JPS63271977A - Semiconductor lamination structure - Google Patents

Semiconductor lamination structure

Info

Publication number
JPS63271977A
JPS63271977A JP62107086A JP10708687A JPS63271977A JP S63271977 A JPS63271977 A JP S63271977A JP 62107086 A JP62107086 A JP 62107086A JP 10708687 A JP10708687 A JP 10708687A JP S63271977 A JPS63271977 A JP S63271977A
Authority
JP
Japan
Prior art keywords
semiconductor
energy value
electric field
ground level
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62107086A
Other languages
Japanese (ja)
Other versions
JP2740166B2 (en
Inventor
Kenichi Nishi
研一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62107086A priority Critical patent/JP2740166B2/en
Publication of JPS63271977A publication Critical patent/JPS63271977A/en
Application granted granted Critical
Publication of JP2740166B2 publication Critical patent/JP2740166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable an operational speed to be high by a method wherein a first and second semiconductor are smaller in thickness than the mean free path of an electron and laminated alternately by one period or more, where the relation between the energy values of a hole and an electron base states are adjusted. CONSTITUTION:A first and a second semiconductors 103 and 104 with thickness smaller than the mean free path of an electron are laminated alternately by one period or more. And, the energy value at the upper end of a valence electron band of the first semiconductor 103 is rendered larger than the energy value at the lower end of a conductive band of the second semiconductor 104, the value of a hole base state 109 in the first semiconductor 103 is made larger than that of an electron base state 108 in the second semiconductor 104 when the electronic field is not applied in the laminated direction. And, the energy value of a hole base state 109 is rendered smaller than the that of an electron base state 108 in the second semiconductor 104 when the electric field is applied which is not large enough to induce the avalanche effect. By these processes, a high speed operation can be attained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高速F E Tおよび高い相互コンダクタ
ンスを有するFET等に用いられる半導体の積層構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stacked structure of semiconductors used in ultra-high speed FETs, FETs with high mutual conductance, and the like.

(従来の技術) 従来、FET笠に用いられる半導体積N構造は、その中
のキャリヤの易動度をキャリヤ密度を変化させる事によ
り変化させる構造であった1例えば、選択ドープ構造で
は、広バンドギャップの半導体に不純物をドーピングし
、その不純物から生じるキャリヤを、広バンドギヤツプ
半導体に接する狭バンドギャップの半導体の、ヘテロ界
面付近に存在させ、このキャリヤ密度を外部から印加す
る電界によって変化させるというものである。これは、
半導体中のフェルミエネルギーの変化によってキャリヤ
走行部のキャリヤ密度が変化することを利用している(
この−例は、ジャパニーズ・ジャーナル・オブ・アプラ
イド・フィジックス(Jpn、 J。
(Prior art) Conventionally, the semiconductor multilayer N structure used in FET caps has a structure in which the mobility of carriers in the structure is changed by changing the carrier density1.For example, in a selectively doped structure, a wide band This method involves doping an impurity into a gap semiconductor, causing carriers generated from the impurity to exist near the hetero-interface of a narrow bandgap semiconductor that is in contact with a wide bandgap semiconductor, and changing this carrier density by an externally applied electric field. be. this is,
It takes advantage of the fact that the carrier density in the carrier traveling region changes due to changes in the Fermi energy in the semiconductor (
An example of this is the Japanese Journal of Applied Physics (Jpn, J.

0[八pp1. Phys、、 19 (1980) 
L2り5)に報告されている)。
0[8pp1. Phys, 19 (1980)
(Reported in L2ri 5)).

(発明が解決しようとする問題点) この場合、キャリヤ密度の変化を十分と・るには高い電
圧を印加する必要があり、また電流を多く取り出すこと
も困難である。特に、イオン化した不純物による散乱を
防いで高い易動度を得る選択ドープ構造では、原理的に
走行部のキャリヤ密度を十分に増加させることができず
、上述の問題点は大きい、さらに相互コンダクタンスも
十分には得られない。
(Problems to be Solved by the Invention) In this case, it is necessary to apply a high voltage to sufficiently change the carrier density, and it is also difficult to extract a large amount of current. In particular, with a selectively doped structure that achieves high mobility by preventing scattering by ionized impurities, it is theoretically impossible to sufficiently increase the carrier density in the traveling section, and the above-mentioned problems are significant.Furthermore, the mutual conductance I can't get enough.

本発明の目的は、電界印加によって相互コンダクタンス
の急激な変化を生じる半導体81t層m造を“  提供
することにある。
An object of the present invention is to provide a semiconductor 81t layer structure that exhibits a rapid change in mutual conductance upon application of an electric field.

(問題点を解決するための手段) 本発明による半導体積層構造は、電子の平均自由行程程
度以下のMl¥を有する第1及び第2の半導体が交互に
少なくとも1周期績層されてなり、該第1の半導体の価
電子帯上端のエネルギー値が第2の半導体の伝導帯下端
のエネルギー値より大きく、積層方向に電界が印加され
ていない場合には該第1の半導体中に形成されるホール
の基底準位のエネルギー値が隣接した第2の半導体中に
形成される電子の基底準位のエネルギー値より大きく、
積層方向にアバランシェ効果が生じない程度の電界が印
加されている場合にはホールの基底準位のエネルギー値
が、電界方向に第1の半導体と隣接する第2の半導体中
の電子の基底準位のエネルギー値より小さいことを特徴
とする。
(Means for Solving the Problems) The semiconductor laminated structure according to the present invention is made up of first and second semiconductors having Ml\ which is equal to or less than the mean free path of electrons, which are alternately layered for at least one period. When the energy value at the top of the valence band of the first semiconductor is greater than the energy value at the bottom of the conduction band of the second semiconductor and no electric field is applied in the stacking direction, holes are formed in the first semiconductor. the energy value of the ground level of is larger than the energy value of the ground level of electrons formed in the adjacent second semiconductor,
When an electric field that does not cause an avalanche effect is applied in the stacking direction, the energy value of the ground level of the hole is equal to the ground level of the electron in the second semiconductor adjacent to the first semiconductor in the direction of the electric field. It is characterized by being smaller than the energy value of .

(作用) この様な現象を得る為の構造の設計は以下の様にして行
なう、まず、第1の半導体中に存在するホールの基底準
位のエネルギー値をEl、第2の半導体中に存在する電
子の基底準位のエネルギー値をEoと呼ぶ、mWJ方向
に電界が印加されていない場合には、 E、>Ee              ・・・(1)
となる様に設定する。
(Function) The design of the structure to obtain such a phenomenon is carried out as follows. First, the energy value of the ground level of the hole existing in the first semiconductor is set as El, and the energy value of the ground level of the hole existing in the second semiconductor is set as El. The energy value of the ground level of the electron is called Eo. When no electric field is applied in the mWJ direction, E,>Ee...(1)
Set it so that

積層方向に電界(強度F)が印加された際には、各基底
準位は各バンド端へ近づく様に変化する。
When an electric field (strength F) is applied in the stacking direction, each ground level changes so as to approach each band edge.

この変化分を、各半導体層の中心部分のバンド端のエネ
ルギー値を原点にして考えると、近似的にΔEh (I
lleV)≧+4X10−’mh ・F2(kV/cm
) ・L: (In) −(2)ΔEe (neV) 
= 4X10−’me ・F2(kV/am)化: (
nll) ・= (3)となる、ここで、ml 、m6
はホール、電子の有効質歇、L、、F2は第1および第
2の半導体の膜厚である。
If we consider this change using the energy value of the band edge in the center of each semiconductor layer as the origin, we can approximately calculate ΔEh (I
lleV)≧+4X10-'mh ・F2(kV/cm
) ・L: (In) −(2)ΔEe (neV)
= 4X10-'me ・F2 (kV/am) conversion: (
nll) ・= (3), where ml, m6
is the effective mass of holes and electrons, L, and F2 are the film thicknesses of the first and second semiconductors.

一方、印加電界により、バンド端エネルギー値は空間的
に変化する0問題点を解決するための手段の欄で述べた
様に、電界方向と同方向に第1の半導体に隣接する第2
の半導体について考えると、第1の半導体層の中心部の
エネルギー値を基準にして、エネルギー値は e−F ・(Ll +L2 )/2だけ上昇する。
On the other hand, due to the applied electric field, the band edge energy value spatially changes to 0.As described in the section of the means for solving the problem, the second
Considering the semiconductor, the energy value increases by e-F·(Ll +L2)/2 with respect to the energy value at the center of the first semiconductor layer.

以上より、電界をアバランシェ効果の生じない程度(約
100kV/ 3 )印加した場合には、E、+ΔE、
 <E、+ΔE6+e−F・(L1+L2)/2・・・
(4)となる様に設定する。
From the above, when an electric field is applied to an extent that does not cause an avalanche effect (approximately 100 kV/3), E, +ΔE,
<E, +ΔE6+e−F・(L1+L2)/2...
(4) Set it so that it becomes.

例として、GaSbを第1の半導体、I nAsを第2
の半導体として考える。GaSbの価電子帯上端のエネ
ルギー値は、InAsの伝導帯下端のエネルギー値より
約15011eV大きい、ここで、特にLlを先に5n
11と仮定してみる。すると、(1)式が満たされるF
2としては、 L2ミ13n1M となる事が有効質量近似の計算より求められる。
As an example, GaSb is used as the first semiconductor and InAs is used as the second semiconductor.
Think of it as a semiconductor. The energy value at the upper end of the valence band of GaSb is approximately 15011 eV larger than the energy value at the lower end of the conduction band of InAs.
Let's assume that it is 11. Then, F that satisfies equation (1)
2, it can be found from the effective mass approximation calculation that L2mi13n1M.

Llが5nn、F2が13n1では、(2)、(3)両
式よりΔEh+ ΔE、は、 ΔE、 ;11 ieV ΔE6;23 neV となる、また、e−F ・ (L1+L2 )/2の値
は、Fが100kV/amテ!、t90 ieVトなル
、コノ場合、(4)式は満たされる。
When Ll is 5nn and F2 is 13n1, from both equations (2) and (3), ΔEh+ ΔE becomes ΔE; , F is 100kV/amte! , t90 ieV, the equation (4) is satisfied.

また、F2の最大値としては、(2)、(3)。Further, the maximum value of F2 is (2), (3).

(4)式より、18n1程度と計算される。したがって
、Llを5nIlとすると、F2の計算された範囲は、 t3+m≦L2≦18nn となる。
From equation (4), it is calculated to be about 18n1. Therefore, if Ll is 5nIl, the calculated range of F2 is t3+m≦L2≦18nn.

本発明による半導体積P!積構造、その積層方向の電気
特性が電界印加によって半金属的なものから半導体的な
ものに変化することを利用する。積層方向に電界が印加
されていない場合には、第1の半導体中のホールの基底
準位のエネルギー値が第2の半導体中の電子の基底準位
のエネルギー値より大きいため、空間的な電荷の移動に
より、第1の半導体中には多数キャリヤとしてホールが
、第2の半導体中には電子が存在する。この状態で81
t層方向に若干電圧を印加すると、第1の半導体中では
ホールが電界方向に、第2の半導体中では電子が電界と
逆方向に走行する。この場合、半導体界面では電子・ホ
ールの再結合、または生成が生じ、この結果電流が流れ
ることになる。
Semiconductor product P according to the present invention! It takes advantage of the fact that the electrical properties of a stacked structure in the stacking direction change from semimetal-like to semiconductor-like when an electric field is applied. When no electric field is applied in the stacking direction, the energy value of the ground level of holes in the first semiconductor is larger than the energy value of the ground level of electrons in the second semiconductor, so that the spatial charge Due to the movement of , holes exist as majority carriers in the first semiconductor, and electrons exist in the second semiconductor. 81 in this state
When a slight voltage is applied in the direction of the t-layer, holes move in the direction of the electric field in the first semiconductor, and electrons move in the opposite direction to the electric field in the second semiconductor. In this case, recombination or generation of electrons and holes occurs at the semiconductor interface, resulting in current flow.

一方、積層方向に十分に電界を印加すると、第1の半導
体と、電界方向と同方向に隣接する第2の半導体の間で
は、この半導体へテロ界面において電子の基底準位のエ
ネルギー値がホールの基底準位のエネルギー値より大き
くなる。この場合、この界面では、電子とホールの再結
合の確率は小さくなり、その結果、積層方向に流れる電
流は激減する。
On the other hand, when a sufficient electric field is applied in the stacking direction, the energy value of the ground level of electrons becomes a hole at this semiconductor hetero interface between the first semiconductor and the second semiconductor adjacent in the same direction as the electric field direction. becomes larger than the energy value of the ground level. In this case, the probability of recombination of electrons and holes at this interface is reduced, and as a result, the current flowing in the stacking direction is drastically reduced.

以上より、積層方向に印加する電界強度と、積層方向の
電流の関係を考えると、低電界の場合は電流が多く流れ
(半金属的)、高電界にすると急激に電流が流れなくな
る(半導体的)ことになる。
From the above, when considering the relationship between the electric field strength applied in the stacking direction and the current in the stacking direction, a large amount of current flows when the electric field is low (semi-metallic type), and when the electric field is high, the current suddenly stops flowing (semiconductor type). ).

(実施例) 以下図面を参照して本発明の実施例について説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)は本発明第1の実施例による半導 ′体積
層梢遣の模式図、同図(b)はWt層方向に電界が印加
されていない場合におけるその半導体積P!椹遣のバン
ド図、同図(c)は積層方向に電界が印加されている場
合におけるその半導体81層構造のバンド図である。
FIG. 1(a) is a schematic diagram of a semiconductor stack according to the first embodiment of the present invention, and FIG. 1(b) shows the semiconductor product P! when no electric field is applied in the direction of the Wt layer. The band diagram of Sawarakiri (c) is a band diagram of the 81-layer structure of the semiconductor when an electric field is applied in the stacking direction.

第1図(a)の半導体積層構造の製造においては、分子
線エピタキシー法によりStドープn型GaAs基板1
01上に2−厚のn型GaSbバッフy −!t4  
t02. 5nm厚のp型GaSb層 103と13n
ll/¥のn型I nAs層104とを交互に20周期
積積層た多層構造105. 0.2−厚のn型GaSb
クラッドP!106を順次成長させた。さらに、基板表
面と裏面に電極107をオーミック性で形成した。
In manufacturing the semiconductor stacked structure shown in FIG. 1(a), a St-doped n-type GaAs substrate 1 is
2-thick n-type GaSb buffer on 01 y-! t4
t02. 5 nm thick p-type GaSb layer 103 and 13n
A multilayer structure 105 in which 20 periods of n-type I nAs layers 104 of 1/1/y are laminated alternately. 0.2-thick n-type GaSb
Clad P! 106 were grown sequentially. Furthermore, ohmic electrodes 107 were formed on the front and back surfaces of the substrate.

ここで、多層楕遣105中のバンド構造は、第1図(b
)に示す如くなっており、積層方向に電圧を印加してい
ない状態では電子の基底準位108のエネルギー値がホ
ールの基底準位109のエネルギー値よりも小さい、一
方、積層方向に100kV/am程度の電界を印加する
と、電界の加わっている多rf4m造部105ノバンド
fIll造は、第1図(c ) ニ示す如く変化し、こ
の場合、電子の基底準位108のエネルギー値は、特に
図中右側のホールの基底準位109のエネルギー値より
も大きい。
Here, the band structure in the multilayer ellipse 105 is shown in FIG.
), when no voltage is applied in the stacking direction, the energy value of the electron ground level 108 is smaller than the energy value of the hole ground level 109; When an electric field of about It is larger than the energy value of the ground level 109 of the center right hole.

本実施例において、上下の電極間に電圧を印加し、この
除渣れる電流を測定した所、第2図に示す電流−電圧特
性が得られた。この図中の負性抵抗は、印加した電圧に
よる電界によって、上述の電子とポールの基底準位10
8.109のエネルギー値の逆転によって生じるもので
ある。これにより、ピーク・バレー比の非常に大きい(
〜100程度)負性抵抗ダイオードが得られる。
In this example, when a voltage was applied between the upper and lower electrodes and the current removed from the sediment was measured, the current-voltage characteristics shown in FIG. 2 were obtained. The negative resistance in this figure is caused by the electric field caused by the applied voltage, which causes the ground level of the electrons and poles to reach 10
This is caused by the reversal of the energy value of 8.109. This results in a very large peak-to-valley ratio (
~100%) A negative resistance diode is obtained.

次に本発明の第2の実施例である電界効果トランジスタ
について説明する。第3図はこの電界効果トランジスタ
の模式的な断面図である。
Next, a field effect transistor, which is a second embodiment of the present invention, will be described. FIG. 3 is a schematic cross-sectional view of this field effect transistor.

これは、分子線エピタキシー法により、半絶縁性GaA
s基板301上に第1の実施例と同様の積層構造を形成
した後、複数回のフォトリソグラフィー法とエツチング
、金属蒸着により、GaSbクラッドM106上にオー
ミック性のソース電極302、ショツトキー性のゲート
電極303と、Ga5bバツフア一層102上にオーミ
ック性のドレイン電% 304を形成したものである。
This is a semi-insulating GaA film using molecular beam epitaxy.
After forming a laminated structure similar to that of the first embodiment on the S substrate 301, an ohmic source electrode 302 and a Schottky gate electrode are formed on the GaSb cladding M106 by multiple photolithography, etching, and metal vapor deposition. 303, and an ohmic drain current 304 is formed on the Ga5b buffer layer 102.

本実施例において、ゲー)T:、i 303とドレイン
電極304間に電圧を印加すると多層構造部105に積
層方向に電界が印加され、この際、多層構造部105中
のバンド構造は第1図(b)、(C)の様に変化する。
In this embodiment, when a voltage is applied between the gate electrode 303 and the drain electrode 304, an electric field is applied to the multilayer structure 105 in the stacking direction, and at this time, the band structure in the multilayer structure 105 is It changes as shown in (b) and (C).

実際のトランジスタ動作を調べるため、温度が77Kに
おいてソース、ドレイン電極間に一定の電圧0.5Vを
印加しておき、ゲート電極の電圧を印加していったとこ
ろ、この電圧が1v前後で、1μカのゲート幅あたり約
801nSという非常に高い相互コンダクタンスが得ら
れた。この場合のソース、ドレイン電極間の電流、電圧
特性を第4図に示す。 このように本実施例においては
、非常に高い相互コンダクタンスが得られるとともに、
また半金属状態のゲート部分をキャリヤが走行するので
、得られる電流も大きいものである。
In order to investigate the actual transistor operation, a constant voltage of 0.5V was applied between the source and drain electrodes at a temperature of 77K, and then the voltage of the gate electrode was applied. A very high transconductance of approximately 801 nS per gate width was obtained. FIG. 4 shows the current and voltage characteristics between the source and drain electrodes in this case. In this way, in this example, a very high mutual conductance can be obtained, and
Furthermore, since carriers travel through the gate portion in a semi-metallic state, the obtained current is also large.

以上ここでは2つの実施例について述べたが、材料系も
他のもの、例えばAρG a S bとInAs!!F
の混晶を用いるものであっても良い。また半導体成長法
も、分子線エピタキシー法以外の、例えば有機金属気相
成長法などでもかまわない。
Although two embodiments have been described here, other material systems may also be used, such as AρGaSb and InAs! ! F
It is also possible to use a mixed crystal of Further, the semiconductor growth method may be other than molecular beam epitaxy, such as organometallic vapor phase epitaxy.

(発明の効果) 本発明によれば、負性抵抗ダイオードや、マイクロ波増
幅用や、大電流用に用いられる高速動作が可能な電界効
果トランジスタに用いられる半導体積N1構造が得られ
る。
(Effects of the Invention) According to the present invention, a semiconductor product N1 structure can be obtained which is used in a negative resistance diode, a field effect transistor capable of high-speed operation used for microwave amplification, and large current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第1の実施例による半導体fi
!i層構造の模式図、同図(b)は′vt層方向に電界
が印加されていない場合におけるその半導体積層tN造
のバンド図、同図(C)は積層方向に電界が印加されて
いる場合におけるその半導体積屑栖造のバンド図であり
、第2図はこの実施例の上下の電極間の電流・電圧特性
を示す特性図である。 第3図は本発明の第2の実施例である電界効果トランジ
スタの模式的な断面図であり、第4図は第2の実施例に
おけるソース、ドレイン電極間の電流・電圧特性を示す
特性図である。 101−−・S iドープn型GaAs基板、102−
・・n型GaSbバッファー屑、103−5 n1IF
Eのp型GaSb層、104・13nll厚のn型I 
nAs層、105・・・多層構造、106・・・n型G
aSbクラッド層、107・・・電極、108・・・電
子の基底準位、109・・・ホールの基底準位、301
・・・半絶縁性G a A s基板、302・・・ソー
ス電極、303・・・ゲート電極、304・・・ドレイ
ン電極。
FIG. 1(a) shows a semiconductor fi according to a first embodiment of the present invention.
! A schematic diagram of the i-layer structure. Figure (b) is a band diagram of the semiconductor laminated tN structure when no electric field is applied in the 'vt layer direction. Figure (c) is a band diagram when an electric field is applied in the lamination direction. FIG. 2 is a characteristic diagram showing the current/voltage characteristics between the upper and lower electrodes of this embodiment. FIG. 3 is a schematic cross-sectional view of a field effect transistor according to a second embodiment of the present invention, and FIG. 4 is a characteristic diagram showing current/voltage characteristics between the source and drain electrodes in the second embodiment. It is. 101--Si-doped n-type GaAs substrate, 102-
・・n-type GaSb buffer scrap, 103-5 n1IF
p-type GaSb layer of E, n-type I of 104.13nll thickness
nAs layer, 105...Multilayer structure, 106...n type G
aSb cladding layer, 107... Electrode, 108... Electron ground level, 109... Hole ground level, 301
... Semi-insulating GaAs substrate, 302... Source electrode, 303... Gate electrode, 304... Drain electrode.

Claims (1)

【特許請求の範囲】[Claims]  電子の平均自由行程程度以下の膜厚を有する第1及び
第2の半導体が交互に少なくとも1周期積層されてなり
、該第1の半導体の価電子帯上端のエネルギー値が第2
の半導体の伝導帯下端のエネルギー値より大きく、積層
方向に電界が印加されていない場合には該第1の半導体
中に形成されるホールの基底準位のエネルギー値が隣接
した第2の半導体中に形成される電子の基底準位のエネ
ルギー値より大きく、積層方向にアバランシェ効果が生
じない程度の電界が印加されている場合にはホールの基
底準位のエネルギー値が、電界方向に第1の半導体と隣
接する第2の半導体中の電子の基底準位のエネルギー値
より小さいことを特徴とする半導体積層構造。
First and second semiconductors having a film thickness equal to or less than the mean free path of electrons are alternately stacked for at least one period, and the energy value at the upper end of the valence band of the first semiconductor is the same as that of the second semiconductor.
is larger than the energy value of the lower end of the conduction band of the semiconductor, and when no electric field is applied in the stacking direction, the energy value of the ground level of the hole formed in the first semiconductor is greater than the energy value of the ground level of the hole formed in the first semiconductor. If an electric field is applied that is larger than the energy value of the ground level of electrons formed in the stacking direction and that does not cause an avalanche effect in the stacking direction, the energy value of the ground level of the hole becomes the first level in the direction of the electric field. A semiconductor stacked structure characterized in that the energy value is smaller than the energy value of the ground level of electrons in a second semiconductor adjacent to the semiconductor.
JP62107086A 1987-04-28 1987-04-28 Semiconductor laminated structure Expired - Lifetime JP2740166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62107086A JP2740166B2 (en) 1987-04-28 1987-04-28 Semiconductor laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107086A JP2740166B2 (en) 1987-04-28 1987-04-28 Semiconductor laminated structure

Publications (2)

Publication Number Publication Date
JPS63271977A true JPS63271977A (en) 1988-11-09
JP2740166B2 JP2740166B2 (en) 1998-04-15

Family

ID=14450117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107086A Expired - Lifetime JP2740166B2 (en) 1987-04-28 1987-04-28 Semiconductor laminated structure

Country Status (1)

Country Link
JP (1) JP2740166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741478A (en) * 2017-10-18 2020-01-31 汉阳大学校产学协力团 Layer, multi-stage element, method for manufacturing multi-stage element, and method for driving multi-stage element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741478A (en) * 2017-10-18 2020-01-31 汉阳大学校产学协力团 Layer, multi-stage element, method for manufacturing multi-stage element, and method for driving multi-stage element
CN110741478B (en) * 2017-10-18 2023-08-29 汉阳大学校产学协力团 Layer, multi-stage element manufacturing method, and method for driving multi-stage element

Also Published As

Publication number Publication date
JP2740166B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
JPH0435904B2 (en)
US4704622A (en) Negative transconductance device
JPH0354854B2 (en)
JPH084138B2 (en) Semiconductor device
JPH05211178A (en) Thin-film type field-effect transistor provided with adjusted energy band
US4851886A (en) Binary superlattice tunneling device and method
USRE33584E (en) High electron mobility single heterojunction semiconductor devices
JPH0312769B2 (en)
EP0136108B1 (en) Heterojunction semiconductor device
JPS63271977A (en) Semiconductor lamination structure
JPS61147577A (en) Complementary semiconductor device
JPH0654786B2 (en) Heterojunction semiconductor device
JP2546483B2 (en) Tunnel transistor and manufacturing method thereof
JPH098285A (en) Hetero-junction semiconductor device
JPH0239543A (en) Multilayer semiconductor device
JPH04277680A (en) Tunnel transistor and manufacture of the same
JPH06334175A (en) Tunnel transistor and manufacture thereof
JP3156252B2 (en) Field effect transistor
JP2513118B2 (en) Tunnel transistor and manufacturing method thereof
JP2658934B2 (en) Tunnel transistor
JPH0620142B2 (en) Semiconductor device
JPH0541355A (en) Modulation semiconductor material and semiconductor device using same
JPH01143264A (en) Field effect semiconductor element
Zhou Tunneling Field-Effect Transistors Based on Two-Dimensional Materials