JPS63272056A - Connection electrodes of integrated semiconductor device - Google Patents

Connection electrodes of integrated semiconductor device

Info

Publication number
JPS63272056A
JPS63272056A JP62104230A JP10423087A JPS63272056A JP S63272056 A JPS63272056 A JP S63272056A JP 62104230 A JP62104230 A JP 62104230A JP 10423087 A JP10423087 A JP 10423087A JP S63272056 A JPS63272056 A JP S63272056A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
wiring board
connection
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62104230A
Other languages
Japanese (ja)
Inventor
Takao Mori
孝夫 森
Akimasa Onozato
小野里 陽正
Fumio Yuki
文夫 結城
Kenichi Mizuishi
賢一 水石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62104230A priority Critical patent/JPS63272056A/en
Publication of JPS63272056A publication Critical patent/JPS63272056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To realize the high density arrangement of bump electrodes with a high aspect ratio and obtain connection electrodes which facilitate flip chip bonding in a clean atmosphere without using flux by a method wherein the connection electrodes are composed of Au or Cu bumps formed by selective plating with photosensitive resist as a mask. CONSTITUTION:Connection electrodes 102 in the mounting structure wherein a semiconductor device 101 of flip chip type and a wiring board 103 are connected to each other are composed of Au or Cu bumps formed by selective plating with photosensitive resist as a mask. For instance, bump electrodes 102 whose main component is Au are formed on the LSI device 101 beforehand. Au/Sn electrodes 102' are formed under the bump electrodes 102 beforehand and the Au bumps 102 are formed on the electrodes 102' by electroplating. Further, Au/Sn electrodes 102'' whose composition is the same as the composition of the Au/Sn electrodes 102' of the LSI device 101 are formed on wiring metal layers 105 of the wiring board 103. the electrodes of both the sides are mutually aligned and heated and melted to connect the LSI device 101 to the wiring board 103 with bump electrodes 102 between.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の実装方法に係り、特に高密度の突
起i′ftw4を有するフリップチップ型の半導体素子
を配線基板に接続するのに好適な集積半導体装置の接続
用電極の構造及びその製法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for mounting a semiconductor element, and is particularly suitable for connecting a flip-chip type semiconductor element having high-density protrusions i'ftw4 to a wiring board. The present invention relates to a structure of a connection electrode of an integrated semiconductor device and a method of manufacturing the same.

〔従来の技術〕[Conventional technology]

従来のフリップチップ素子の突起電極には、特開昭61
−65442号あるいは特開昭59−210649号に
記載のようにP b / S n系をはじめとする低融
点のはんだ材が用いられている。また、鉛−インジウム
系の突起電極については、アイ・イー・イー・トランザ
クション オン パーツ、ハイブリッドアンドパッケー
ジング、ビーエッチビー13゜(1977年)第194
頁から第198頁(IHHIIE 。
The protruding electrodes of conventional flip-chip devices are disclosed in JP-A-61
As described in JP-A-65442 or JP-A-59-210649, low-melting point solder materials such as Pb/Sn-based solders are used. Regarding lead-indium protruding electrodes, IE Transactions on Parts, Hybrid and Packaging, BHC 13° (1977) No. 194
Pages 198 to 198 (IHHIIE.

Transaction on ports、Hybr
id、and Packagingvol、PHP−1
3,N113 (1977) PPI 94−198)
において論じられている。この突起W1tiは通常、メ
カニカルマスクを用いてはんだ材を選択蒸着した後、は
んだ電極を加熱溶融することにより得られる。また、配
線基板に搭載後はんだ電極を再溶融することにより基板
相互の接続を行っていた。しかし、これらの方法では半
導体素子の高集積化に伴う突起電極の高密度化に対する
配慮がされていなかった。すなわち、メカニカルマスり
の加工寸法に限界があり、100μm以上の高さを持つ
突起電極を200μm以下のf!!極ピッチで実現する
ことが不可能であった。さらに、フリップチップボンデ
ィング工程において、従来のはんだ電極ではフラックス
の使用が余儀なくされるため、ボンディング後の僅かな
フラックス残渣により接続部の腐食が進行して素子の信
頼性を損ねる問題があり、このようなフラックスの完全
除去に対する配慮も不充分であった。特に突起電極の高
密度化により電極間隔が減少し、フラックスの洗浄除去
が増々困霞になることが予測される。
Transaction on ports, Hybr
id, and Packagingvol, PHP-1
3, N113 (1977) PPI 94-198)
It is discussed in This protrusion W1ti is usually obtained by selectively depositing a solder material using a mechanical mask and then heating and melting the solder electrode. Further, after mounting on a wiring board, the solder electrodes are remelted to connect the boards to each other. However, these methods do not take into account the increased density of protruding electrodes that accompanies the increased integration of semiconductor devices. In other words, there is a limit to the processing dimensions of mechanical massing, and a protruding electrode with a height of 100 μm or more can be reduced to an f! of 200 μm or less. ! It was impossible to achieve this with extreme pitch. Furthermore, in the flip-chip bonding process, conventional solder electrodes require the use of flux, so there is a problem that a small amount of flux residue after bonding progresses corrosion of the connection part and impairs the reliability of the device. There was also insufficient consideration given to the complete removal of flux. In particular, it is predicted that as the density of protruding electrodes increases, the electrode spacing will decrease, making cleaning and removal of flux increasingly difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は半導体素子上に形成する突起電極の高密
度化に対する配慮がされておらず、高さが100μm以
上の突起電極を200μm以下のピッチで形成できない
問題があった。さらに、はんだ材で構成する突起電極を
配線基板上に溶融接続する際にフラックスの使用が不可
欠であり、このフラックスの残渣に対する配慮も不充分
であり、接続部の汚染及び腐食に起因する実装素子の信
頼性低下を招く問題があった。
The above-mentioned conventional technology does not take into consideration the high density of protruding electrodes formed on a semiconductor element, and there is a problem that protruding electrodes having a height of 100 μm or more cannot be formed at a pitch of 200 μm or less. Furthermore, the use of flux is essential when melting and connecting protruding electrodes made of solder material onto wiring boards, and insufficient consideration is given to the residue of this flux. There was a problem that led to a decrease in reliability.

本発明の目的は上記2点を鑑み、高アスペクト比の突起
電極の高密度比が図れ、且つフラックスを用いないで清
浄な雰囲気のもとてフリップチップボンディングを可能
にする接続用電極を提供することにある。
In view of the above two points, it is an object of the present invention to provide a connection electrode that can achieve a high density ratio of protruding electrodes with a high aspect ratio, and also enables flip-chip bonding in a clean atmosphere without using flux. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、微細パターンの加工が容易なホトリソグラ
フィ技術と金属層の渾膜形成が可能な電気めっき技術の
組み合せにより突起電極を形成し、且つ突起電極の接続
面に低温で合金化反応が進行する金属膜を予め形成して
おくことにより達成される。
The above purpose is to form protruding electrodes by a combination of photolithography technology, which facilitates the processing of fine patterns, and electroplating technology, which enables the formation of a metal layer, and to allow an alloying reaction to proceed at low temperatures on the connection surface of the protruding electrodes. This is achieved by forming a metal film in advance.

〔作用〕[Effect]

まず、半導体素子あるいは配線基板上に100μm以上
の厚膜レジストを塗布し電極のパターニングを行う、こ
のレジスト膜が突起電極形成時の選択マスクとなる。ま
た、レジスト膜厚に対応して突起電極の高さが決定する
。レジストの厚膜化に従ってパターン加工精度が増加す
るが、ホトリソグラフィ技術での露光、現像条件の最適
化により100μm厚のレジスト膜に対して100μm
φのff1t!パターンを150μmピッチで形成でき
ることが分かった。一方、AuあるいはCuのめつき時
にはパターニングを行った開口部のみにめっき金属が堆
積する。すなわち、レジスト膜のパターン寸法及び形状
に従って突起電極の寸法及び形状が決定するため、10
0μmの高さを持つ突起電極を150μm以下のピッチ
で形成可能になる。
First, a thick resist film of 100 μm or more is applied onto a semiconductor element or a wiring board, and electrodes are patterned. This resist film serves as a selective mask when forming protruding electrodes. Further, the height of the protruding electrode is determined depending on the resist film thickness. The pattern processing accuracy increases as the resist film becomes thicker, but by optimizing the exposure and development conditions in photolithography technology, the pattern processing accuracy can be reduced to 100 μm for a 100 μm thick resist film.
φ's ff1t! It was found that patterns could be formed at a pitch of 150 μm. On the other hand, when plating Au or Cu, the plating metal is deposited only on the patterned openings. That is, since the dimensions and shape of the protruding electrode are determined according to the pattern dimensions and shape of the resist film,
It becomes possible to form protruding electrodes with a height of 0 μm at a pitch of 150 μm or less.

また、この突起電極の下層及びフリップチップボンディ
ング時に対向する電極面に予めA u / S nある
いはA u / G n層を形成しておくことにより、
ボンディング時にこれらの金属が溶融し、突起電極金属
と合金化反応するために機械的に強固な接続が実現でき
る。特に加熱時に基板相互を十分に加圧することにより
接続強度の安定化が図れる。
In addition, by forming an A u / S n or A u / G n layer in advance on the lower layer of this protruding electrode and on the electrode surface opposite during flip chip bonding,
During bonding, these metals melt and undergo an alloying reaction with the protruding electrode metal, making it possible to achieve a mechanically strong connection. In particular, by applying sufficient pressure between the substrates during heating, the connection strength can be stabilized.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図、第2図、第3図、第4
図を用いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4.
This will be explained using figures.

実施例1 第1図、第2図に本発明を用いてSiバイポーラLSI
を配線基板上にフリップチップボンディングした例を示
す、第1図(a)に示すように、LSI素子101上に
予めAuを主成分とする突起1ttJi102を形成し
た。この接続部の断面構造第1図(b)に示した。突起
電極102の下層に予めA u / S n層(上部金
属をAuとする)を形成し、この電極上に電気めっきに
よりAu柱を形成した。さらに、配線基板101の配線
金属層105上にLSI素子側のA u / S n 
f!!極102’と同一組成のA u / S n電極
102′を形成し、相互の電極を位置合わせ後加熱溶融
することにより第1図(c)に示すようにLS IJ子
101を配線基板103上に突起電極102を介して接
続した。
Example 1 A Si bipolar LSI was constructed using the present invention in FIGS. 1 and 2.
As shown in FIG. 1(a), which shows an example of flip-chip bonding on a wiring board, protrusions 1ttJi102 containing Au as a main component were previously formed on an LSI element 101. The cross-sectional structure of this connection portion is shown in FIG. 1(b). An A u /S n layer (the upper metal is Au) was formed in advance under the protruding electrode 102, and Au pillars were formed on this electrode by electroplating. Further, on the wiring metal layer 105 of the wiring board 101, A u / S n on the LSI element side
f! ! By forming an A u/S n electrode 102' having the same composition as the electrode 102' and heating and melting the electrodes after aligning them, the LS IJ element 101 is placed on the wiring board 103 as shown in FIG. 1(c). was connected to via a protruding electrode 102.

めっきにより形成する金属柱は予め配線基板側に形成し
ておいても良い。また、電気めっきの他に無電解めっき
の適用も可能である1次にこれらの製法を第2図及び第
3図を用いて詳細に説明する。まずLSI素子201の
配線層206上に突起電極の下地電極としてA u /
 N i / T i電極202を形成した。次にこの
電極上にSnM2O3゜A u M 204を連続蒸着
した。次いで、レジスト膜を塗布(150μrn)L電
極のパターニングを行った・このレジスト膜をマスクと
してAu205の電気めっき(100μm厚)を行い、
レジスト膜除去及び電極部以外の不要A u / S 
n層のエツチング除去を通して第3図(a)に示す電極
構造を得た。一方、配線基板208側にも第3図(b)
に示すように上記電極202,203,204と同一の
電極を形成した。次に第3図(c)に示すように、配線
基板208上にLSI素子201を位置合わせした後加
熱処理により相互の基板接続を行った。なお、この工程
では素子に荷重を加えながら熱処理することにより接続
強度の向上がみられた。なお、本実施例では、LSI素
子と配線基板をそれぞれ置き換えることができる0本実
施例によれば突起電極の加工をホトリソグラフィの加工
精度で実施できるため、突起電極の寸法精度の向上、W
1極の高密度化が図れる。さらに基板接続時にフラック
スを用いないため、ボンディング後の実装素子の信頼性
を飛躍的に向上する効果がある。
The metal pillars formed by plating may be formed in advance on the wiring board side. Further, in addition to electroplating, electroless plating can also be applied. These manufacturing methods will be explained in detail with reference to FIGS. 2 and 3. First, A u /
A Ni/Ti electrode 202 was formed. Next, SnM2O3°A u M 204 was continuously deposited on this electrode. Next, a resist film was applied (150 μrn) and the L electrode was patterned. Using this resist film as a mask, Au205 was electroplated (100 μm thick).
Unnecessary A u/S other than resist film removal and electrode part
The electrode structure shown in FIG. 3(a) was obtained by removing the n-layer by etching. On the other hand, on the wiring board 208 side, as shown in FIG.
The same electrodes as the electrodes 202, 203, and 204 were formed as shown in FIG. Next, as shown in FIG. 3(c), after aligning the LSI element 201 on the wiring board 208, the boards were connected to each other by heat treatment. In addition, in this step, the connection strength was improved by heat-treating the element while applying a load. In addition, in this embodiment, the LSI element and the wiring board can be respectively replaced. According to this embodiment, the protruding electrodes can be processed with the processing accuracy of photolithography, so the dimensional accuracy of the protruding electrodes can be improved, and W
High density of one pole can be achieved. Furthermore, since flux is not used when connecting the substrate, it has the effect of dramatically improving the reliability of mounted elements after bonding.

実施例2 第4図に高周波FET集積回路パッケージを示す。まず
、フリップチップ化したMMIC(Monolithi
cMierowave Integrated C1r
cuit)素子301をP b / S nはんだバン
プ302を介して配線基板303上にフェースダウンで
ボンディングした。この配線基板303上の外部電極端
子には予めホトレジスト膜をマスクとしてAuの電気め
っきあるいは無電解めっきを行い柱状の突起電極304
を形成しておく。次にセラミックパッケージ306の電
極パッドと配線基板の突起電極304を位置合わせした
後、配線基板を下側にして加熱処理により相互の電極を
接続した。なお、パッケージの電極パッド306上には
予めAu/Sn層を形成した。さらに、チップとパッケ
ージの間隙に熱伝導性樹脂309を充填固着後、配線基
板固着用はんだ305を介してパッケージのリッド30
7付けを行った。本実施例によれば配線による寄生イン
ダクタンスの制御が重要となる高周波素子において配線
抵抗及び配線インダクタンスの低減及び均一化が図れる
ため従来の実装方式に比べ著しい性能向上の効果がある
Embodiment 2 FIG. 4 shows a high frequency FET integrated circuit package. First, a flip-chip MMIC (Monolithi)
cMierowave Integrated C1r
Cuit) The element 301 was bonded face down onto the wiring board 303 via the Pb/Sn solder bumps 302. External electrode terminals on this wiring board 303 are coated with Au electroplating or electroless plating using a photoresist film as a mask in advance to form columnar protruding electrodes 304.
Form it. Next, after aligning the electrode pads of the ceramic package 306 and the protruding electrodes 304 of the wiring board, the electrodes were connected to each other by heat treatment with the wiring board facing down. Note that an Au/Sn layer was previously formed on the electrode pad 306 of the package. Furthermore, after filling and fixing a thermally conductive resin 309 into the gap between the chip and the package, the lid 30 of the package is soldered via solder 305 for fixing the wiring board.
I gave it a 7. According to this embodiment, the wiring resistance and wiring inductance can be reduced and made uniform in a high-frequency element in which control of parasitic inductance due to wiring is important, so that there is a significant performance improvement effect compared to the conventional mounting method.

実施例3 第5図にウェーハ規模集積回路基板の積層実装例を示す
。第5図(a)−に示すように集積回路基板401の上
面にA u / S n電極503を形成後。
Embodiment 3 FIG. 5 shows an example of stacking and mounting a wafer-scale integrated circuit board. After forming the Au/Sn electrode 503 on the upper surface of the integrated circuit board 401 as shown in FIG. 5(a).

厚膜レジストをマスクとしてAuの電気めっきにより柱
状の突起電極402を形成した。さらに貫通配線層40
2を介して突起電極と反対の位置に表面と同一組成のA
 u / S n電極を形成した。この集積回路基板を
複数枚積層した後、加熱処理により第5図(b)のよう
に回路基板相互の接続を実施した0本実施例によれば、
突起電極が500個/dを超えるような高密度の電極接
続をフラックスを用いないで実施できるためフランクス
残渣による素子の汚染、腐食が皆無になり実装システム
全体の信頼度向上に効果がある。
Columnar protruding electrodes 402 were formed by electroplating Au using a thick film resist as a mask. Furthermore, the through wiring layer 40
A with the same composition as the surface is placed opposite the protruding electrode through 2.
U/S n electrodes were formed. According to this embodiment, after a plurality of integrated circuit boards are stacked, the circuit boards are connected to each other by heat treatment as shown in FIG. 5(b).
Since high-density electrode connections with more than 500 protruding electrodes/d can be performed without using flux, there is no contamination or corrosion of elements due to Franks residue, which is effective in improving the reliability of the entire mounting system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体素子の実装において、接続用電
極ピッチを縮小できるため半導体素子に形成する電極密
度を向上する効果がある。これにより実装デバイスある
いはシステムを小型化できる。また、電極間の接続工程
でフラックスが不必要となり清浄な雰囲気中で電極接続
が可能である。
According to the present invention, in mounting a semiconductor element, since the pitch of connection electrodes can be reduced, the density of electrodes formed on the semiconductor element can be improved. This allows the mounted device or system to be miniaturized. Further, flux is not required in the process of connecting the electrodes, and the electrodes can be connected in a clean atmosphere.

このため、フラックスによる汚染、腐食が皆無であり、
接続部の信頼性を著しく向上する効果がある。
Therefore, there is no contamination or corrosion caused by flux.
This has the effect of significantly improving the reliability of the connection.

本発明はSi基板を用いた[C,LSI素子の他に種々
の化合物半導体基板を用いたIC,LSI素子及び発光
素子等の単体デバイスの実装用接続電極として有効であ
る。
The present invention is effective as a connection electrode for mounting single devices such as ICs, LSI elements, and light emitting elements using various compound semiconductor substrates in addition to LSI elements using Si substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるSi  LSIの実装構造を示す
斜視図及び縦断面図、第2図は第1図の製造工程フロー
、第3図はそのW造縦断面図、第4図は本発明による高
周波FF:Ti子の実装方法の一実施例を示す縦断面図
、第5図は本発明によるウェーハ規模集積回路の積層実
装方法の一実施例を示す縦断面図である。 101・・・Si、LSI素子、102・・・突起電極
。 102’・LSI素子側A u / S n f&極、
 102’・・・配線基板側A u / S n電極、
103・・・配線基板、104・・・絶縁膜、105・
・・配線導体、106・・・絶縁膜、201−8i  
LSI素子−202・=Au/ N i / T i電
極、203− S n層、204・・・Au層、205
・・・Au突起電極、206・・・配線導体、207・
・・絶縁膜、208・・・配線基板、301・・・高周
波FET素子、302・・・はんだバンプ。 303・・・配線基板、304・・・Au突起電極、3
05・・・配線基板固着用はんだ、306・・・パッケ
ージ本体、307・・・リッド、308・・・外部端子
、309・・・熱伝導性樹脂、401・・・ウェーハ規
模集積回路、402 ・・・貫通配線層、 403−A
 u/ S uftt極、代理人 升理工 小川FIy
Iぐ  ;第 1 図 10h・・・紺J象墜 208・・・配線基板 $4EJ 、309・・・熱伝導性樹脂 第 5 目 (す
FIG. 1 is a perspective view and a vertical cross-sectional view showing the mounting structure of a Si LSI according to the present invention, FIG. 2 is a manufacturing process flow of FIG. 1, FIG. 3 is a vertical cross-sectional view of the W structure, and FIG. FIG. 5 is a longitudinal sectional view showing an embodiment of the method for mounting a wafer-scale integrated circuit in a stacked manner according to the present invention. 101...Si, LSI element, 102...Protrusion electrode. 102'・LSI element side A u / S n f & pole,
102'...Wiring board side A u/S n electrode,
103... Wiring board, 104... Insulating film, 105...
...Wiring conductor, 106...Insulating film, 201-8i
LSI element-202・=Au/Ni/Ti electrode, 203-Sn layer, 204...Au layer, 205
...Au protruding electrode, 206...wiring conductor, 207.
... Insulating film, 208 ... Wiring board, 301 ... High frequency FET element, 302 ... Solder bump. 303... Wiring board, 304... Au protruding electrode, 3
05... Solder for fixing wiring board, 306... Package body, 307... Lid, 308... External terminal, 309... Thermal conductive resin, 401... Wafer scale integrated circuit, 402 ・...Through wiring layer, 403-A
u/ S uftt Goku, agent Masu Riko Ogawa FIy
Ig; 1st Fig. 10h...Navy J 208...Wiring board $4EJ, 309...Thermal conductive resin No. 5

Claims (1)

【特許請求の範囲】 1、フリップチップ型の半導体素子あるいは配線基体を
相互接続する実装構造において、該接続用電極が感光性
レジストをマスクとして選択的にめつきされたAuある
いはCuにより構成されることを特徴とする集積半導体
装置の接続用電極。 2、特許請求の範囲第1項に記載の接続用電極構造にお
いて、めつき層の下地電極として第1層にSnあるいは
Ge、第2層にAuを用いた2層膜あるいはこれらの合
金膜を設けることを特徴とする集積半導体装置の接続用
電極。
[Claims] 1. In a mounting structure for interconnecting flip-chip semiconductor elements or wiring substrates, the connection electrodes are made of Au or Cu selectively plated using a photosensitive resist as a mask. A connection electrode for an integrated semiconductor device, characterized by: 2. In the connection electrode structure according to claim 1, a two-layer film using Sn or Ge for the first layer and Au for the second layer, or an alloy film of these, is used as the base electrode of the plating layer. An electrode for connection of an integrated semiconductor device, characterized in that it is provided with an electrode for connection of an integrated semiconductor device.
JP62104230A 1987-04-30 1987-04-30 Connection electrodes of integrated semiconductor device Pending JPS63272056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104230A JPS63272056A (en) 1987-04-30 1987-04-30 Connection electrodes of integrated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104230A JPS63272056A (en) 1987-04-30 1987-04-30 Connection electrodes of integrated semiconductor device

Publications (1)

Publication Number Publication Date
JPS63272056A true JPS63272056A (en) 1988-11-09

Family

ID=14375161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104230A Pending JPS63272056A (en) 1987-04-30 1987-04-30 Connection electrodes of integrated semiconductor device

Country Status (1)

Country Link
JP (1) JPS63272056A (en)

Similar Documents

Publication Publication Date Title
EP0398485B1 (en) A method of making a Flip Chip Solder bond structure for devices with gold based metallisation
US6858941B2 (en) Multi-chip stack and method of fabrication utilizing self-aligning electrical contact array
US6940169B2 (en) Torch bump
US6960828B2 (en) Electronic structures including conductive shunt layers
US8710664B2 (en) Wafer-level chip scale package
US7906425B2 (en) Fluxless bumping process
US6825547B2 (en) Semiconductor device including edge bond pads
US6319751B1 (en) Bumpless flip chip assembly with solder via
US7338891B2 (en) Semiconductor chip, mounting structure thereof, and methods for forming a semiconductor chip and printed circuit board for the mounting structure thereof
US6583039B2 (en) Method of forming a bump on a copper pad
US20040206801A1 (en) Electronic devices including metallurgy structures for wire and solder bonding
JP2000100851A (en) Semiconductor substrate and manufacture thereof and structure and method for mounting semiconductor parts
KR20010067448A (en) Wire bonding method for copper interconnects in semiconductor devices
KR20030067590A (en) Semiconductor element and a producing method for the same, and a semiconductor device and a producing method for the same
US5646068A (en) Solder bump transfer for microelectronics packaging and assembly
JPH0214796B2 (en)
US6664176B2 (en) Method of making pad-rerouting for integrated circuit chips
JP2007184381A (en) Flip chip mounting circuit board, its manufacturing method, semiconductor device, and its manufacturing method
JPH07201864A (en) Projection electrode formation method
JPH06132474A (en) Semiconductor device
US20050026416A1 (en) Encapsulated pin structure for improved reliability of wafer
JPH11340270A (en) Solder bump formation method and manufacture of semiconductor module
JPS63272056A (en) Connection electrodes of integrated semiconductor device
JPS63168028A (en) Fine connection structure
JPH09321050A (en) Forming barrier metal in solder ball bump forming process