied to the rotor blade section, the W-embedded solid section and the dedicated moving section are deformed as one within the range of the gap.

したがって、腎石動部の翼構込ソリッド部との接合部に
作用する応力が低下し、接合部の金属疲労が防1トされ
る。また、翼構込ソリッド部は対向するロータ植込溝と
衝突を繰り返し、その衝撃にJ、る減衰作用によって振
動を減衰覆ることができる。
Therefore, the stress acting on the joint between the nephrolithic part and the wing-containing solid part is reduced, and metal fatigue at the joint is prevented. In addition, the blade built-in solid portion repeatedly collides with the opposing rotor installation groove, and the vibration can be damped and covered by the damping effect of the impact.

さらに、F!植込ソリッド部を遊嵌状態にしたことによ
り翼構込嵌合部がロータ植込溝に対して微動できるよう
になるため、両者の接触面に生じる摩擦による減衰作用
も増加し、振動がより効宋的に減衰される。
Furthermore, F! By making the embedded solid part into a loose fit state, the blade structure fitting part can move slightly with respect to the rotor embedded groove, so the damping effect due to the friction generated on the contact surface between the two increases, and vibration is further reduced. The effect was attenuated during the Song Dynasty.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧縮機動翼の一実施例を示す断面図、
第2図は専有動部に振動が発生した状態を示す断面図、
第3図は本発明の他の実施例を示す断面図、第4図は従
来の圧縮1ijM flJIBのv4造を示す斜視図、
第5図は第4図の専有動部を拡大して示寸断面図、第6
図は従来のタービン動翼の一構成例を示す斜視図である
。 1・・・ロータ、2・・・ロータ植込溝、3・・・嵌合
体、3a・・・TA植込ソリッド部、3b・・・翼構込
嵌合部、4・・・専有動部、4a・・・基端部、5・・
・スナバカバー、6・・・接触面、7・・・間隙、A・
・・境界部、11・・・W植込ソリッド部の高さ、δ・
・・間隙寸法。 出願人代理人   波 多 野   久第4図 −トー−1賑
FIG. 1 is a sectional view showing an embodiment of the compressor rotor blade of the present invention;
Figure 2 is a cross-sectional view showing a state where vibration occurs in the proprietary moving part.
FIG. 3 is a sectional view showing another embodiment of the present invention, FIG. 4 is a perspective view showing a conventional compression 1ijM flJIB v4 structure,
Figure 5 is an enlarged cross-sectional view of the proprietary moving part in Figure 4;
The figure is a perspective view showing an example of the configuration of a conventional turbine rotor blade. DESCRIPTION OF SYMBOLS 1... Rotor, 2... Rotor implantation groove, 3... Fitting body, 3a... TA implantation solid part, 3b... Blade structure fitting part, 4... Exclusive moving part , 4a... proximal end, 5...
・Snubber cover, 6...Contact surface, 7...Gap, A・
・Boundary part, 11...Height of W implanted solid part, δ・
・Gap dimension. Applicant's agent Hisashi Hatano Figure 4-To-1 Busy

Claims (1)

【特許請求の範囲】[Claims] 圧縮機ロータの外周部に所定間隔をおいて軸方向に複数
のロータ植込溝を形成し、翼有効部を一体に接合した翼
植込ソリッド部と翼植込ソリッド部からロータの周方向
に膨出する翼植込嵌合部とから成る嵌合体を上記ロータ
植込溝に嵌入して構成される圧縮機動翼において、上記
嵌合体の翼植込ソリッド部の断面二次モーメントと、翼
有効部の断面二次モーメントとを等しく設定するととも
に、翼植込ソリッド部外面と、対向するロータ植込溝内
面との間に間隙を形成したことを特徴とする圧縮機動翼
A plurality of rotor implant grooves are formed in the axial direction at predetermined intervals on the outer periphery of the compressor rotor, and a blade implant solid part where the blade effective part is integrally joined and a blade implant solid part are formed in the circumferential direction of the rotor. In a compressor rotor blade configured by fitting a fitted body consisting of a bulging blade embedded fitting part into the rotor embedded groove, the moment of inertia of the blade solid part of the fitted body and the blade effective 1. A compressor rotor blade, characterized in that the moment of inertia of the solid part of the blade is set to be equal, and a gap is formed between the outer surface of the blade-embedded solid part and the opposing inner surface of the rotor-embedded groove.
JP62104380A 1987-04-30 1987-04-30 Impeller of compressor Pending JPS63273000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104380A JPS63273000A (en) 1987-04-30 1987-04-30 Impeller of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104380A JPS63273000A (en) 1987-04-30 1987-04-30 Impeller of compressor

Publications (1)

Publication Number Publication Date
JPS63273000A true JPS63273000A (en) 1988-11-10

Family

ID=14379164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104380A Pending JPS63273000A (en) 1987-04-30 1987-04-30 Impeller of compressor

Country Status (1)

Country Link
JP (1) JPS63273000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669478A1 (en) 2012-05-31 2013-12-04 Hitachi, Ltd. Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669478A1 (en) 2012-05-31 2013-12-04 Hitachi, Ltd. Compressor
CN103452905A (en) * 2012-05-31 2013-12-18 株式会社日立制作所 Compressor

Similar Documents

Publication Publication Date Title
JP4058906B2 (en) Steam turbine
JP3701680B2 (en) Vibration damping shroud for turbomachine blades
JP3461562B2 (en) Damper device
US5201850A (en) Rotor tip shroud damper including damper wires
EP1867837B1 (en) Bucket vibration damper system
US6568908B2 (en) Steam turbine
JPS5813759B2 (en) Rotor stage of gas turbine engine
JPS5855360B2 (en) Blade platform vibration damping device
US20170211592A1 (en) Rotor in blisk or bling design of an aircraft engine
JP2007187053A (en) Turbine blade
JPS63273000A (en) Impeller of compressor
US5158435A (en) Impeller stress improvement through overspeed
US10927683B2 (en) Damping device
JP2002521623A (en) Tear structure of flexible element of elastic joint
JP2016156417A (en) Flexible flywheel device
JPH045402A (en) Integral shroud vane
JPS59108805A (en) Turbine moving blade fixing device
JP4357135B2 (en) Turbine blade coupling device
JP2000130102A (en) Rotary machine blade tip structure
JPH11200813A (en) Gas turbine engine
JPH02140403A (en) Mounting support structure for turbine rotor blade
US20220228491A1 (en) Assembly for turbomachine
JPS6043102A (en) Turbine rotor
US20220228494A1 (en) Assembly for a turbomachine
JPS6149103A (en) Turbine rotor blade linking equipment