JPS6327135B2 - - Google Patents

Info

Publication number
JPS6327135B2
JPS6327135B2 JP54063132A JP6313279A JPS6327135B2 JP S6327135 B2 JPS6327135 B2 JP S6327135B2 JP 54063132 A JP54063132 A JP 54063132A JP 6313279 A JP6313279 A JP 6313279A JP S6327135 B2 JPS6327135 B2 JP S6327135B2
Authority
JP
Japan
Prior art keywords
transfer mechanism
inchworm
telescopic
contraction
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54063132A
Other languages
Japanese (ja)
Other versions
JPS55157451A (en
Inventor
Takuma Nakamura
Kazumi Sugizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP6313279A priority Critical patent/JPS55157451A/en
Publication of JPS55157451A publication Critical patent/JPS55157451A/en
Publication of JPS6327135B2 publication Critical patent/JPS6327135B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Jigs For Machine Tools (AREA)

Description

【発明の詳細な説明】 本発明は位置決め装置に関する。従来精密位置
決めに使用する移送機構として数十オングストロ
ームの微小移動が可能でかつ数十ミリメートルの
ストロークがとれる尺取虫型移送機構がある。こ
の尺取虫型移送機構には圧電式,磁歪式等があ
り、次に圧電式を例にとつてその動作を説明す
る。第1図aに於て、中空円筒形のクランプ圧電
素子1に電圧を印加しない状態にしておけばクラ
ンプ圧電素子1は固定端5に接触しており、中空
円筒形のクランプ圧電素子3に電圧500Vを印加
すればクランプ圧電素子3は円筒の半径方向に収
縮して移動棒4をつかんでいる。この状態で中空
円筒形の伸縮圧電素子2に電圧を印加すれば長さ
方向に伸びそれに応じて移動棒4は固定部7に対
して移動する。移動量は伸縮圧電素子2への印加
電圧に比例し、例えば2Vずつ増加する階段状電
圧を印加すれば約60Åずつ移動して行く。ステツ
プ電圧を2Vよりもつと小さくすれば60Åよりさ
らに小さいステツプで移動することが可能であ
る。伸縮圧電素子2への印加電圧が許容最高電圧
例えば500Vに達した後さらに同方向に移動する
ときにはまずクランプ圧電素子1に電圧500Vを
印加し、クランプ圧電素子3への電圧印加を停止
する。すると第1図bに示すようにクランプ圧電
素子1が円筒の半径方向に収縮して移動棒4をつ
かみ、クランプ圧電素子3が固定端6と接触した
状態になる。この状態で伸縮圧電素子2への印加
電圧を500Vから例えば2Vずつ減小すれば伸縮圧
電素子2は円筒の長さ方向に収縮して移動棒4は
従来と同じ方向へ約60Åずつ移動し続ける。伸縮
圧電素子2への印加電圧が0Vに達した後さらに
同方向に移動するときはクランプ圧電素子1及び
3のつかみ変えを行い、伸縮圧電素子2への印加
電圧を2Vずつ増加して行けば良い。また移動方
向を反転するときはクランプ圧電素子1,3への
電圧印加はそのままにして伸縮圧電素子2への階
段状印加電圧が減小中であれば増加させ、増加中
であれば減小させれば良い。この様な圧電式尺取
虫型移送機構を使用すればオングストローム程度
の微小移動が可能でかつ数十ミリメートルのスト
ロークがとれるので精密な位置決めが可能であ
る。ところが実際にはクランプ圧電素子1,3の
状態を固定して伸縮圧電素子2が伸縮している間
は移動棒4は第2図の21部の様になめらかに移
動しているが伸縮圧電素子2への印加電圧が0V
または500Vに達してクランプ圧電素子1,3の
つかみ変えをするときは第2図の22,23部の
様になめらかな移動ができないで3000Å程度の飛
躍が生じてしまう。そのためこの様な機構を用い
て位置決めを行なう際に第3図aに示す様に目標
とする位置が伸縮圧電素子2の伸縮の中心付近
(第2図の21部)と一致すれば方向反転しても
問題ないが、第3図bに示す様に目標とする位置
が伸縮圧電素子2の伸縮の端部付近(第2図の2
2,23部)と一致し、この付近でクランプ圧電
素子1,3をつかみ変える必要があるときは方向
反転しても飛躍が生じて位置決めができないゾー
ン(以下デツドゾーンと呼ぶ)が生じてしまう。
このため位置決めの精度はこの3000Å程度のデツ
ドゾーンの大きさで決定されてしまい、伸縮圧電
素子2の本来の分解能例えば60Å/2Vが充分に
生かされないという欠点が生じる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positioning device. Conventionally, as a transfer mechanism used for precision positioning, there is an inchworm type transfer mechanism that is capable of minute movement of several tens of angstroms and can take a stroke of several tens of millimeters. There are piezoelectric type, magnetostrictive type, etc., types of this inchworm type transfer mechanism.Next, the operation of the piezoelectric type will be explained using the piezoelectric type as an example. In FIG. 1a, if no voltage is applied to the hollow cylindrical clamp piezoelectric element 1, the clamp piezoelectric element 1 will be in contact with the fixed end 5, and the hollow cylindrical clamp piezoelectric element 3 will be in contact with the fixed end 5. When 500V is applied, the clamp piezoelectric element 3 contracts in the radial direction of the cylinder and grips the moving rod 4. If a voltage is applied to the hollow cylindrical extensible piezoelectric element 2 in this state, it will extend in the length direction and the movable rod 4 will move relative to the fixed part 7 accordingly. The amount of movement is proportional to the voltage applied to the elastic piezoelectric element 2, and for example, if a stepped voltage that increases by 2V is applied, the movement will be approximately 60 Å. If the step voltage is lower than 2V, it is possible to move in steps even smaller than 60 Å. When the voltage applied to the expandable piezoelectric element 2 reaches the maximum allowable voltage, for example 500V, and the movement is further in the same direction, a voltage of 500V is first applied to the clamp piezoelectric element 1, and then the voltage application to the clamp piezoelectric element 3 is stopped. Then, as shown in FIG. 1b, the clamp piezoelectric element 1 contracts in the radial direction of the cylinder and grips the movable rod 4, and the clamp piezoelectric element 3 comes into contact with the fixed end 6. In this state, if the voltage applied to the extensible piezoelectric element 2 is reduced from 500V by, for example, 2V, the extensible piezoelectric element 2 will contract in the length direction of the cylinder, and the moving rod 4 will continue to move in the same direction as before by approximately 60 Å. . After the voltage applied to the elastic piezoelectric element 2 reaches 0V, when moving further in the same direction, change the grips of the clamp piezoelectric elements 1 and 3, and increase the voltage applied to the elastic piezoelectric element 2 by 2V. good. Furthermore, when reversing the moving direction, the voltage applied to the clamp piezoelectric elements 1 and 3 is left as is, and if the stepped voltage applied to the elastic piezoelectric element 2 is decreasing, it is increased, and if it is increasing, it is decreased. That's fine. If such a piezoelectric inchworm-type transfer mechanism is used, minute movements on the order of angstroms can be made and strokes of several tens of millimeters can be achieved, so precise positioning is possible. However, in reality, while the clamp piezoelectric elements 1 and 3 are fixed and the telescoping piezoelectric element 2 is expanding and contracting, the movable rod 4 moves smoothly as shown in section 21 in Figure 2, but the telescoping piezoelectric element The voltage applied to 2 is 0V
Or, when the voltage reaches 500V and the clamping piezoelectric elements 1 and 3 are changed, smooth movement cannot be made as shown in parts 22 and 23 of Fig. 2, and a jump of about 3000 Å occurs. Therefore, when performing positioning using such a mechanism, if the target position coincides with the vicinity of the center of expansion and contraction of the expandable piezoelectric element 2 (section 21 in Figure 2) as shown in Figure 3a, the direction will be reversed. However, as shown in Fig. 3b, the target position is near the expansible end of the extensible piezoelectric element 2 (2 in Fig. 2).
2 and 23), and when it is necessary to grasp and change the clamp piezoelectric elements 1 and 3 in this vicinity, a zone (hereinafter referred to as a dead zone) is created in which a jump occurs even if the direction is reversed and positioning is impossible.
Therefore, the positioning accuracy is determined by the size of this dead zone of about 3000 Å, resulting in the disadvantage that the original resolution of the extensible piezoelectric element 2, for example 60 Å/2V, is not fully utilized.

本発明は上記欠点を改良し、位置決めを行なう
際に目標とする位置が伸縮圧電素子の伸縮の端部
付近と一致することを避けて伸縮の中央部付近と
一致する様に工夫して高精度の位置決めを可能と
する装置を提供するものである。
The present invention improves the above-mentioned drawbacks, and achieves high accuracy by devising a way to avoid matching the target position with the end portion of the telescopic piezoelectric element when performing positioning, and to match the target position with the central portion of the telescopic piezoelectric element. The present invention provides a device that enables positioning.

本発明の一実施例を図を使つて説明する。第4
図は従来の圧電式尺取虫型移送機構41の移動棒
4の先端に新たにもうひとつの圧電式伸縮型移送
機構42を直結した複合移送機構を示している。
この圧電式伸縮型移送機構42は圧電式尺取虫型
移送機構41の様な複雑な機構である必要はな
く、例えば第1図の伸縮圧電素子2と同一の円筒
形圧電素子で0〜500Vの電圧を印加すれば円筒
の長さ方向に0〜1.5μm程度伸びるものとする。
この複合移送機構を使つた精密位置決め装置のブ
ロツク図を第5図に示す。圧電式尺取虫型移送機
構41と圧電式伸縮型移送機構42とを直結した
複合移送機構で位置決めすべきステージ53を駆
動するものとする。そのステージの位置をレーザ
測長機,静電容量式変位計測機等の位置検出部5
4で検出し、制御手段としてのコンピユータ55
へ入力して、その出力で尺取虫制御部51及び伸
縮制御部52を介してそれぞれ圧電式尺取虫型移
送機構41と圧電式伸縮型移送機構42を駆動す
るシステムになつている。このように構成された
ものに於て、まず圧電式伸縮型移送機構42には
電圧を印加しない状態にしておいて圧電式尺取虫
型移送機構41を駆動して位置決め動作を開始す
る。具体的には伸縮圧電素子2へ0〜500Vを248
等分した約2Vずつ増減する階段波形電圧を印加
するものとして常時その階段の何段目(この値は
1〜248の整数値をとり、階段電圧の位相Pと呼
ぶことにする)にいるかを尺取虫制御部51から
コンピュータ55へ入力し、記憶しておく。ステ
ージ53の位置を位置検出部54で検出し、コン
ピュータ55へ入力してあらかじめ設定した目標
位置との距離を判断し、圧電式尺取虫型移送機構
41へフイードバツクしてステージ53の位置決
めを行なう。そして目標位置に近づいて1回目に
目標位置を通過したときに階段電圧の位相Pの値
を判定し、11≦P≦246であればすぐ方向反転し
ても第3図aに示す様に問題がないので圧電式尺
取虫型移送機構41のみで最後まで位置決めを行
なう。一方コンピユータで階段電圧の位相PがP
<11またはP>246の範囲で目標位置を通過した
と判断したときにはすぐ方向反転したのでは第3
図bに示す様にデツドゾーンを生じてしまうので
コンピユータから伸縮制御部52へ命令を出し、
圧電式伸縮型移送機構42へ例えば電圧250Vを
印加して約0.8μm伸長させる。するとステージが
その長さだけ変位するので圧電式尺取虫型移送機
構41の方向反転動作点が第6図のX0からX1
移動し、なめらかに動作できるので精密な位置決
めが可能となる。
An embodiment of the present invention will be described with reference to the drawings. Fourth
The figure shows a composite transfer mechanism in which another piezoelectric telescopic transfer mechanism 42 is directly connected to the tip of the moving rod 4 of the conventional piezoelectric inchworm transfer mechanism 41.
This piezoelectric telescopic transfer mechanism 42 does not need to be a complicated mechanism like the piezoelectric inchworm transfer mechanism 41; for example, it is a cylindrical piezoelectric element that is the same as the telescopic piezoelectric element 2 shown in FIG. If applied, the cylinder will extend by about 0 to 1.5 μm in the length direction.
A block diagram of a precision positioning device using this composite transfer mechanism is shown in FIG. It is assumed that the stage 53 to be positioned is driven by a composite transfer mechanism in which a piezoelectric inchworm type transfer mechanism 41 and a piezoelectric telescoping type transfer mechanism 42 are directly connected. The position detection unit 5 of a laser length measuring machine, capacitive displacement measuring machine, etc. detects the position of the stage.
4 and a computer 55 as a control means.
, and the output thereof drives the piezoelectric inchworm type transfer mechanism 41 and the piezoelectric type telescopic transfer mechanism 42, respectively, via the inchworm control unit 51 and expansion/contraction control unit 52. In this structure, first, no voltage is applied to the piezoelectric telescopic transfer mechanism 42, and the piezoelectric inchworm transfer mechanism 41 is driven to start positioning operation. Specifically, 248 0 to 500V is applied to the elastic piezoelectric element 2.
Assuming that a staircase waveform voltage that increases or decreases in equal steps of about 2V is applied, determine which step of the staircase you are at all times (this value takes an integer value from 1 to 248 and is called phase P of the staircase voltage). The information is input from the inchworm control unit 51 to the computer 55 and stored. The position of the stage 53 is detected by a position detector 54, inputted to a computer 55 to determine the distance from a preset target position, and fed back to the piezoelectric inchworm type transfer mechanism 41 to position the stage 53. Then, when approaching the target position and passing through the target position for the first time, the value of the phase P of the step voltage is determined. If 11≦P≦246, even if the direction is immediately reversed, a problem will occur as shown in Figure 3 a Since there is no piezoelectric inchworm type transfer mechanism 41, positioning is performed to the end. On the other hand, in the computer, the phase P of the step voltage is P
The third problem is that the direction was immediately reversed when it was determined that the target position had been passed within the range of <11 or P>246.
As shown in Figure b, a dead zone will occur, so the computer issues a command to the expansion/contraction control section 52.
For example, a voltage of 250 V is applied to the piezoelectric telescopic transfer mechanism 42 to extend it by about 0.8 μm. Then, since the stage is displaced by that length, the direction reversal operating point of the piezoelectric inchworm-type transfer mechanism 41 moves from X 0 to X 1 in FIG. 6, allowing smooth operation and precise positioning.

この様に尺取虫型移送機構の移動の不連続を避
けて常に不連続点と不連続点の中間のなめらかに
動作する部分を使つて位置決めを行なうことによ
つて圧電素子本来の有している移動分解能を生か
して精密な位置決めが達成できる。
In this way, by avoiding discontinuities in the movement of the inchworm-shaped transfer mechanism and always using the smoothly moving part between the discontinuity points for positioning, the movement inherent to the piezoelectric element can be avoided. Precise positioning can be achieved by taking advantage of the resolution.

上記実施例では不必要時には伸縮型移送機構の
伸縮圧電素子には電圧を印加しない状態に保つて
おいて、尺取虫型移送機構の動作点を動かす必要
が生じた時に伸縮型移送機構の電圧を印加してい
るが、逆に不必要時に電圧を印加しておいて必要
時に電圧印加を停止することも可能であり、これ
らは等価技術である。
In the above embodiment, no voltage is applied to the telescopic piezoelectric element of the telescopic transfer mechanism when unnecessary, and voltage is applied to the telescopic transfer mechanism when it becomes necessary to move the operating point of the inchworm-type transfer mechanism. However, it is also possible to apply a voltage when it is not needed and stop applying the voltage when it is needed; these are equivalent techniques.

また上記実施例では尺取虫型移送機構として圧
電式を説明しているがこの他にも磁歪式等が考え
られ、伸縮型移送機構も圧電式に限らず磁歪式等
でも良い。また磁歪式尺取虫型移送機構と圧電式
伸縮移送機構の組合せまたは圧電式尺取虫型移送
機構と磁歪式伸縮移送機構の組合せも可能であ
る。
Furthermore, in the above embodiments, a piezoelectric type is used as the inchworm-type transfer mechanism, but other types such as a magnetostrictive type are also possible, and the telescopic transfer mechanism is not limited to the piezoelectric type, but may also be a magnetostrictive type. Further, a combination of a magnetostrictive inchworm-type transfer mechanism and a piezoelectric telescopic transfer mechanism or a combination of a piezoelectric inchworm-type transfer mechanism and a magnetostrictive telescopic transfer mechanism is also possible.

また尺取虫型移送機構の伸縮圧電素子へ印加す
る階段波電圧のステツプ電圧は2Vで説明してい
るがこの値に限らずもつと小さくすればステツプ
移動量をもつと小さくできる。
Furthermore, although the step voltage of the staircase wave voltage applied to the expandable piezoelectric element of the inchworm type transfer mechanism is explained as 2V, it is not limited to this value, and can be made smaller by changing the step movement amount.

また、位置決めすべき物体はステージ53に限
らず、任意の被位置決め体であればよいことは明
らかである。
Furthermore, it is clear that the object to be positioned is not limited to the stage 53, but may be any object to be positioned.

以上のように、本発明は、位置決めの目標位置
が尺取虫型移送機構の伸縮素子を制御する電圧の
所定幅の端近くにあるときは伸縮型移送機構の伸
縮素子を伸長・収縮制御し、クランプ切替状態を
避けて位置決めするようにしたので、伸縮素子が
本来有している分解能の精度で位置決めをするこ
とができる。
As described above, the present invention controls the expansion and contraction of the telescopic element of the inchworm type transfer mechanism when the target position for positioning is near the end of the predetermined width of the voltage that controls the telescopic element of the inchworm type transfer mechanism, and clamps the telescopic element of the inchworm type transfer mechanism. Since the positioning is performed while avoiding the switching state, the positioning can be performed with the accuracy of the resolution originally possessed by the expandable element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は尺取虫型移送機構の動作原理図、第2
図は尺取虫型移送機構の移動棒先端の軌跡を示す
図、第3図は尺取虫型移送機構で位置決めを行な
つたときの軌跡を示す図、第4図は本発明の一実
施例による複合移送機構を示す図、第5図は第4
図の複合移送機構を使つた精密位置決め装置のブ
ロツク図、第6図は複合移送機構を使つた位置決
めの軌跡である。 1…クランプ圧電素子、2…伸縮圧電素子、3
…クランプ圧電素子、4…移動棒、5…固定端、
6…固定端、7…固定部、21…滑らかに移動す
る部分、22,23…飛躍が生じる部分、41…
尺取虫型移送機構、42…伸縮型移送機構、51
…尺取虫制御部、52…伸縮制御部、53…ステ
ージ、54…位置検出部、55…コンピユータ。
尚、各図中同一符号は同一または相当部分を示
す。
Figure 1 is a diagram of the operating principle of the inchworm type transfer mechanism, Figure 2
The figure shows the trajectory of the tip of the moving rod of the inchworm type transfer mechanism, Figure 3 shows the trajectory when positioning is performed with the inchworm type transfer mechanism, and Figure 4 shows the combined transfer according to an embodiment of the present invention. A diagram showing the mechanism, Figure 5 is the 4th
The figure shows a block diagram of a precision positioning device using a compound transfer mechanism, and FIG. 6 shows a locus of positioning using a compound transfer mechanism. 1...Clamp piezoelectric element, 2...Stretchable piezoelectric element, 3
... Clamp piezoelectric element, 4... Moving rod, 5... Fixed end,
6... Fixed end, 7... Fixed part, 21... Smoothly moving part, 22, 23... Part where jump occurs, 41...
Inchworm-type transfer mechanism, 42... telescopic transfer mechanism, 51
...inchworm control section, 52... expansion/contraction control section, 53... stage, 54... position detection section, 55... computer.
Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 被位置決め体を移動させる移動棒と、電圧の
印加によりこの移動棒の移動方向に伸縮制御され
る伸縮素子と、この伸縮素子の移動方向の両端部
を上記移動棒または固定部に相反的に切替クラン
プする一対のクランプ素子とを有する尺取虫型移
送機構、 上記移動棒に装着され、電圧により制御されて
移動棒の移動方向に伸縮する伸縮素子を有する伸
縮型移送機構、 上記被位置決め体の位置を検出する位置検出
部、 上記尺取虫型移送機構の伸縮素子に所定幅の上
昇電圧・下降電圧を印加してほぼ連続的に伸長・
収縮制御するとともに、上記所定幅の端で上記各
クランプ素子のクランプ状態を切替制御する尺取
虫制御部、 上記伸縮型移送機構の伸縮素子を伸長・収縮制
御する伸縮制御部、 上記尺取虫制御部から伸縮素子の制御量,上記
位置検出部から被位置決め体の位置をそれぞれ入
力し、その結果に基づいて上記尺取虫型移送機構
をフイードバツク制御して被位置決め体の位置決
め制御を行なうとともに、位置決めの目標位置が
上記尺取虫型移送機構の伸縮素子を制御する電圧
の所定幅の端近くにあるときは、上記尺取虫型移
送機構の動作を停止させ、上記伸縮制御部を制御
して上記伸縮型移送機構の伸縮素子を伸長・収縮
制御して被位置決め体の位置決め制御を行わせる
か、または上記尺取虫型移送機構を上記所定幅の
端から遠ざかるように収縮または伸長しかつこれ
にみあつた分だけ上記伸縮制御部を制御して上記
伸縮型移送機構の伸縮素子を伸長または収縮した
後、再び上記尺取虫型移送機構を制御して被位置
決め体の位置決め制御を行わせる制御手段を備え
た位置決め装置。
[Scope of Claims] 1. A movable rod for moving the object to be positioned, an extensible element whose expansion and contraction are controlled in the moving direction of the movable rod by application of a voltage, and both ends of the extensible element in the moving direction of the movable rod or the extensible element. an inchworm-type transfer mechanism having a pair of clamp elements that reciprocally switch and clamp the fixed part; a telescopic transfer mechanism having an elastic element attached to the movable rod and controlled by a voltage to expand and contract in the moving direction of the movable rod; a position detection unit that detects the position of the object to be positioned;
an inchworm control section that controls contraction and switches the clamping state of each of the clamp elements at the end of the predetermined width; an expansion control section that controls expansion and contraction of the expansion and contraction elements of the telescopic transfer mechanism; and an expansion and contraction control section that controls expansion and contraction from the inchworm control section. The control amount of the element and the position of the object to be positioned are inputted from the position detecting section, and based on the results, the inchworm type transfer mechanism is feedback-controlled to control the positioning of the object to be positioned, and the target position of the positioning is determined. When the voltage for controlling the telescopic element of the inchworm-type transfer mechanism is near the end of the predetermined width, the operation of the inchworm-type transfer mechanism is stopped, and the telescopic control unit is controlled to control the elastic element of the telescopic transfer mechanism. control the positioning of the object to be positioned by controlling the extension and contraction of the body, or contract or extend the inchworm-shaped transfer mechanism so as to move away from the end of the predetermined width, and adjust the expansion/contraction control section by the amount corresponding to this. A positioning device comprising a control means for controlling the extendable element of the telescopic transfer mechanism to extend or contract the telescopic element of the telescopic transfer mechanism, and then controlling the inchworm transfer mechanism again to control the positioning of the object to be positioned.
JP6313279A 1979-05-21 1979-05-21 Positioning device Granted JPS55157451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6313279A JPS55157451A (en) 1979-05-21 1979-05-21 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6313279A JPS55157451A (en) 1979-05-21 1979-05-21 Positioning device

Publications (2)

Publication Number Publication Date
JPS55157451A JPS55157451A (en) 1980-12-08
JPS6327135B2 true JPS6327135B2 (en) 1988-06-01

Family

ID=13220429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6313279A Granted JPS55157451A (en) 1979-05-21 1979-05-21 Positioning device

Country Status (1)

Country Link
JP (1) JPS55157451A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182433A (en) * 1984-09-29 1986-04-26 Toshiba Corp Finely moving mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172800A (en) * 1974-07-26 1976-06-23 Varian Techtron Pty Ltd KUDOKIKO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172800A (en) * 1974-07-26 1976-06-23 Varian Techtron Pty Ltd KUDOKIKO

Also Published As

Publication number Publication date
JPS55157451A (en) 1980-12-08

Similar Documents

Publication Publication Date Title
JP2721757B2 (en) Positioning control method and device
US4874979A (en) Electromechanical translation apparatus
JP2505192B2 (en) Zoom mechanism
JPH09247968A (en) Driven unit using electromechanical transducer
JPH06303782A (en) Driver
JPH05316757A (en) Moving mechanism
US7308747B2 (en) Method of positioning a platform relative to a fixed frame and a small scale positioning device
JPS6327135B2 (en)
JPH11356070A (en) Drive unit using electromechanical transducing element and driving circuit therefor
JPH11356071A (en) Drive unit using electromechanical transducing element and driving circuit therefor
JP2002017093A (en) Method and apparatus for controlling piezoelectric device
JPS6162110A (en) Transfer device for precision sample
JPH0230452A (en) Piezoelectric driving device
KR20180113197A (en) Method and apparatus for actuating electromechanical elements
US8575870B2 (en) Vibratory driving device
JP2002281771A (en) Drive mechanism using piezoelectric element
JP3971669B2 (en) Driving method of stage device
JPH02173484A (en) Piezoelectric actuator having position detecting function
JPH05131331A (en) Sliding guide device and table device employing the same sliding guide device
EP3886310A1 (en) Method of controlling at least two interacting piezoelectric actuators
JPH01202178A (en) Characteristic linearizing method for piezoelectric actuator
JPH07308083A (en) Traveling mechanism and its driving
JPS6162029A (en) Variable power driving control device
JPH02111273A (en) Drive for piezo-actuator
JPH07284281A (en) Actuator