JPS632714B2 - - Google Patents

Info

Publication number
JPS632714B2
JPS632714B2 JP19753183A JP19753183A JPS632714B2 JP S632714 B2 JPS632714 B2 JP S632714B2 JP 19753183 A JP19753183 A JP 19753183A JP 19753183 A JP19753183 A JP 19753183A JP S632714 B2 JPS632714 B2 JP S632714B2
Authority
JP
Japan
Prior art keywords
diameter
roll
welding
determining
overlapping width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19753183A
Other languages
Japanese (ja)
Other versions
JPS6092087A (en
Inventor
Moriaki Ono
Makoto Kabasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP19753183A priority Critical patent/JPS6092087A/en
Publication of JPS6092087A publication Critical patent/JPS6092087A/en
Publication of JPS632714B2 publication Critical patent/JPS632714B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、難溶接材例えばテンフリースチー
ルを使用した缶胴の電気抵抗シーム溶接に使用す
るシーム溶接用治具に関するものである。 近年、食品容器の製缶方式の多様化により、缶
の製造方法として電気抵抗シーム溶接法例えば銅
ワイヤ抵抗シーム溶接法が著しく発展してきてい
る。 銅ワイヤ抵抗シーム溶接法は第1図に示すよう
に、上下に配置された上下電極ローラ3にそれぞ
れ巻きつけられた銅ワイヤ電極2間を、予め成形
した缶胴板1の縦縁部をZ型ガイドバー4により
重ね合せつつ通過させ、その際銅ワイヤ電極2を
介した上下電極ローラ3によつて缶胴板1の重ね
合せ部を加圧、通電させて、重ね合せ部の電気抵
抗発熱により連続的に溶接を行なう方法である。 この溶接法に用いられる容器用鋼材は、容器用
鋼板に要求される耐食性、加工性、塗装性等の諸
性能に優れているとともに溶接性に優れているこ
とが要求される。 溶接部の品質はシーム溶接部の接合強度、気密
性及び外観性状により評価される。接合強度及び
気密性は内容物の漏洩にかかわる問題であり、こ
れらの特性を満足するためには接合界面で電気抵
抗発熱がある限界以上あることが必要である。こ
のことから溶接電流の最小電流が決定される。又
外観性状としてはバリが存在しないことが必要で
ある。通常、溶接後シーム溶接部を保護塗料で被
覆するが、バリが存在すると塗料塗布の障害とな
り、また塗料で被覆されない露出部分を生じ、さ
らにこのように缶胴を使用すると内容物がバリと
反応して変質するばかりでなく、バリが缶胴から
剥離して内容物内に混在するおそれがあるからで
ある。バリは溶融金属がシーム溶接部から飛散
し、シーム溶接部附近に付着したものであり、こ
れが存在しないためには、接合界面で電気抵抗発
熱がある限界以下であることが必要である。この
ことから溶接電流の最大値が決定される。 このシーム溶接部の品質を評価する接合強度、
気密性及び外観性状から決定される溶接電流の最
小値及び最大値を各々下限電流、上限電流と定義
すると、溶接電流は第2図に示すように、各評価
項目を同時に満足する電流域の存在が必要とな
る。この電流域を適正電流範囲と定義すると図か
ら明らかなように適正電流範囲は上限電流から下
限電流を差し引いた値が正の値の範囲である。こ
の適正電流範囲の広さは素材により異なる値を持
ち、容器用素材の溶接性はこの適正電流範囲の広
さによつて決定される。 溶接缶用素材としては従来のぶりき
(JISG3303)が主に用いられてきたが、近年溶接
缶用の新素材として従来のぶりきより錫付着量の
少ないLTS(特開昭53−23833号公報)及びNiめ
つきした鋼板(特公昭57−61829号公報)等が提
案されている。また缶用素材のうちクロムタイプ
のテインフリースチールは溶接が極めて困難とい
われており、あまり使用されていない。(参考文
献鉄と鋼、vol68No.12(1982)S1170)。 これらの素材を電気抵抗シーム溶接法の対象と
した場合に、従来のぶりき及びLTSの一部は適
正電流範囲が広く、溶接性は極めて良好である。
しかしLTSの一部、Niめつき鋼板及びテインフ
リースチールは従来のぶりきと比較して適性電流
範囲が狭く、溶接性が劣る。 テインフリースチールはバリを発生し易く、バ
リの生成を抑えるために溶接電流を小とすると接
合強度、気密性が十分でなくなる。 そこで従来は、重ね合せ部となるべきブランク
端縁部の表面被覆をワイヤブラシ等の機械的手段
によつて予め鉄面をほぼ全面露出させた後に電気
抵抗シーム溶接を行つていた。しかし、これらの
機械的手段では作業工程が一工程増え、さらに削
り除去した微粉が鋼板表面から完全に排除されず
再付着して、以後の工程に種々不都合を生じさせ
る。又表面被覆除去後の鉄露出面は耐食性がな
く、外観を損ねる等の欠点を有している。このた
めテインフリースチールは未だに食品缶詰の缶に
は使用されていないのが現状である。 この発明の発明者は例えばテインフリースチー
ルのような難溶接材の溶接性の向上を検討するに
あたり、テインフリースチールの溶接現象の解明
を行なつた結果以下のことが明らかになつた。 テインフリースチールの表面被覆は上層の水和
酸化クロムが電気的絶縁物であり、下層の金属ク
ロムが極めて硬いという特性を有しているため、
電極の加圧による水和酸化クロムの破壊が不十分
となり、溶接時に電流は局部的かつ不均一に流れ
ることになる。したがつて比較的低い電流値で局
部的に溶融金属が形成される。しかしながら高温
軟化領域が十分かつ広範囲に形成されておらず、
塑性流動による形状的な溶融金属の閉じ込め効果
が弱いため容易に溶融金属が飛散してバリを形成
してしまう。しかし接合強度、気密性は局部的接
合によつても比較的容易に得られることが明らか
となつた。 また、この発明の出願人は特願昭56−175732号
においてテインフリースチールの溶接の手段とし
て発熱を均一化するために脈流電源の使用が効果
的なことを提案した。さらに特願昭58−103866号
においては、前述溶接現象解明の結果、難溶接材
の溶接性向上策として溶融金属の飛散を抑制する
力を増大させることが有効な手段であると考案
し、シーム溶接部形状とくに重ね合せ幅の適正値
が、材料板厚の2.0倍を超え2.4倍未満であること
を見出し、この適正値を用いることにより溶接性
が著しく向上することを明らかにした。 ここで重ね合せ幅は第3図に示すように断面形
状がZ形をしたZ形ガイドバー4のガイド溝へ缶
胴板1の縦縁部を挿入することにより重ね合せ幅
が設定される。さらに缶胴がZ形ガイドバー4の
ガイド溝から進出後、上下電極ローラ間の溶接個
所で溶接時に生じる重ね合せ幅が小さくなるよう
な拡開効果を防止し、かつ缶高方向に沿つて一定
の重ね合せ幅を保障する目的で第4図に示したよ
うに上部電極ローラ5及び下部電極ローラ6の一
方の前後周囲に設置した缶胴直径ロール7によつ
て最終的に重ね合せ幅が決定される。 テインフリースチールの溶接性を向上させるた
めには上記缶胴直径ロール7の設定が極めて重要
であるが、缶胴直径ロール7は例えば特開昭57−
175087号公報で開示されているように、複数列か
らなる環状に配した複数のロールは全て個別に調
整するような構造となつており、かつ本体の弾性
変形を考慮できる程度の精密な調整ができる構造
となつていないため、従来は缶胴直径ロール7の
設定を十分に定量的に管理できなかつた。 この発明は、上述の欠点を解決して例えばテイ
ンフリースチールのような電気抵抗シーム溶接困
難な食品容器用素材を何等特別の前処理を行なう
ことなく、容易に溶接可能とした電気抵抗シーム
溶接用治具を提供することを目的とするものであ
る。 この発明のシーム溶接用治具は、錫より硬い金
属あるいは合金をめつきした鋼板を用いて缶体の
シーム溶接を行なう際に、シーム溶接部の重ね合
せ幅を決定する缶胴直径決定用ロールに内接する
円の直径を測定し、調整するために用いる治具で
あり、缶胴直径決定用ロールより十分剛性の低い
板厚、幅からなり、かつスリツトを有する円環状
に形成されたものであり、スリツトの幅を測定す
ることにより缶胴直径決定用ロールの内径を測定
するものである。 この発明を実施例に基いて説明する。 第5図に、この発明の一実施例の断面図を示
す。図において8は一定幅Lのスリツトを有する
円環状の治具であり、缶胴直径決定用ロールの剛
性に対して、十分無視できる程度に低い剛性にな
るように肉厚を定めたものである。9はスリツト
内に装着したクリツプゲージあるいはクリツプゲ
ージに相当する変位計であり、ゲージ9によりス
リツト幅Lを測定することにより、治具8の直径
を定量的に把握できる。 缶胴直径決定用ロールの内径は、この治具8を
挿入することにより容易に求められる。すなわち
治具8の剛性が缶胴直径決定用ロールの剛性より
十分低く押えてあるため、缶胴直径決定用ロール
の内径は缶胴外径と一致する。したがつて缶胴直
径決定用ロールの内径を管理することによつて、
缶胴直径の管理が可能となる。ここで缶胴直径と
は、缶胴の中心を通り缶板厚の中心を結ぶ長さと
する。 この缶胴直径を管理することにより重ね合せ幅
が制御可能となる。すなわち、一定幅l0の矩形板
を円胴成形し、その直径をDとした場合に、重ね
合せ幅lはl=(l0−πD)で表わされ、缶胴直径
の関数となるからである。 次に、この実施例で示した治具を用いて缶胴直
径決定ロールの内径を定量的に調整することによ
り重ね合せ幅を制御した実際の測定結果を示す。 最初にZ形ガイドバーの取換えを行なわず、Z
形ガイドバーにより設定される重ね合せ幅を0.45
mmと一定の下で、この実施例で示した治具により
缶胴直径決定用ロールの内径を変化させたときの
重ね合せ幅の変化を調べた。この実験に使用した
材料は板厚0.22mmで調質度T−4を原板としたテ
インフリースチール(金属クロム150mg/m2、水
和酸化クロム30mg/m2)で、缶高さ方向の長さ
140mm、缶胴直径方向の長さ206.1mmの矩形板を用
いて、銅ワイヤ抵抗シーム溶接法により、溶接速
度45/分、電極加圧力40Kgfと一定条件のもとで
実験を行なつた。この結果を第6図に示す。第6
図は缶胴直径と重ね合せ幅の関係を示したもので
ある。図において丸印は重ね合せ幅lの測定値を
示し、直線は、l=(206.1−πD)で表わされた
重ね合せ幅を示す。 図から明らかなように、Z形ガイドバーの取換
えを必要とせずに、この実施例で示した治具によ
つて重ね合せ幅の定量制御が有効に行なわれるこ
とが明らかになつた。 次にZ形ガイドバーを取換えて、Z形ガイドバ
ーにより決定される重ね合せ幅を変化させて、こ
の実施例に示した治具で缶胴直径決定用ロールの
内径を上下電極ローラ間通過後の缶胴重ね合せ幅
が0.5mmとなるように設定して溶接した場合の溶
接試験結果を第1表に示す。ここで使用した材料
は板厚0.22mmのテインフリースチールであり、溶
接条件は溶接速度45m/分、電極加圧力40Kgfで
ある。
The present invention relates to a seam welding jig used for electrical resistance seam welding of can bodies using difficult-to-weld materials such as ten-free steel. In recent years, with the diversification of food container manufacturing methods, electric resistance seam welding, such as copper wire resistance seam welding, has significantly developed as a method for manufacturing cans. As shown in Fig. 1, the copper wire resistance seam welding method involves welding the vertical edge of a pre-formed can body plate 1 between the copper wire electrodes 2 wound around the upper and lower electrode rollers 3 disposed above and below. The mold guide bar 4 allows the can body plates 1 to pass while being overlapped, and at this time, the overlapped portion of the can body plate 1 is pressurized and energized by the upper and lower electrode rollers 3 via the copper wire electrode 2 to generate electrical resistance heat generation at the overlapped portion. This method involves continuous welding. Steel materials for containers used in this welding method are required to have excellent properties such as corrosion resistance, workability, and paintability required of steel plates for containers, as well as excellent weldability. The quality of the weld is evaluated by the joint strength, airtightness, and appearance of the seam weld. Bonding strength and airtightness are issues related to leakage of contents, and in order to satisfy these characteristics, it is necessary that electrical resistance heat generation at the bonding interface exceeds a certain limit. From this, the minimum welding current is determined. In addition, it is necessary that there are no burrs in the appearance. Normally, the seam weld is coated with a protective paint after welding, but the presence of burrs can interfere with paint application, create exposed areas that are not coated with paint, and furthermore, when can bodies are used in this way, the contents can react with the burrs. This is because there is a risk that the burr may not only deteriorate and deteriorate, but also be separated from the can body and mixed into the contents. Flash is caused by molten metal scattering from the seam weld and adhering to the vicinity of the seam weld.In order for this to be absent, it is necessary that the electric resistance heat generation at the joint interface be below a certain limit. From this, the maximum value of the welding current is determined. The joint strength, which evaluates the quality of this seam weld,
If the minimum and maximum values of welding current determined from airtightness and appearance properties are defined as the lower limit current and upper limit current, respectively, then the welding current has a current range that simultaneously satisfies each evaluation item, as shown in Figure 2. Is required. If this current range is defined as the appropriate current range, as is clear from the figure, the appropriate current range is a range in which the value obtained by subtracting the lower limit current from the upper limit current is a positive value. The width of this appropriate current range has different values depending on the material, and the weldability of the container material is determined by the width of this appropriate current range. Conventional tinplate (JISG3303) has been mainly used as a material for welded cans, but in recent years, a new material for welded cans has been LTS (Japanese Unexamined Patent Publication No. 53-23833), which has a lower amount of tin adhesion than conventional tinplate. ) and Ni-plated steel plates (Japanese Patent Publication No. 57-61829) have been proposed. Also, among the materials for cans, chromium-type stain-free steel is said to be extremely difficult to weld, so it is not often used. (Reference Tetsu to Hagane, vol68No.12 (1982) S1170). When these materials are subjected to electric resistance seam welding, conventional tin and some LTS have a wide appropriate current range and have extremely good weldability.
However, some LTS, Ni-plated steel plates and stain-free steel have a narrower suitable current range and inferior weldability compared to conventional tin plated steel. Stain-free steel is prone to burrs, and if the welding current is reduced to suppress burr formation, the joint strength and airtightness will not be sufficient. Therefore, in the past, electric resistance seam welding was performed after the surface coating of the edge of the blank, which was to become the overlapping part, was exposed almost entirely on the iron surface using mechanical means such as a wire brush. However, with these mechanical means, the number of working steps increases by one step, and the fine powder removed by scraping is not completely removed from the surface of the steel plate and re-adheres, causing various inconveniences in subsequent steps. Furthermore, the exposed iron surface after the surface coating is removed has no corrosion resistance and has drawbacks such as spoiling the appearance. For this reason, tain-free steel is still not used in cans for food cans. The inventor of the present invention investigated the weldability of difficult-to-weld materials such as stain-free steel, and as a result of elucidating the welding phenomenon of stain-free steel, the following was clarified. The surface coating of stain-free steel has the characteristics that the upper layer of hydrated chromium oxide is an electrical insulator, and the lower layer of metallic chromium is extremely hard.
The hydrated chromium oxide is not sufficiently destroyed by the pressurization of the electrode, and current flows locally and unevenly during welding. Therefore, molten metal is formed locally at relatively low current values. However, the high-temperature softening region is not formed sufficiently and widely;
Since the effect of confining the molten metal due to the shape of the plastic flow is weak, the molten metal easily scatters and forms burrs. However, it has become clear that bonding strength and airtightness can be obtained relatively easily by localized bonding. In addition, the applicant of the present invention proposed in Japanese Patent Application No. 175,732/1987 that the use of a pulsating current power source is effective for uniformizing heat generation as a means for welding stain-free steel. Furthermore, in Japanese Patent Application No. 58-103866, as a result of the above-mentioned clarification of the welding phenomenon, it was devised that increasing the force to suppress the scattering of molten metal is an effective means to improve the weldability of difficult-to-weld materials. It was found that the appropriate value for the weld shape, especially the overlapping width, is more than 2.0 times and less than 2.4 times the material plate thickness, and it was revealed that weldability can be significantly improved by using this appropriate value. Here, the overlapping width is set by inserting the vertical edge of the can body plate 1 into the guide groove of the Z-shaped guide bar 4 having a Z-shaped cross section as shown in FIG. Furthermore, after the can body advances from the guide groove of the Z-shaped guide bar 4, it prevents the expansion effect that occurs during welding, such as reducing the overlapping width at the welding location between the upper and lower electrode rollers, and maintains a constant width along the can height direction. In order to ensure the overlapping width, the overlapping width is finally determined by can body diameter rolls 7 installed around the front and back of one of the upper electrode roller 5 and the lower electrode roller 6, as shown in FIG. be done. In order to improve the weldability of stain-free steel, the setting of the can body diameter roll 7 is extremely important.
As disclosed in Publication No. 175087, a plurality of rolls arranged in a ring consisting of a plurality of rows have a structure in which they can all be adjusted individually, and the adjustment is precise enough to take into account the elastic deformation of the main body. Conventionally, the setting of the can body diameter roll 7 could not be managed quantitatively. The present invention solves the above-mentioned drawbacks and makes it possible to easily weld food container materials such as stain-free steel, which are difficult to weld with electric resistance seams, without any special pretreatment. The purpose is to provide a jig. The seam welding jig of the present invention provides a can body diameter determining roll for determining the overlapping width of seam welds when seam welding can bodies using steel plates plated with a metal or alloy harder than tin. It is a jig used to measure and adjust the diameter of the circle inscribed in the can body, and is made of a plate with a thickness and width that is sufficiently lower than the roll for determining the diameter of the can body, and is formed into an annular shape with a slit. By measuring the width of the slit, the inner diameter of the roll for determining the diameter of the can body is measured. This invention will be explained based on examples. FIG. 5 shows a sectional view of an embodiment of the present invention. In the figure, 8 is an annular jig having a slit with a constant width L, and its wall thickness is determined so that the rigidity is sufficiently low to be ignored compared to the rigidity of the roll for determining the can body diameter. . Reference numeral 9 denotes a clip gauge or a displacement meter equivalent to a clip gauge installed in the slit, and by measuring the slit width L with the gauge 9, the diameter of the jig 8 can be quantitatively determined. The inner diameter of the roll for determining the can body diameter can be easily determined by inserting this jig 8. That is, since the rigidity of the jig 8 is kept sufficiently lower than the rigidity of the roll for determining the can body diameter, the inner diameter of the roll for determining the can body diameter matches the outer diameter of the can body. Therefore, by controlling the inner diameter of the roll for determining the can body diameter,
It becomes possible to control the diameter of the can body. Here, the can body diameter is defined as the length that passes through the center of the can body and connects the center of the can plate thickness. By managing this can body diameter, the overlapping width can be controlled. In other words, if a rectangular plate with a constant width l 0 is formed into a cylinder and its diameter is D, the overlapping width l is expressed as l = (l 0 - πD), which is a function of the can body diameter. It is. Next, actual measurement results will be shown in which the overlapping width was controlled by quantitatively adjusting the inner diameter of the can body diameter determining roll using the jig shown in this example. Without replacing the Z type guide bar first,
The overlap width set by the shape guide bar is 0.45
Using the jig shown in this example, changes in the overlapping width were investigated when the inner diameter of the roll for determining the can body diameter was changed at a constant value of mm. The material used in this experiment was stain-free steel (metallic chromium 150 mg/m 2 , hydrated chromium oxide 30 mg/m 2 ) with a plate thickness of 0.22 mm and annealing degree T-4. difference
Using a rectangular plate 140 mm long and 206.1 mm long in the diametrical direction of the can body, an experiment was conducted using a copper wire resistance seam welding method under constant conditions of a welding speed of 45/min and an electrode pressure of 40 Kgf. The results are shown in FIG. 6th
The figure shows the relationship between can body diameter and overlapping width. In the figure, the circles indicate the measured value of the overlapping width l, and the straight lines indicate the overlapping width expressed as l=(206.1−πD). As is clear from the figure, it has become clear that the overlapping width can be effectively quantitatively controlled by the jig shown in this example without requiring replacement of the Z-shaped guide bar. Next, replace the Z-shaped guide bar, change the overlapping width determined by the Z-shaped guide bar, and use the jig shown in this example to pass the inner diameter of the roll for determining the can body diameter between the upper and lower electrode rollers. Table 1 shows the welding test results when welding was performed with the overlapping width of the can bodies set to be 0.5 mm. The material used here was stain-free steel with a plate thickness of 0.22 mm, and the welding conditions were a welding speed of 45 m/min and an electrode pressure of 40 Kgf.

【表】 第1表においてl1はZ形ガイドバーによつて決
定される重ね合せ幅、l2は缶胴直径決定用ロール
により決定される重ね合せ幅、tは材料板厚を示
し、l1/t及びl2/tはそれぞれ重ね合せ幅と材
料板厚との比を示す。 表から明らかなように、、銅ワイヤ抵抗シーム
溶接法において上下電極ローラの手前に設置した
Z形ガイドバーにより決定される重ね合せ幅に依
らず、缶胴直径決定用ロールの内径を、この実施
例に示した治具により管理することにより重ね合
せ幅を適正値に管理することができ、十分広い適
正電流範囲で溶接を行なうことができる。 以上述べたように、この発明のシーム溶接用治
具を用いることにより、従来より調整困難であつ
た缶胴直径決定用ロールの内径を容易にかつ定量
的に調整することができ、このため缶胴直径すな
わち重ね合せ幅の管理をZ形ガイドバーの取換を
必要とせず容易に行なうことができる。さらに、
これにより例えばテインフリースチールのように
従来溶接困難であつた材料の溶接の管理も容易と
なり、従来溶接缶として食品容器に使用されなか
つた素材も溶接缶に使用が可能となつた。
[Table] In Table 1, l 1 is the overlapping width determined by the Z-shaped guide bar, l 2 is the overlapping width determined by the roll for determining the can body diameter, t is the material plate thickness, and l 1 /t and l 2 /t each indicate the ratio of the overlapping width to the material plate thickness. As is clear from the table, regardless of the overlapping width determined by the Z-shaped guide bar installed in front of the upper and lower electrode rollers in the copper wire resistance seam welding method, the inner diameter of the roll for determining the can body diameter is determined by this method. By controlling with the jig shown in the example, the overlapping width can be controlled to an appropriate value, and welding can be performed in a sufficiently wide appropriate current range. As described above, by using the seam welding jig of the present invention, it is possible to easily and quantitatively adjust the inner diameter of the roll for determining the can body diameter, which has been difficult to adjust in the past. The trunk diameter, that is, the overlapping width can be easily managed without the need to replace the Z-shaped guide bar. moreover,
This has made it easier to manage the welding of materials that were difficult to weld in the past, such as stain-free steel, and it has become possible to use materials for welded cans that were not conventionally used for food containers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は銅ワイヤ抵抗システム溶接法の構成
図、第2図はシーム溶接部の品質評価図、第3図
は第1図の銅ワイヤ抵抗シーム溶接法のZ形ガイ
ドバーの概略構成図、第4図は缶胴直径決定用ロ
ールの概略構成図、第5図はこの発明実施例の構
成図、第6図は缶胴直径と重ね合せ幅の関係を示
した特性図である。 1……缶胴板、2……銅ワイヤ、3……上下電
極ローラ、4……Z形ガイドバー、5……上部電
極ローラ、6……下部電極ローラ、7……缶胴直
径決定用ロール、8……シーム溶接用治具、9…
…クリツプゲージ。
Fig. 1 is a block diagram of the copper wire resistance system welding method, Fig. 2 is a quality evaluation diagram of the seam weld, and Fig. 3 is a schematic block diagram of the Z-shaped guide bar of the copper wire resistance seam welding method of Fig. 1. FIG. 4 is a schematic block diagram of a roll for determining the can body diameter, FIG. 5 is a block diagram of an embodiment of the present invention, and FIG. 6 is a characteristic diagram showing the relationship between the can body diameter and the overlapping width. 1... Can body plate, 2... Copper wire, 3... Upper and lower electrode rollers, 4... Z-shaped guide bar, 5... Upper electrode roller, 6... Lower electrode roller, 7... For determining can body diameter Roll, 8... Seam welding jig, 9...
...Clip gauge.

Claims (1)

【特許請求の範囲】[Claims] 1 錫よりも硬い金属あるいは合金をめつきした
鋼板を用いて缶体のシーム溶接を行なう際に、シ
ーム溶接部の重ね合せ幅を決定する缶胴直径決定
用ロールを用いた電気抵抗シーム溶接において、
前記缶胴直径決定用ロールに内接する円の直径を
測定し、調整するために使用する前記缶胴直径決
定用ロールより十分剛性の低い板厚、幅からな
り、かつスリツトを有する円環状に形成されたシ
ーム溶接用治具。
1. When performing seam welding of can bodies using steel plates plated with a metal or alloy harder than tin, electric resistance seam welding using a roll for determining the can body diameter, which determines the overlapping width of the seam weld. ,
The roll is formed into an annular shape having a thickness and width sufficiently lower than that of the roll for determining the diameter of the can body used for measuring and adjusting the diameter of the circle inscribed in the roll for determining the diameter of the can body, and having a slit. jig for seam welding.
JP19753183A 1983-10-24 1983-10-24 Jig for seam welding Granted JPS6092087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19753183A JPS6092087A (en) 1983-10-24 1983-10-24 Jig for seam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19753183A JPS6092087A (en) 1983-10-24 1983-10-24 Jig for seam welding

Publications (2)

Publication Number Publication Date
JPS6092087A JPS6092087A (en) 1985-05-23
JPS632714B2 true JPS632714B2 (en) 1988-01-20

Family

ID=16376013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19753183A Granted JPS6092087A (en) 1983-10-24 1983-10-24 Jig for seam welding

Country Status (1)

Country Link
JP (1) JPS6092087A (en)

Also Published As

Publication number Publication date
JPS6092087A (en) 1985-05-23

Similar Documents

Publication Publication Date Title
EP3272451B1 (en) Resistance spot welding method and method of manufacturing resistance spot welded joint
EP3391988B1 (en) Resistance spot welding methods and method of manufacturing welded member using such method
EP0688625B1 (en) Projection resistance welding method
EP3756814B1 (en) Resistance spot welding method and weld member production method
EP0038646A1 (en) Method of manufacturing a welded can body
CA1251692A (en) Method of making a welded can body
JPS632714B2 (en)
US5064982A (en) Electric resistance seam welding method
JPS59229290A (en) Electric resistance seam welding method
JP3212136B2 (en) Can body having a welding can body
US4886953A (en) Electrode wire for a roller seam welding machine
JPH11188485A (en) Manufacture of welding can body
JPS6092088A (en) Electric resistance seam welding method
JP3153001B2 (en) Can body having a welding can body
JPS6321599B2 (en)
JPH01104480A (en) Manufacture of welded can barrel
JPS61289932A (en) Laser welding can shell body
JPH01154895A (en) Seamless flux cored wire for arc welding and its manufacture
JP2000234183A (en) Steel sheet for film laminated welded can
UA127289C2 (en) METHOD OF SOLDERING WITH A TAPE ELECTRODE
JPH067948A (en) Manufacture of can shell
JPH0647175B2 (en) Multi-electrode sub arc welding method
Neumann Spot welding steel sheets with different types of metallic coating
JPS617079A (en) Production of welded can body
JPH0280176A (en) Manufacture of welded can shell body