JPS63266743A - Device using charged particle beam - Google Patents

Device using charged particle beam

Info

Publication number
JPS63266743A
JPS63266743A JP62099748A JP9974887A JPS63266743A JP S63266743 A JPS63266743 A JP S63266743A JP 62099748 A JP62099748 A JP 62099748A JP 9974887 A JP9974887 A JP 9974887A JP S63266743 A JPS63266743 A JP S63266743A
Authority
JP
Japan
Prior art keywords
superconductor
charged particle
particle beam
magnetic field
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62099748A
Other languages
Japanese (ja)
Inventor
Osamu Kagaya
修 加賀谷
Junji Shigeta
淳二 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62099748A priority Critical patent/JPS63266743A/en
Publication of JPS63266743A publication Critical patent/JPS63266743A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the effect of the external magnetic field on charged particles by covering the circumference of the space in which a charged particle beam exists with a superconductor. CONSTITUTION:The magnetic flux can not pass a superconductor 1. The magnetic flux thus can not enter the space surrounded with the superconductor from the outside. When a main metal superconductor such as yttrium is used for the superconductor, a superconductive state appears with a simple cooling device. A low-energy electron energy loss spectroscope main body is surrounded with a superconductive material 1, for example, and the superconductive material 1 is cooled with a compressor 4 and a refrigerator 3 and kept at the critical temperature or lower with a heat insulating material 2. The external magnetic field is thereby shielded by the complete diamagnetism of the superconductive material 1, and the spectro-resolution of secondary electrons 16 can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は荷電粒子ビームを用いた装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an apparatus using a charged particle beam.

従来の荷電粒子ビームを用いた装置1例えばCRTに用
いられる磁気シールド法は、例えば日経エレクトロニク
ス1987年1月12日号(no。
The magnetic shielding method used in a conventional device using a charged particle beam 1, such as a CRT, is described, for example, in Nikkei Electronics, January 12, 1987 issue (no.

412)第173頁から第184頁に記載されているよ
うに、パーマロイなどの透磁率の高い材料を用いるのが
通常であった。
412) As described on pages 173 to 184, it has been common to use materials with high magnetic permeability such as permalloy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、パーマロイ内に磁束を集めることによ
って、パーマロイで囲んだ内部の磁束を少なくしている
。しかし、パーマロイ中に集めうる磁束の数はすぐに飽
和するので、磁束の漏洩が必ず存在する。よって、完全
に磁気シールドは得られず、荷電粒ビームに影響を及ぼ
すという問題があった。
The above-mentioned conventional technology reduces the magnetic flux inside the permalloy by concentrating the magnetic flux within the permalloy. However, since the number of magnetic fluxes that can be collected in permalloy quickly saturates, there is always some flux leakage. Therefore, there is a problem in that a complete magnetic shield cannot be obtained, which affects the charged particle beam.

本発明の目的は、この漏洩磁束を減少させ、荷電粒子ビ
ームに対する外部磁場の影響を防止することにある。
An object of the present invention is to reduce this leakage magnetic flux and prevent the influence of external magnetic fields on the charged particle beam.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、荷電粒子ビームの存在する空間の周囲を超
伝導体で覆うことにより達成できる。
The above object can be achieved by covering the space in which the charged particle beam exists with a superconductor.

〔作用〕[Effect]

荷電粒子ビームは磁場を受けるとフレミングの左手の法
則に従って曲がり、本来とは違う軌跡をたどってしまう
When a charged particle beam is exposed to a magnetic field, it bends according to Fleming's left-hand rule, causing it to follow a trajectory different from its original trajectory.

一方、超伝導体は臨界温度以下では完全反磁性を示すた
め、磁束は超伝導体中と通過することができない、この
ため、超伝導体で荷電粒子ビームの存在する空間を覆っ
てしまうと、磁束のその空間への漏洩は完全に防止でき
、荷電粒子ビームは本来の軌跡を描くことになる。
On the other hand, since superconductors exhibit complete diamagnetism below a critical temperature, magnetic flux cannot pass through the superconductor. Therefore, if the superconductor covers the space where the charged particle beam exists, Leakage of magnetic flux into that space can be completely prevented, and the charged particle beam will follow its original trajectory.

ところが、Nb38nのような金属系超伝導体を用いた
場合には、超伝導体を液体ヘリウム容器などの外部に出
す構造とすることができず、上記のような構造は実現で
きない、しかし、超伝導体にイツトリウム、バリウム、
ランタム、ストロンチウ11、酸化銅などを主金属系超
伝導体を用いれば、簡便な冷却装置で超伝導状態にする
ことができ、上記構造を実現できる。
However, when a metallic superconductor such as Nb38n is used, it is not possible to create a structure in which the superconductor is exposed to the outside of a liquid helium container, etc., and the above structure cannot be realized. Yttrium, barium, as a conductor
If a main metal-based superconductor such as lantum, strontium-11, or copper oxide is used, it can be brought into a superconducting state with a simple cooling device, and the above structure can be realized.

〔実施例〕〔Example〕

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

(実施例1) 第1図及び第2図は各々本発明による超伝導材磁気シー
ルド用いたCRTの断面図及び外観図である。
(Example 1) FIGS. 1 and 2 are a cross-sectional view and an external view, respectively, of a CRT using a superconducting material magnetic shield according to the present invention.

電子銃10から出た電子ビーム7は、偏向ヨーク6の生
じる磁場によってその方向を制御され。
The direction of the electron beam 7 emitted from the electron gun 10 is controlled by the magnetic field generated by the deflection yoke 6.

ブラウン管5の蛍光管に像を結ぶ、そのブラウン管5の
周囲を超伝導材磁気シールドカバー8で覆い、外部磁場
を遮蔽する。ただし、ブラウン管5の正面は外から見え
るように開放しておく、磁気シールドカバー8は、超伝
導材1及び冷却器3を断熱材2で覆った構造となってい
る。そして、外部のコンプレッサー4で冷却器3を駆動
し超伝導材lを臨界温度以下に冷却する。また断熱材2
で保温する。
The periphery of the cathode ray tube 5, which focuses an image on the fluorescent tube of the cathode ray tube 5, is covered with a superconducting material magnetic shield cover 8 to shield external magnetic fields. However, the front surface of the cathode ray tube 5 is left open so that it can be seen from the outside, and the magnetic shield cover 8 has a structure in which the superconducting material 1 and the cooler 3 are covered with a heat insulating material 2. Then, the cooler 3 is driven by an external compressor 4 to cool the superconducting material 1 to below the critical temperature. Also, insulation material 2
Keep warm.

上記構造では完全な磁気シールドはできないが。The above structure cannot provide complete magnetic shielding.

超伝導材1の完全反磁性のため、シールド効果は大きく
、電子ビーム7の描く画像の解像度を高くすることがで
きる。
Since the superconducting material 1 is completely diamagnetic, the shielding effect is large, and the resolution of the image drawn by the electron beam 7 can be increased.

(実施例2) 第3図は本発明の実施例2の電子ビー11描画装置の断
面図である。
(Embodiment 2) FIG. 3 is a sectional view of an electronic beam 11 drawing apparatus according to Embodiment 2 of the present invention.

電子銃10.絞り11.偏向器12.対物レンズ13.
補正レンズ14から成る描画装置の本体を、実施例1と
同様に超伝導材1で取り囲む。そして超伝導1はコンプ
レッサー4と冷却器3によって冷却し、断熱材2で保温
する。
Electron gun 10. Aperture 11. Deflector 12. Objective lens 13.
The main body of the drawing device consisting of the correction lens 14 is surrounded by the superconducting material 1 as in the first embodiment. The superconductor 1 is cooled by a compressor 4 and a cooler 3, and kept warm by a heat insulating material 2.

上記構造では、外部磁場は超伝導材1によってシールド
され、電子ビームによる微細なパタンの描画が可能とな
る。
In the above structure, an external magnetic field is shielded by the superconducting material 1, making it possible to draw fine patterns using an electron beam.

(実施例3) 第4図は本発明の実施例3の低エネルギー電子エネルギ
ー損失分光器の断面図である。
(Embodiment 3) FIG. 4 is a sectional view of a low-energy electron energy loss spectrometer according to Embodiment 3 of the present invention.

試材15に電子銃10で電子ビー11を当て、その時に
出る二次電子1Gを高電圧スキャナ18により分光し、
検出器17により検出する。この分光器本体を、超伝導
材1で取り囲む。そして超伝導材1をコンプレッサー4
と冷却器3によって冷却し、断熱材2で臨界温度以下に
保つ。
An electron beam 11 is applied to the specimen 15 using an electron gun 10, and 1G of secondary electrons emitted at that time are spectrally analyzed using a high voltage scanner 18.
It is detected by the detector 17. This spectrometer body is surrounded by superconducting material 1. Then, the superconducting material 1 is transferred to the compressor 4.
It is cooled by a cooler 3 and kept below the critical temperature by a heat insulating material 2.

上記構造では、外部磁場は超伝導材料1の完全反磁性に
よってシールドでき、二次電子16を分光する分解能を
高くすることができる。
In the above structure, an external magnetic field can be shielded by the complete diamagnetic property of the superconducting material 1, and the resolution for spectrally dispersing the secondary electrons 16 can be increased.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、外部磁場の漏洩による荷電粒子ビーム
の軌道のずれを防止することができ、荷電粒子ビームの
制御性を高くすることができる。
According to the present invention, it is possible to prevent the trajectory of a charged particle beam from shifting due to leakage of an external magnetic field, and it is possible to improve the controllability of the charged particle beam.

なお、本発明は上記実施例のみならずTVカメラ、イオ
ン注入機、電子顕微鏡等、高度な磁気シールドを必要と
するすべて荷電粒子応用機器に適用可能である。
It should be noted that the present invention is applicable not only to the above-mentioned embodiments but also to all charged particle application devices that require a high degree of magnetic shielding, such as TV cameras, ion implanters, and electron microscopes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1のCRTの断面図。 第2図は本発明の実施例1のCRTの外観図、第3図は
本発明の実施例2の電子ビーム描画装置の断面図、第4
図は本発明の実施例3の低エネルギー電子エネルギー損
失分光器の断面図である。 ■・・・超伝導材、2・・・断熱材、3・・・冷却器、
4・・・コンプレッサー、5・・・ブラウン管、6・・
・偏向ヨーク。 7・・・電子ビーム、8・・・超伝導材磁気シールドカ
バー、10・・・電子銃、11・・・絞り、12・・・
偏向器。 13・・・対物レンズ、14・・・補正レンズ、15・
・・試料、16・・・二次電子、17・・・検出器、1
8・・・高電圧スキャナ。
FIG. 1 is a sectional view of a CRT according to a first embodiment of the present invention. 2 is an external view of a CRT according to a first embodiment of the present invention, FIG. 3 is a sectional view of an electron beam lithography apparatus according to a second embodiment of the present invention, and FIG.
The figure is a sectional view of a low-energy electron energy loss spectrometer according to Example 3 of the present invention. ■...Superconducting material, 2...Insulating material, 3...Cooler,
4... Compressor, 5... Braun tube, 6...
・Deflection yoke. 7...Electron beam, 8...Superconducting material magnetic shield cover, 10...Electron gun, 11...Aperture, 12...
Deflector. 13... Objective lens, 14... Correction lens, 15.
...Sample, 16...Secondary electron, 17...Detector, 1
8...High voltage scanner.

Claims (1)

【特許請求の範囲】[Claims] 1、荷電粒子ビームの周囲を超伝導で覆ったことを特徴
とする荷電粒子ビームを用いた装置。
1. A device using a charged particle beam, characterized in that the periphery of the charged particle beam is covered with superconductivity.
JP62099748A 1987-04-24 1987-04-24 Device using charged particle beam Pending JPS63266743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099748A JPS63266743A (en) 1987-04-24 1987-04-24 Device using charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099748A JPS63266743A (en) 1987-04-24 1987-04-24 Device using charged particle beam

Publications (1)

Publication Number Publication Date
JPS63266743A true JPS63266743A (en) 1988-11-02

Family

ID=14255617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099748A Pending JPS63266743A (en) 1987-04-24 1987-04-24 Device using charged particle beam

Country Status (1)

Country Link
JP (1) JPS63266743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960760A (en) * 1989-08-10 1990-10-02 Howard J. Greenwald Contactless mass transfer system
JPH0644198U (en) * 1992-11-16 1994-06-10 新日本製鐵株式会社 Magnetic shield cover for display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960760A (en) * 1989-08-10 1990-10-02 Howard J. Greenwald Contactless mass transfer system
JPH0644198U (en) * 1992-11-16 1994-06-10 新日本製鐵株式会社 Magnetic shield cover for display device

Similar Documents

Publication Publication Date Title
US6410923B1 (en) Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes
Scheinfein et al. Scanning electron microscopy with polarization analysis (SEMPA)
Batson High‐energy resolution electron spectrometer for 1‐nm spatial analysis
EP1305816B1 (en) Collection of secondary electrons through the objective lens of a scanning electron microscope
Nixon The general principles of scanning electron microscopy
US4214162A (en) Corpuscular beam microscope for ring segment focusing
WO1996041362A1 (en) Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes
Dietrich Superconducting electron-optic devices
US5111494A (en) Magnet for use in a drift tube of an x-ray tube
JPS63266743A (en) Device using charged particle beam
Luisa Advances in electronics and electron physics
US4209701A (en) Magnetic lens arrangement for corpuscular radiation equipment working under a vacuum
US8653472B2 (en) Electromagnetic field application system
US4214166A (en) Magnetic lens system for corpuscular radiation equipment
EP3496129B1 (en) Transmission charged particle microscope with improved eels/eftem module
Dietrich et al. Superconducting lenses in electron microscopy
Dietrich et al. Proposed Superconducting 3-MV Microscope
EP0333240A1 (en) Charged particle beam apparatus
Livingston Properties and Limitations of Image Intensifies Used in Astronomy
Kuehne et al. An Electrostatically Focused Vidicon
US4527846A (en) Zoom focus and deflection assembly for electron discharge devices of the camera tube type
Kushnirenko et al. Superconducting final focusing quad for linear collider
JPH0193032A (en) Superconductive cathode-ray tube
Watanabe et al. 1 million volt high voltage electron microscope
Müllerová et al. Magnetic shielding of stray magnetic fields in the scanning electron microscope