JPS632702B2 - - Google Patents

Info

Publication number
JPS632702B2
JPS632702B2 JP54042569A JP4256979A JPS632702B2 JP S632702 B2 JPS632702 B2 JP S632702B2 JP 54042569 A JP54042569 A JP 54042569A JP 4256979 A JP4256979 A JP 4256979A JP S632702 B2 JPS632702 B2 JP S632702B2
Authority
JP
Japan
Prior art keywords
nozzle
molten metal
mold
tundish
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54042569A
Other languages
Japanese (ja)
Other versions
JPS55136550A (en
Inventor
Seishiro Yoshihara
Hirokichi Higashama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4256979A priority Critical patent/JPS55136550A/en
Publication of JPS55136550A publication Critical patent/JPS55136550A/en
Publication of JPS632702B2 publication Critical patent/JPS632702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は金属の連続鋳造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous metal casting method.

金属の連続鋳造法、例えば鋼の連続鋳造法は最
近急速に工業化されたが、従来の鋼塊法に比して
非金属介在物の浮上時間が短かく、非金属介在物
の含有量は従来の良好な鋼塊法に劣る場合が多か
つた。
Continuous casting methods for metals, such as continuous casting methods for steel, have recently been rapidly industrialized, but compared to the conventional steel ingot method, the floating time of nonmetallic inclusions is shorter, and the content of nonmetallic inclusions is lower than that of conventional methods. In many cases, it was inferior to the good steel ingot method.

従来の連続鋳造法において、非金属介在物を改
善する方法としては溶融金属を特殊処理する方
法、溶融金属の鋳型注入温度を高める方法、さら
には溶融金属の酸化を防止する方法が実施されて
いるが、これらの方法は高価であるか、あるいは
十分な効果が得られないかのいづれかであつた。
In conventional continuous casting methods, methods for improving non-metallic inclusions include special treatment of the molten metal, increasing the temperature at which the molten metal is poured into the mold, and methods of preventing oxidation of the molten metal. However, these methods were either expensive or not sufficiently effective.

本発明は金属を連続鋳造するに際し、非金属介
在物の少ない鋳片を製造すること、および凝固時
間を短くし鋳造能力を大きくすることを目的と
し、その特徴とするところは、溶融金属の連続鋳
造にあたり、タンデイツシユ・鋳型間で鋳型に連
通するノズル通過中の溶融金属を、該溶融金属の
流動性保持可能温度域、即ち凝固点近傍もしくは
凝固点以下で該凝固点に近接した温度域まで冷却
(急冷もしくは過冷)して鋳造することにある。
The purpose of the present invention is to produce slabs with fewer non-metallic inclusions and to shorten solidification time and increase casting capacity when continuously casting metal. During casting, the molten metal passing through a nozzle that communicates with the mold between the tundish and the mold is cooled (quenched or The method is to supercool the material and then cast it.

一般に、非金属介在物は耐火物が溶融金属中に
巻込まれた場合と、脱酸生成物に大別でき、鋼の
場合、特にキルド鋼の場合はアルミナ系とシリケ
ート系が主である。これらの非金属介在物のう
ち、融点が被鋳造金属のそれよりも高い場合に本
発明が実施でき、鋼の場合のアルミナ系介在物お
よびシリケート系介在物は本発明の対象となる。
In general, nonmetallic inclusions can be broadly classified into those when refractories are involved in molten metal, and those that are deoxidized products.In the case of steel, especially killed steel, they are mainly alumina-based and silicate-based. Among these nonmetallic inclusions, the present invention can be carried out when the melting point is higher than that of the metal to be cast, and the present invention applies to alumina-based inclusions and silicate-based inclusions in the case of steel.

本発明者等は本発明の完成に先立つて種々研究
を重ねた結果、従来溶融金属の注入ノズル保護、
つまり寿命延長に主眼をおいて採られてきた諸施
策に代わり、むしろ注入ノズル自体を非金属介在
物の過器として認識することで、上述の目的を
達成すべく溶融金属流路である注入ノズルを冷却
することで、間接的に溶融金属を冷却することを
着眼したのである。
As a result of various researches conducted by the present inventors prior to the completion of the present invention, the present inventors discovered that conventional molten metal injection nozzle protection,
In other words, instead of the measures that have been taken with the main focus on extending the life of the injection nozzle, the injection nozzle, which is a molten metal flow path, can be used to achieve the above purpose by recognizing the injection nozzle itself as a container for non-metallic inclusions. The idea was to indirectly cool the molten metal by cooling it.

以下、本発明の実施態様を示すと次の通りであ
る。
Embodiments of the present invention will be described below.

ノズルを長くする。従来設備をそのまま用い
る場合で、タンデイツシユと鋳型の間隔が固定
されている場合は、第1図に示す様にノズルを
蛇行あるいは彎曲させて長くし、冷却しやすく
する。
Make the nozzle longer. When using conventional equipment as is and the distance between the tundish and the mold is fixed, the nozzle is meandered or curved to make it longer as shown in Figure 1 to facilitate cooling.

因みに、第1図の1はタンデイツシユ、2は
ストツパー、3は本発明実施に供するノズルで
直管部下端に曲管部を形成するとともに、流路
の適宜部位に堰例えばトンネル堰4を設けてい
る。6は連続鋳造鋳型、7は強制冷却装置で、
例えば冷却フアンが用いられる。
Incidentally, in FIG. 1, 1 is a tundish, 2 is a stopper, and 3 is a nozzle for carrying out the present invention, which has a curved pipe part formed at the lower end of the straight pipe, and a weir, for example, a tunnel weir 4, is provided at an appropriate part of the flow path. There is. 6 is a continuous casting mold, 7 is a forced cooling device,
For example, a cooling fan is used.

ノズルの外部を強制空冷または水冷する。 Forced air or water cooling on the outside of the nozzle.

第2図に示すようにノズルを分岐し、注入金
属のノズル内面との接触面積を増大する。
As shown in FIG. 2, the nozzle is branched to increase the contact area of the implanted metal with the inner surface of the nozzle.

因みに第2図の1はタンデイツシユ、2はス
トツパー、3′はノズルの分岐管、5,5′はノ
ズルの分岐管3′の上・下部に設けた開閉弁
(以下バルブと称する)である。6は連続鋳造
鋳型である。
Incidentally, in FIG. 2, 1 is a tundish, 2 is a stopper, 3' is a branch pipe of the nozzle, and 5 and 5' are on-off valves (hereinafter referred to as valves) provided above and below the branch pipe 3' of the nozzle. 6 is a continuous casting mold.

取鍋内またはタンデイツシユ内の溶融金属の
温度を低下する。
Reduce the temperature of the molten metal in the ladle or tundish.

以上の何れかの方法によりノズル内の溶融金
属の温度を凝固点近傍まで低下すると、アルミ
キルド鋼の場合には、アルミナがノズル内に付
着し次第に成長して、ついにはノズルクロスと
なる。この場合には迅速に次のノズルと交換す
る。鋳型内に流入する溶鋼は、ノズル内で除去
された量だけアルミナが減少している。またシ
リコンキルド鋼の場合は、ノズル内にはシリケ
ート系介在物が主として付着しており、溶鋼中
の介在物はその分少なくなつている。
When the temperature of the molten metal in the nozzle is lowered to near the freezing point by any of the above methods, in the case of aluminum killed steel, alumina adheres to the inside of the nozzle and gradually grows, eventually forming a nozzle cloth. In this case, immediately replace the nozzle with the next nozzle. The molten steel flowing into the mold has alumina reduced by the amount removed in the nozzle. In the case of silicon-killed steel, silicate-based inclusions are mainly adhered inside the nozzle, and the number of inclusions in the molten steel is correspondingly reduced.

の場合のノズルの長さは、従来法より長くす
る。従来法ではノズル内での溶融金属の温度低下
を防ぎ、ノズルクロスを防ぐために短かく設計さ
れており、1mを超えることはなかつた。本発明
では鋳型に対してタンデイツシユ高さを1m以上
高くして、ノズル内の圧力を上昇せしめ、第1図
に示すように流速が遅くかつ非金属介在物が滞り
やすい様な背部例えばトンネル堰4を設けること
が望ましい。又ノズルは直管を用いることが出来
るが、この場合は凝固点近傍まで冷却するに十分
な長さと、流速が遅くなり、湯が淀み非金属介在
物がノズル壁へ付着するのを促進する様な拡大部
を途中に形成させることが望ましい。さらにの
方法により、ノズルの長さは短縮できる。
In this case, the length of the nozzle should be longer than that of the conventional method. In the conventional method, the nozzle was designed to be short in order to prevent the temperature of the molten metal from decreasing in the nozzle and to prevent nozzle crossing, and the length did not exceed 1 m. In the present invention, the height of the tundish is increased by 1 m or more relative to the mold to increase the pressure inside the nozzle, and as shown in FIG. It is desirable to provide In addition, a straight pipe can be used for the nozzle, but in this case, it must be long enough to cool the water to near the freezing point, and must be long enough to slow the flow rate so that the hot water stagnates and non-metallic inclusions adhere to the nozzle wall. It is desirable to form an enlarged part in the middle. A further method allows the length of the nozzle to be reduced.

の方法は、第2図に示す様にノズルを分岐す
るだけではなく、バルブ5,5′を開閉すること
によつて、ノズルクロスを生じたノズルは閉鎖
し、新しいノズルへ切替ることも出来る。
This method not only branches the nozzles as shown in Figure 2, but also closes the nozzle that has caused the nozzle cross and switches to a new nozzle by opening and closing valves 5 and 5'. .

また、ノズルクロスを生じたノズルは、バルブ
5,5′を閉じて、その間にノズルを新品と交換
することが出来る。
Further, in the case of a nozzle in which nozzle cross has occurred, the valves 5 and 5' can be closed, and the nozzle can be replaced with a new one during that time.

ノズルクロスを生じたノズルを迅速に交換する
装置例としては、第3図に示す様に、ノズル3″
の中間部にノズルクロスが生じやすい様な隘路8
と拡大部9を設け、周囲を空冷した複数箇のノズ
ルを円弧上に並べて、回転できるフレーム11上
に固定し、該回転フレーム上のノズルの上下端
は、それぞれタンデイツシユ側注入端12と鋳型
側注入端13に摺動着脱できる構造とする。さら
にノズル境界部のシールを完全に行なうため、回
転フレームに対しタンデイツシユ側ノズル端およ
び鋳型側ノズル端を押圧し、かつ、境界部近傍を
不活性気体で充満する。
As an example of a device for quickly replacing a nozzle that has caused a nozzle cross, as shown in Fig. 3, the nozzle 3''
bottleneck where nozzle cross is likely to occur in the middle part 8
A plurality of nozzles with air-cooled surroundings are arranged in a circular arc and fixed on a rotatable frame 11, and the upper and lower ends of the nozzles on the rotating frame are connected to the tundish side injection end 12 and the mold side, respectively. It has a structure that allows it to be slidably attached to and detached from the injection end 13. Furthermore, in order to completely seal the nozzle boundary, the tundish-side nozzle end and the mold-side nozzle end are pressed against the rotating frame, and the vicinity of the boundary is filled with inert gas.

本発明は上述したように構成し且つ用いること
により、非金属介在物の除去が行なわれ、該非金
属介在物の少ない鋳片が製造でき、凝固時間の短
縮から鋳造能力の向上につながるなど、品質とと
もに生産性の向上に寄与する効果が大きい。
By configuring and using the present invention as described above, non-metallic inclusions are removed, slabs with fewer non-metallic inclusions can be manufactured, and quality is improved by shortening solidification time and improving casting ability. At the same time, it has a large effect in contributing to improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施に供するノズル形態の
一装置例を示す図、第2図は、本発明の実施に供
するノズル形態の他の装置例を示す図、第3図
は、とくにノズル交換を容易にする本発明の実施
に供するノズル形態の一装置例を示す図。 1…タンデイツシユ、2…ストツパー、3,
3′,3″…ノズル、4…トンネル堰、5…弁、6
…鋳型、7…冷却フアン、8…ノズルの隘路、9
…ノズルの拡大部、10…冷却空気孔、11…回
転フレーム、12…タンデイツシユ側注入端、1
3…鋳型側注入端。
FIG. 1 is a diagram showing an example of a device in a nozzle form used for carrying out the present invention, FIG. 2 is a diagram showing another example of a device in a nozzle form used for carrying out the present invention, and FIG. The figure which shows the example of the apparatus of the nozzle form used for implementation of this invention which facilitates exchange. 1...Tandateshiyu, 2...Stopper, 3,
3', 3''...Nozzle, 4...Tunnel weir, 5...Valve, 6
... Mold, 7... Cooling fan, 8... Nozzle bottleneck, 9
...Enlarged part of nozzle, 10...Cooling air hole, 11...Rotating frame, 12...Tundish side injection end, 1
3... Mold side injection end.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属の連続鋳造にあたり、タンデイツシ
ユと鋳型間で鋳型に連通するノズル通過中の溶融
金属を、流動性保持可能温度域まで冷却して、該
溶融金属中の介在物を、該ノズル内に析出せしめ
て浄化するとともに、該ノズルをノズルクロスを
生じた時点で置換しつつ鋳造することを特徴とす
る連続鋳造法。
1. During continuous casting of molten metal, the molten metal passing through a nozzle communicating with the mold between the tundish and the mold is cooled to a temperature range that can maintain fluidity, and inclusions in the molten metal are precipitated in the nozzle. A continuous casting method characterized in that casting is performed while at least purifying the nozzle and replacing the nozzle at the time when nozzle cross occurs.
JP4256979A 1979-04-10 1979-04-10 Continuous casting method Granted JPS55136550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256979A JPS55136550A (en) 1979-04-10 1979-04-10 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256979A JPS55136550A (en) 1979-04-10 1979-04-10 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS55136550A JPS55136550A (en) 1980-10-24
JPS632702B2 true JPS632702B2 (en) 1988-01-20

Family

ID=12639686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256979A Granted JPS55136550A (en) 1979-04-10 1979-04-10 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS55136550A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4319966A1 (en) * 1993-06-17 1994-12-22 Didier Werke Ag Immersion spout

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148232A (en) * 1974-05-22 1975-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148232A (en) * 1974-05-22 1975-11-27

Also Published As

Publication number Publication date
JPS55136550A (en) 1980-10-24

Similar Documents

Publication Publication Date Title
US3519059A (en) Method of vacuum slag refining of metal in the course of continuous casting
US4715586A (en) Continuous caster tundish having wall dams
KR100432093B1 (en) Strip casting
US3771584A (en) Method for continuously casting steel billet strands to minimize the porosity and chemical segregation along the center line of the strand
JPS6099462A (en) Device for discharging molten metal
JPS632702B2 (en)
CN105682825A (en) Continuous casting method
JP3018960B2 (en) Continuous casting method and its straight immersion nozzle
US3153822A (en) Method and apparatus for casting molten metal
CN110756752B (en) Strip continuous casting flow distribution deslagging method
KR20090105371A (en) Shroud nozzle for continuous casting
USRE30979E (en) Method and apparatus for casting metals
CN104325103B (en) The molding casting method of steel band fed by a kind of crystallizer
CN215144656U (en) Casting ladle with good heat preservation effect
JP3546137B2 (en) Steel continuous casting method
CA1104323A (en) Method and apparatus for the continuous casting of steel slabs
JPH03118943A (en) Mold and method for continuously casting low and medium carbon steel
JPS6163342A (en) Method and device for producing hollow steel ingot
US7316338B2 (en) Device for discharging molten metal from a container
JPH08141703A (en) Production of ingot having shrinkage cavity in center part
CA1108373A (en) Method and apparatus for casting metals
KR100367453B1 (en) Continuous Casting Mold with Gate and Gas curtain for the Metal-Casting Process
KR200217173Y1 (en) Continuous Casting Mold with Gate and Gas curtain for the Metal-Casting Process
JPH0338017B2 (en)
SU1740123A1 (en) Method and apparatus for continuous ingot casting