JPS63268529A - Radial forging method for bar stock - Google Patents

Radial forging method for bar stock

Info

Publication number
JPS63268529A
JPS63268529A JP28384987A JP28384987A JPS63268529A JP S63268529 A JPS63268529 A JP S63268529A JP 28384987 A JP28384987 A JP 28384987A JP 28384987 A JP28384987 A JP 28384987A JP S63268529 A JPS63268529 A JP S63268529A
Authority
JP
Japan
Prior art keywords
forging
compression reduction
pass
octagonal cross
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28384987A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ochi
落 敏行
Osamu Tsuda
統 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28384987A priority Critical patent/JPS63268529A/en
Publication of JPS63268529A publication Critical patent/JPS63268529A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To improve the dimensional accuracy of a product and to prevent the generation of a flaw by forming a billet in a square or octagonal section of about symmetrical shape and after applying two pass compression reduction directly or in the diagonal direction executing four pass compression reduction in different directions. CONSTITUTION:At the final stage in radial forging, four pass compression reduction is performed by calculating the compression reduction amt. with a gradual deformation estimation method on the billet formed in about the upper and lower, right and left symmetrical square or octagonal section. The necessary regular octagonal section material is then formed by the four pass compression reduction having different direction to each other at about a fixed compression reduction amt. Or the four pass compression reduction in different direction is performed after applying the two pass compression reduction in the diagonal direction ion on the billet of the square or octagonal section shape in about symmetrical shape. Due to the compression reduction being executed by using a deformation estimation method, the dimensional accuracy of a product is improved and the generation of a product flaw can be prevented because of the four pass compression reduction indifferent direction being executed after executing the compression reduction in the diagonal direction of low compression reduction amt.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、任意の鋼塊から丸棒などを自由鍛造により成
形するに際し、最終の丸断面形状を成形するために必要
な正8角形断面材を得る方法、すなわち、棒材の鍛伸方
法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the regular octagonal cross-section required to form the final round cross-sectional shape when forming a round bar or the like from an arbitrary steel ingot by free forging. The present invention relates to a method for obtaining a bar material, that is, a method for forging and elongating a bar material.

(従来の技術) 自由鍛造により、棒材の鍛伸を行う場合、その初期素材
形状より、鍛造終了形状へ移る中間段階での素材断面形
状は、4角断面、および8角断面形状とするのが一般的
である(塑性と加工VoL、25no、279 (19
84−4)刊行物第265ページ〜第271ページ参照
)。
(Prior art) When forging and elongating a bar material by free forging, the cross-sectional shape of the material at an intermediate stage when the initial shape of the material changes to the finished shape of the forged material should be a square cross-section or an octagonal cross-section. is common (Plasticity and Processing VoL, 25no, 279 (19
84-4) Publication pages 265 to 271).

(発明が解決しようとする問題点) ところで、鍛伸工程が最終段階に近づ(に従い、寸法精
度を保証するために、圧下量は従来低く抑えられる傾向
にあり、このため鍛造打上時間が冗長になり、また8角
断面材の変形予測がなされていないために、寸法精度が
悪く、歩留り低下をもたらしていた。
(Problem to be solved by the invention) By the way, as the forging process approaches its final stage, the reduction amount has conventionally tended to be kept low in order to guarantee dimensional accuracy. Moreover, since the deformation of the octagonal cross-section material was not predicted, the dimensional accuracy was poor and the yield was reduced.

そこで本発明は、棒材の鍛伸加工において、素材断面形
状を正8角形に打上げる際の ■鍛造時間の短縮、■精
度の確保、および ■歩留りの向上 を同時に達成する
ことを第1の目的とするものである。
Therefore, the present invention aims to simultaneously achieve (1) shortening the forging time, (2) ensuring accuracy, and (2) improving yield when launching the material into a regular octagonal cross-sectional shape in the forging process of bar materials. This is the purpose.

更に、本発明は第1の目的を達成しつつ鍛造時のキズ発
生を防止することを第2の目的とするものである。
Furthermore, a second object of the present invention is to prevent the occurrence of scratches during forging while achieving the first object.

(問題点を解決するための手段) 本発明が前述の第1の目的を達成するために講じる技術
的手段の特徴とする処は、任意の鋼塊から正8角形の断
面材を鍛伸するに際し、鍛伸加工の最終段階において、
ほぼ上下左右対称形の4角断面または8角断面形状に成
形したのち、互いに方向を異にする4パスの圧下により
、あらかじめ与えられた寸法の正8角形断面材を成形す
る点にある。
(Means for Solving the Problems) The technical means taken by the present invention to achieve the above-mentioned first objective are characterized by forging and drawing a regular octagonal cross-sectional material from an arbitrary steel ingot. At the final stage of forging and stretching,
After forming into a substantially vertically symmetrical quadrangular or octagonal cross-sectional shape, a regular octagonal cross-sectional material with predetermined dimensions is formed by rolling in four passes in mutually different directions.

本発明は前述の第2の目的を達成するために講じた技術
的手段の特徴とする処は、任意の鋼塊から正8角形の断
面材を鍛伸するに際し、鍛伸加工の最終段階において、
ほぼ上下左右対称形の4角断面または8角断面形状に成
形したのち、4角断面形状においてはその対角方向、8
角断面形状においてはその長対辺方向に対し、互いに方
向を異にする2パスの圧下を加え、ほぼ正8角形断面形
状に成形したのち、互いに方向を異にする4パスの圧下
により、あらかじめ与えられた寸法の正8角形断面材を
成形する点にある。
The present invention is characterized by the technical means taken to achieve the above-mentioned second object, when forging a regular octagonal cross-section material from an arbitrary steel ingot, in the final stage of the forging process. ,
After forming into a substantially vertically symmetrical square or octagonal cross section, in the case of a square cross section, the diagonal direction, 8
In the case of a square cross-sectional shape, two passes of rolling in different directions are applied to the opposite long sides to form a nearly regular octagonal cross-sectional shape, and then four passes of rolling in different directions are applied to form the shape in advance. The point is to form a regular octagonal cross-section material with the specified dimensions.

(実施例) まず、8角断面素材の変形挙動を熱間鋼を用いて実験的
に求めた。以下にその詳細を示す。
(Example) First, the deformation behavior of a material with an octagonal cross section was experimentally determined using hot steel. The details are shown below.

第1図(a)に示す圧下前の断面形状の素材が、第2図
で示す噛込量BのもとでHlの高さまで鍛造され第1図
(ハ)の圧下後形状になった場合、変形後の各量は以下
に示す式により求めることができる。
When a material with the cross-sectional shape before rolling shown in Fig. 1(a) is forged to a height of Hl under the biting amount B shown in Fig. 2 and becomes the shape after rolling as shown in Fig. 1(c). , each amount after deformation can be determined by the formula shown below.

■ 幅W、−・4角断面素材の伸びの式を修正利用して
〔式−1〕を得た。
■ Width W, - - [Formula-1] was obtained by modifying and using the equation for the elongation of a square cross-section material.

ユ式二土L (W+ /W(1)= (We+ΔW)/weただし、 (0,52≦HI/ Ho ≦0.94.0.36≦B
/Well≦2.74)ここで、 −”〕 ただし、 上式中のHoM、Wo、は、第3図に示す方法により8
角断面を4角断面に置き換えた場合のそれぞれ高さ、お
よび幅である。
Yu type two earth L (W+ /W(1)= (We+ΔW)/we However, (0,52≦HI/ Ho ≦0.94.0.36≦B
/Well≦2.74) Here, −”] However, HoM, Wo, in the above formula are 8 by the method shown in Figure 3.
These are the height and width when the square cross section is replaced with a square cross section.

■ 側面高さ Ho 側面高さHllはつぶし比()(+ / He)、工具
接触幅比(W o。/W0)、および偏平比(We/H
a)の影響を大きく受けることを考慮して回帰分析を行
い〔式−2〕を得た。
■ Side height Ho Side height Hll is determined by crushing ratio () (+ / He), tool contact width ratio (W o./W0), and flatness ratio (We/H
Considering the large influence of a), regression analysis was performed to obtain [Formula-2].

ユ式二1l− HIl/ Ho。=A(H+/Ho−1)+1. Ho
。=Oの々きHt + = 0 ただし、 A=A++AzX++A*X、”+AaX、+AsX+
X、+A、X、2X。
Yushiki 21l- HIl/Ho. =A(H+/Ho-1)+1. Ho
. =O Nobuki Ht + = 0 However, A=A++AzX++A*X, ”+AaX, +AsX+
X, +A, X, 2X.

+ A ? X z ” + A s X + X z
 ” + A q X 、” X t ”ここで、X 
I= W o。/We  Xz=Wo/HaAr= 7
.131   Az=  24.91  A3=25.
89As”  17.89  AS=65.53  A
6=  66.24A?=  10.91  As= 
 40.68  A?=40.98(0,52≦H,/
He≦0.94. 0.45≦Wo/Ha≦1.0)■
 工具(3)の接触幅 W。
+A? X z ” + A s X + X z
" + A q X ," X t "Here, X
I = W o. /We Xz=Wo/HaAr= 7
.. 131 Az=24.91 A3=25.
89As” 17.89 AS=65.53 A
6=66.24A? = 10.91 As=
40.68 A? =40.98(0,52≦H,/
He≦0.94. 0.45≦Wo/Ha≦1.0)■
Contact width of tool (3) W.

工具接触幅W11は素材の肩部の傾き(〔式−3〕中の
y/ X= (I(o  He(1)/(WOWlll
l) )および圧下量ΔHに大きく依存することを考慮
して回帰分析を行い〔式−3〕を得た。
The tool contact width W11 is the slope of the shoulder of the material (y/X in [Formula-3] = (I(o He(1)/(WOWllll
Regression analysis was performed taking into consideration that it greatly depends on the amount of pressure reduction ΔH (l) ) and the reduction amount ΔH, and [Equation-3] was obtained.

正式二しL a =−0,0683(y/x)+0.462(y/x
)” −1,036(y/x)+0.909 ここで、x = W @ −W 66、)r=)1. 
 Ho。
Formal two L a = -0,0683(y/x)+0.462(y/x
)” −1,036(y/x)+0.909 where x = W @ −W 66,)r=)1.
Ho.

ΔH/H,≦X、のとき、 ΔW11/1(0−(a  ・ΔH)”/)IOΔ)I
/He>XIのとき、 ΔW+t/Ho=P/(y/x)+(ΔH/)I、−X
、)+0.020ただし、P = 0.175 (y/
x) +0.925(0,52≦H,/H,≦0.94
) 〔式−1〕〜〔式−3〕において、Ho。=W0゜=0
または、He”He。かつ W o−W a。とじた場
合は、4角断面を表、す。
When ΔH/H,≦X, ΔW11/1(0-(a ・ΔH)”/)IOΔ)I
When /He>XI, ΔW+t/Ho=P/(y/x)+(ΔH/)I, -X
, )+0.020 However, P = 0.175 (y/
x) +0.925 (0,52≦H, /H,≦0.94
) In [Formula-1] to [Formula-3], Ho. =W0゜=0
Or, He"He. and W o-W a. If it is closed, it represents a square cross section.

前記の各式を用いて、第4図に示すフローチャート手順
により、任意の鋼塊1から正8角形の断面材2を鍛伸す
るに際し、鍛伸加工の最終段階において、ほぼ上下左右
対称形の4角断面又は8角断面形状に成形したのち、互
いに方向を異にする4バスの圧下により、あらかじめ与
えられた寸法の正8角形断面材を成形する。そして、棒
材の鍛伸方法における毎パスの圧下量(又は圧下後の高
さ)を決定する。
When a regular octagonal cross-section material 2 is forged from an arbitrary steel ingot 1 according to the flowchart procedure shown in FIG. After forming into a square or octagonal cross-section, the material is rolled into a regular octagonal cross-section with a predetermined dimension by rolling with four baths in mutually different directions. Then, the amount of reduction (or height after reduction) of each pass in the bar forging and stretching method is determined.

この際、各パスにおける噛込量B(第2図参照)は、プ
レス特性、製品の用途などに応じて任意に与える。
At this time, the biting amount B (see FIG. 2) in each pass is arbitrarily given depending on the press characteristics, the application of the product, etc.

計算例 任意の寸法の、ほぼ上下左右対称形の4角断面又は8角
断面および最終の正8角断面材の寸法を与え、計算機に
より上記の手−法を用いて各パスの圧下量を計算した。
Calculation example Given the dimensions of an almost vertically symmetrical quadrangular or octagonal cross section and the final regular octagonal cross section of arbitrary dimensions, calculate the reduction amount for each pass using the above method using a computer. did.

計算結果の例を表1に示す。Table 1 shows examples of calculation results.

(次 葉) この場合、各パスの噛込量Bは、プレス特性、製品の用
途などを考えて、各パスを通じて一定の値として決定し
、計算・を行ったが、これは本発明に固有の方法ではな
い。
(Next page) In this case, the biting amount B for each pass was determined and calculated as a constant value throughout each pass, taking into consideration the press characteristics, product application, etc., but this is unique to the present invention. Not in that way.

計算により以下のことが明らかとなった。The calculations revealed the following.

■ 鍛造最終段階での寸法形状が異なっていても互いに
方向を異にする4パスの鍛造により、最終形状への成形
が可能であることが示された。
■ It was shown that even if the dimensions and shape at the final stage of forging are different, it is possible to form the product into the final shape by forging in four passes in different directions.

この4パスの鍛造により、従来数多くのパスをかけて行
っていた最終形状への成形が、従来に比べて短時間で可
能となった。
With this four-pass forging, it is now possible to form the final shape into the final shape in a shorter time than before, which previously took many passes.

■ 4パスという数少ないパス数でありながら、鍛造最
終段階での寸法形状が異なっていても、4バス後の素材
の形状は正確に最終形状に仕上がることが示された。
■ Despite the small number of passes, 4 passes, it was shown that even if the dimensions and shape at the final stage of forging were different, the shape of the material after 4 passes was accurately finished in the final shape.

■ それにより歩留りの向上が達成される。■ Thereby, an improvement in yield is achieved.

次に、本発明の第2の特徴について実施例を説明する。Next, an embodiment of the second feature of the present invention will be described.

上述の本発明の第1の特徴についての実施例を表2で示
した例のように、正8角形断面からのへだたりの大きな
初期形状をもつ8角断面材に、適用した場合、1〜2パ
ス目の圧下量が、3〜4バス目の圧下量に比べて非常に
大きくなっており(すなわち、負荷が分散されていない
。)、1〜2パス目の圧下面がせまい(W Oo、Ho
。が小さい)こととあいまり、鍛造時に素材の折れ込み
によるキズが生じることもある。
When the embodiment of the first feature of the present invention described above is applied to an octagonal cross-sectional material having an initial shape with a large deviation from a regular octagonal cross-section, as shown in Table 2, 1 ~ The rolling reduction amount in the second pass is much larger than the rolling reduction amount in the third and fourth passes (that is, the load is not distributed), and the rolling surface in the first and second passes is narrow (W Oo, Ho
. Coupled with this fact (small), scratches may occur due to folding of the material during forging.

そこで、本発明の第2実施例では、任意の鋼塊1から正
8角形の断面材2を鍛伸するに際し、鍛伸加工の最終段
階において、ほぼ上下左右対称の4角断面または8角断
面形状に成形したのち、8角断面形状にあっては第6図
(1)に示す如く、その長対辺方向に対し、又、4角断
面形状において第6図(2)で示す如くその対角方向に
対し、第1実施例と同じく互いに方向を異にする2パス
の圧下を加え(第7図参照)、ほぼ正8角形断面形状に
成形したのち、第4図に示すフローチャート手順により
、互いに方向を異にする4パスの圧下により、あらかじ
め与えられた寸法の正8角形断面材を成形する。そして
棒材の鍛伸方法における毎パスの圧下量(または圧下後
の高さ)を決定する。
Therefore, in the second embodiment of the present invention, when forging a regular octagonal cross-sectional material 2 from an arbitrary steel ingot 1, in the final stage of the forging process, a substantially vertically symmetrical quadrangular cross section or an octagonal cross section After forming into a shape, in the case of an octagonal cross-sectional shape, the direction of the long opposite side is as shown in FIG. In the same way as in the first embodiment, two passes of rolling in different directions are applied (see Fig. 7) to form a substantially regular octagonal cross-sectional shape. A regular octagonal cross-sectional material with predetermined dimensions is formed by rolling in four passes in different directions. Then, the amount of reduction (or height after reduction) of each pass in the bar forging and stretching method is determined.

この際、各パスにおける噛込量Bは、プレス特性、製品
の用途などに応じて任意に与える。
At this time, the biting amount B in each pass is arbitrarily given depending on the press characteristics, the application of the product, etc.

計算例 任意の寸法、ほぼ上下左右対称形の4角断面又は8角断
面および最終の正8角断面材の寸法を与え、計算機によ
り上記の手法を用いて各パスの圧下量を計算した。計算
結果の例を表3に示す。
Calculation Example Given arbitrary dimensions, the dimensions of a substantially vertically symmetrical quadrangular cross section or octagonal cross section, and the final regular octagonal cross section, the amount of reduction for each pass was calculated by a computer using the above method. Table 3 shows an example of the calculation results.

この場合、各パス、の噛込MBは、プレス特性、製品の
用途などを考えて、各パスを通じて一定の値として決定
し計算を行ったが、これは本発明に固有の方法ではない
In this case, the biting MB of each pass was determined and calculated as a constant value throughout each pass, taking into consideration the press characteristics, product application, etc., but this is not a method specific to the present invention.

計算により以下のことが明らかとなった。The calculations revealed the following.

■ 鍛造最終段階での寸法形状が異なっていても、本発
明による計6パスの鍛造により、従来数多くのパスをか
けて行っていた最終形状への成形が、互いに方向を異に
する4パスの鍛造、と同程度の時藺で可能となった。
■ Even if the dimensions and shape at the final stage of forging are different, by forging a total of 6 passes according to the present invention, forming into the final shape, which conventionally took many passes, is now done in 4 passes in different directions. This became possible in about the same amount of time as forging.

■ 6パスという数少ないパス数でありながら、鍛造最
終段階での寸法形状が異なっていても、6パス後の素材
の形状は正確に最終形状に仕上がることが示された。
■ Despite the small number of passes, 6 passes, it was shown that even if the dimensions and shape at the final forging stage were different, the shape of the material after 6 passes was accurately finished in the final shape.

■ それにより歩留りの向上が達成される。■ Thereby, an improvement in yield is achieved.

■ 比較的折れ込みキズの発生しやすい状態にある長対
辺方向(4角断面においてはその対角方向)への鍛造を
行うパス(1〜2パスH)の圧下量が、本方法によると
、互いに方向を異にする4パスの鍛造に比べ著しく低減
され、キズの発生が防止される一方、鍛造パスの増加数
はたかだか2パスである。
■ According to this method, the amount of reduction in the pass (1 to 2 passes H) for forging in the direction of the long opposite side (the diagonal direction in the case of a square cross section), which is relatively prone to folding and scratches, is as follows: This is significantly reduced compared to forging with four passes in different directions, and the occurrence of scratches is prevented, but the number of forging passes is increased by at most two passes.

表 2                 (単(色面
)軸込量は全パスを通じて一定=400 in)表 3
                      (単(
伽mlNα1. 2. 3−−−−−−−−−400m
a+Nα4・・−−−−−−−−−一一一−−−−・−
200m以上の通り、本発明の第2の実施例によると、
圧下面がせまい(W、。、Ho。が小さい)1〜2パス
目における圧f量が低減され、各パスにおける負荷が分
散され、キズの発生が防止される。
Table 2 (Single (color plane) axis depth is constant throughout the entire pass = 400 inches) Table 3
(single(
佽mlNα1. 2. 3---------400m
a+Nα4・・−−−−−−−−111−−−−・−
According to the second embodiment of the present invention, the street is more than 200 m.
The rolling surface is narrow (W, ., Ho. are small), the amount of pressure f in the first and second passes is reduced, the load in each pass is distributed, and the occurrence of scratches is prevented.

この第2実施例(6パスによる鍛造方法)は次の範囲の
初期形状の素材に対して適用する。すなわち、素材の初
期の断面積を30、最終の断面積をSfとすると 1.05≦S、/S、≦1.40・−・・−・−−−−
−・−−−−−−−−−■かつ Wo。7w、、)I、。/ Ho≦0.35・−−−−
−−−−−−−■ここで、条件■の左辺および条件■は
、本方法を適用することによる効果が顕著である領域、
条件■の右辺は本方法の適用によってもキズが発生する
可能性のある領域を表している。
This second embodiment (six-pass forging method) is applied to materials with initial shapes in the following range. That is, if the initial cross-sectional area of the material is 30 and the final cross-sectional area is Sf, then 1.05≦S, /S,≦1.40・−・・−・−−−
−・−−−−−−−−■And Wo. 7w,,)I,. / Ho≦0.35・----
−−−−−−−■Here, the left side of condition (■) and condition (2) are areas where the effect of applying this method is significant;
The right side of condition (2) represents an area where scratches may occur even when this method is applied.

(発明の効果) (1)本発明の第1の特徴による手順に従って鍛造を行
うと、従来、素材寸法を頻繁に測定しながら数多くのパ
ス数で行っていた最終段階の鍛造が、少ないパス数(4
パス)で可能となる。
(Effects of the Invention) (1) When forging is performed according to the procedure according to the first feature of the present invention, the final stage of forging, which was conventionally performed in many passes while frequently measuring the material dimensions, can be performed in fewer passes. (4
path).

(2)変速予測式に基づいて鍛造を行っているため、寸
法精度の高い鍛造が可能となった。
(2) Because forging is performed based on a speed change prediction formula, forging with high dimensional accuracy is possible.

(3)第5図(ロ)で示す如く、互いに方向を異にする
4パスの圧下を行うため、第5図(a)の符号2Aで示
すような、未圧下面のふくらみが生じにくい。
(3) As shown in FIG. 5(b), since rolling is performed in four passes in different directions, bulging of the unrolled surface as shown by reference numeral 2A in FIG. 5(a) is less likely to occur.

また、本発明の第2の特徴によれば、更に、次の利点が
ある。
Furthermore, according to the second feature of the present invention, there are further advantages as follows.

(4)キズの発生しやすい条件での圧下量が低減される
ため、キズの発生が防止できる。
(4) Since the amount of reduction under conditions where scratches are likely to occur is reduced, scratches can be prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は圧下前と圧下後の断面形状の変化
を示す説明図、第2図は噛込量の定義を示す説明図、第
3図はHoM、Wo8 の定義を示す説明図、第4図は
圧下量決定法のフローチャート、第5図(a)(b)は
2方向のみの圧下量と異なる4方向による圧下(本発明
)とを比較した説明図、第6図(1)(2)は2パスの
圧下方向を示す説明図、第7図は2パスの圧下量測定法
のフローチャートである。 1−素材、2−最終段階の棒材。
Figures 1 (a) and (b) are explanatory diagrams showing changes in the cross-sectional shape before and after rolling down, Figure 2 is an explanatory diagram showing the definition of the biting amount, and Figure 3 is the definition of HoM and Wo8. An explanatory diagram, FIG. 4 is a flowchart of the method for determining the amount of rolling reduction, FIG. (1) and (2) are explanatory diagrams showing the two-pass rolling reduction direction, and FIG. 7 is a flowchart of the two-pass rolling reduction amount measuring method. 1-Material, 2-Final stage bar material.

Claims (2)

【特許請求の範囲】[Claims] (1)任意の鋼塊から正8角形の断面材を鍛伸するに際
し、鍛伸加工の最終段階において、ほぼ上下左右対称形
の4角断面または8角断面形状に成形したのち、互いに
方向を異にする4パスの圧下により、あらかじめ与えら
れた寸法の正8角形断面材を成形することを特徴とする
棒材の鍛伸方法。
(1) When forging a regular octagonal cross-sectional material from an arbitrary steel ingot, in the final stage of forging, it is formed into a four-sided or octagonal cross-sectional shape that is approximately vertically and horizontally symmetrical, and then the directions are aligned with each other. A method for forging and stretching a bar material, which is characterized by forming a regular octagonal cross-section material with predetermined dimensions through four different rolling passes.
(2)任意の鋼塊から正8角形の断面材を鍛伸するに際
し、鍛伸加工の最終段階において、ほぼ上下左右対称形
の4角断面または8角断面形状に成形したのち、4角断
面形状においてはその対角方向、8角断面形状において
はその長対辺方向に対し、互いに方向を異にする2パス
の圧下を加え、ほぼ正8角形断面形状に成形したのち、
互いに方向を異にする4パスの圧下により、あらかじめ
与えられた寸法の正8角形断面材を成形することを特徴
とする棒材の鍛伸方法。
(2) When forging a regular octagonal cross-section material from any steel ingot, in the final stage of forging, it is formed into a substantially vertically symmetrical square or octagonal cross-section, and then After forming into an almost regular octagonal cross-sectional shape by applying two passes of rolling in different directions, in the diagonal direction for the shape and in the long diagonal direction for the octagonal cross-sectional shape,
A method for forging and stretching a bar material, which is characterized by forming a regular octagonal cross-section material with predetermined dimensions by rolling in four passes in mutually different directions.
JP28384987A 1986-12-01 1987-11-09 Radial forging method for bar stock Pending JPS63268529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28384987A JPS63268529A (en) 1986-12-01 1987-11-09 Radial forging method for bar stock

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-286371 1986-12-01
JP28637186 1986-12-01
JP28384987A JPS63268529A (en) 1986-12-01 1987-11-09 Radial forging method for bar stock

Publications (1)

Publication Number Publication Date
JPS63268529A true JPS63268529A (en) 1988-11-07

Family

ID=26555228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28384987A Pending JPS63268529A (en) 1986-12-01 1987-11-09 Radial forging method for bar stock

Country Status (1)

Country Link
JP (1) JPS63268529A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284604A (en) * 2006-07-10 2008-11-27 Kobe Steel Ltd Designing system for process of cogging and cogging method
CN106424496A (en) * 2016-11-17 2017-02-22 山西太钢不锈钢股份有限公司 Forging method for conducting radial forging on preliminarily rolled square billet
RU2614918C2 (en) * 2015-03-31 2017-03-30 Общество с ограниченной ответственностью Научно-производственное предприятие "МЕТЧИВ" (ООО НПП "МЕТЧИВ") Method for radial forging strip profiles
CN111922264A (en) * 2020-06-22 2020-11-13 大冶特殊钢有限公司 Radial forging non-rotating forging method
CN112893725A (en) * 2020-12-29 2021-06-04 常州中钢精密锻材有限公司 Method for improving surface quality of titanium alloy forging
CN113102672A (en) * 2021-05-20 2021-07-13 山西太钢不锈钢股份有限公司 Method for forging five-ton octagonal ingot by using radial forging machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284604A (en) * 2006-07-10 2008-11-27 Kobe Steel Ltd Designing system for process of cogging and cogging method
RU2614918C2 (en) * 2015-03-31 2017-03-30 Общество с ограниченной ответственностью Научно-производственное предприятие "МЕТЧИВ" (ООО НПП "МЕТЧИВ") Method for radial forging strip profiles
CN106424496A (en) * 2016-11-17 2017-02-22 山西太钢不锈钢股份有限公司 Forging method for conducting radial forging on preliminarily rolled square billet
CN111922264A (en) * 2020-06-22 2020-11-13 大冶特殊钢有限公司 Radial forging non-rotating forging method
CN112893725A (en) * 2020-12-29 2021-06-04 常州中钢精密锻材有限公司 Method for improving surface quality of titanium alloy forging
CN113102672A (en) * 2021-05-20 2021-07-13 山西太钢不锈钢股份有限公司 Method for forging five-ton octagonal ingot by using radial forging machine

Similar Documents

Publication Publication Date Title
Abvabi et al. The influence of residual stress on a roll forming process
JPS63268529A (en) Radial forging method for bar stock
US3561105A (en) Method of producing a hot-formed aluminum base product
US4344309A (en) Process for preventing growth of fishtails during slabbing
Bursal et al. Computer-aided analysis of metal flow in the rolling of rods and structural profiles
Yukawa et al. Numerical analysis of the shape of rolled strip
Park et al. New tension control at the head of strip in hot strip finishing mill
JP3646929B2 (en) Slab for rolling and method of rolling
GB1434215A (en) Method and apparatus for the manufacture of beams
Sun et al. Study on Plate Straightening Process Based on Elastic-Plastic B Spline Finite Strip Method
JPS58100907A (en) Controlling method of sheet gauge in hot rolling mill
Smirnov et al. Investigation of contact conditions in box pass at sectional rolling of CCB possessing rhomboidity defect
DE102005042837A1 (en) Method for thickness control during hot rolling
JP4016733B2 (en) Rolling method for narrow flange width H-section steel
SU1623803A1 (en) Method for rolling section stock
RU2148449C1 (en) Method for profiling equal-flange angles
SMIRNOV et al. DEFORMATION OF CONTINUOUSLY CASTING BLOOMS AT THE STAGE OF INCOMPLETE CRYSTALLIZATION IN CROSSED PROFILED ROLLS
JPH03161101A (en) Blooming rolling method
JP2899225B2 (en) Cold rolling method of sheet material and cold tandem mill
RU2062671C1 (en) Method of making strip rectangular high-accuracy shapes
RU2190487C2 (en) Method for rolling merchant round large-diameter shapes
JPS63119901A (en) Molding method of rough h-shaped billet
SU1600881A1 (en) Method of preparing working rolls of wide-strip mill for hot rolling
JP2000033406A (en) Method for rolling wide flange shape steel with universal rolling mill
SU586955A1 (en) Ball-making method