JPS63266054A - Manufacture of high-strength copper-base alloy - Google Patents

Manufacture of high-strength copper-base alloy

Info

Publication number
JPS63266054A
JPS63266054A JP10140687A JP10140687A JPS63266054A JP S63266054 A JPS63266054 A JP S63266054A JP 10140687 A JP10140687 A JP 10140687A JP 10140687 A JP10140687 A JP 10140687A JP S63266054 A JPS63266054 A JP S63266054A
Authority
JP
Japan
Prior art keywords
cold
less
strength
grinding
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10140687A
Other languages
Japanese (ja)
Other versions
JP2555070B2 (en
Inventor
Masato Asai
真人 浅井
Yoshimasa Oyama
大山 好正
Tsutomu Sato
力 佐藤
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62101406A priority Critical patent/JP2555070B2/en
Publication of JPS63266054A publication Critical patent/JPS63266054A/en
Application granted granted Critical
Publication of JP2555070B2 publication Critical patent/JP2555070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high-strength copper-base alloy having high strength and excellent in plating suitability, etc., while obviating the necessity of hot working, by successively applying surface grinding, cold working, heating, cooling surface cleaning, cold working, and heat treatment to an ingot of copper alloy containing specific percentages of Ti, Sn, Ni, etc., respectively under specific conditions. CONSTITUTION:A copper alloy which has a composition consisting of, by weight, 0.01-5.0% Ti, further <=5.0%, in total, of one or >=2 kinds among <=2.2% Sn, <=2.5% each of Ni, Zn, etc., and <=0.5% each of Mg, Cr, etc., and the balance Cu with inevitable impurities is continuously cast, and the surface of the resulting ingot is ground. Subsequently, the ingot is cold-worked at 20-95% draft, heated in a nonoxidizing atmosphere at 300-950 deg.C for 5sec-24hr, and cooled at 0.01-500 deg.C/sec cooling rate. Further, a material surface is cleaned by means of melting and grinding, cold-worked at 5-90% draft, and heat-treated in a nonoxidizing atmosphere at 200-650 deg.C for 5sec-24hr, and then, the above- mentioned surface cleaning, cold working, and heat treatment are properly repeated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子・電気機器、特に電子部品のリード材、ス
イッチ・端子・コネクター等の配器材やばね材として多
く用いることができる高い強度と優れたメッキ性・半田
接合強度・耐食性・耐熱性等をもつ高力銅合金の製造法
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention has high strength and can be widely used as a lead material for electronic and electrical equipment, especially electronic components, and as a wiring material and spring material for switches, terminals, connectors, etc. This article relates to a method for producing a high-strength copper alloy that has excellent plating properties, solder joint strength, corrosion resistance, heat resistance, etc.

(従来の技術および発明が解決すべき問題点)電子機器
部品、例えばトランジスタ、IC。
(Prior art and problems to be solved by the invention) Electronic equipment parts, such as transistors and ICs.

LSl、VLSI、ダイオード等の半導体のリードフレ
ーム材、ヒートシンク材、電子部品のリード材、コネク
ター・スイッチ・リレー等の構成部品のばね材及び各種
端子材には多くの銅合金が利用されている。近年さらに
電子機器部品の小型化、高性能化、高密度化に伴ってよ
り高性能の合金が求められるようになり、特に最先端に
ある半導体は畠集積化が目覚しく、これに用いられるリ
ード材には高い強度が要求されている。
Many copper alloys are used for lead frame materials for semiconductors such as LSI, VLSI, and diodes, heat sink materials, lead materials for electronic components, spring materials for component parts such as connectors, switches, and relays, and various terminal materials. In recent years, as electronic equipment parts have become smaller, more sophisticated, and more dense, there has been a demand for higher-performance alloys.In particular, cutting-edge semiconductors are becoming more integrated. requires high strength.

このような強度の優れた銅合金の代表的なものとしては
従来Cu−3n−P系、Cu−Ni−8n系及びcu−
zn−pb系合金等があるが、これらの合金は製造工程
中に熱間加■が不可欠であるために、さらに加えて熱間
加工性が乏しいために次のような問題が発生しており品
質の低下とコストの上昇を(【1いている。
Typical examples of copper alloys with excellent strength include Cu-3n-P, Cu-Ni-8n, and cu-Ni.
There are ZN-PB alloys, etc., but these alloys require hot working during the manufacturing process, and in addition, have poor hot workability, resulting in the following problems: Decrease in quality and increase in cost ([1])

(1)熱間圧延時及び熱間加工時に大気中での高温加熱
により材料表面に多層、多量の酸化スケールが発生し、
これを除去するために多大な研削が必要でおり、材料歩
留りが低下すると共に添加元素の内部酸化や圧延時の酸
化スケールの巻き込み等により内部欠陥を生じ、半田付
は性やメッキ密着性が低下する。
(1) Multi-layered and large amounts of oxide scale are generated on the material surface due to high temperature heating in the atmosphere during hot rolling and hot processing.
A large amount of grinding is required to remove this, which lowers the material yield and causes internal defects due to internal oxidation of added elements and entrainment of oxide scale during rolling, resulting in decreased solderability and plating adhesion. do.

(2)大気加熱による再熱割れ及び熱間加工時の割れが
生じ、かつこれらの割れにより歩留りが低下し、従って
生産コストが増加する。
(2) Reheat cracking due to atmospheric heating and cracking during hot working occur, and these cracks reduce yield and therefore increase production cost.

(3)熱間加工時に材料を高温に加熱するため多ωのエ
ネルギーを必要とし、かつそれに伴ない大きな設備投資
を必要とし生産コストか増加する。
(3) In order to heat the material to a high temperature during hot processing, a large amount of energy is required, and a large equipment investment is required accordingly, which increases production costs.

〔問題点を解決するための手段) 本発明はこれに鑑み種々検討の結果、熱間加工工程を廃
止することにより上記問題点を解消した高力銅基台金の
製造法を開発したもので、’lid、旧〜5.Owt%
を含み、さらに2.2wt%以下のSnとそれぞれ2.
5 wt%以下のNi、Zn。
[Means for solving the problems] In view of this, and as a result of various studies, the present invention has developed a method for manufacturing a high-strength copper base metal that eliminates the above problems by eliminating the hot working process. , 'lid, old~5. Owt%
and 2.2 wt% or less of Sn, respectively.
5 wt% or less of Ni, Zn.

Mn、Co、A1とぞれぞれ0.5wt%以下のMg、
A’s、Ca、V、Y、希土類元素、in。
Mn, Co, A1 and Mg of 0.5 wt% or less each,
A's, Ca, V, Y, rare earth elements, in.

Pb、Sb、B i、Te、Ag、Au、P、B。Pb, Sb, B i, Te, Ag, Au, P, B.

Cr、Ga、Zr、Geの1種又は2種以」ニを合計で
5、Owt%以下を含み、残部Cuと不可避的不純物か
ら成る銅合金を連続鋳造し、該鋳塊の表面を研削した後
、20〜95%の加工率で冷間加工を行ない、しかる後
非酸化性雰囲気中にて300〜900℃で5秒〜24時
間加熱シテo、01〜500℃/秒の冷却速度で冷却を
行なう工程の後、表面を溶解又は研削により清浄化し、
5〜90%の加工率で冷間加工を行ない、しかる後非酸
化性雰囲気中にて200〜650℃で5秒〜24時間加
熱する工程を1回以上繰り返して行なうことを特徴とす
るものである。
A copper alloy containing one or more of Cr, Ga, Zr, and Ge in a total of 5% or less by weight, with the remainder being Cu and unavoidable impurities was continuously cast, and the surface of the ingot was ground. After that, cold working is performed at a processing rate of 20 to 95%, and then heated at 300 to 900°C for 5 seconds to 24 hours in a non-oxidizing atmosphere, and cooled at a cooling rate of 01 to 500°C/second. After the process, the surface is cleaned by melting or grinding,
It is characterized by performing cold working at a processing rate of 5 to 90% and then heating it at 200 to 650°C for 5 seconds to 24 hours in a non-oxidizing atmosphere, which is repeated one or more times. be.

(作 用〕 本発明において合金組成を上記の如く限定したのは次の
理由による。
(Function) The reason why the alloy composition is limited as described above in the present invention is as follows.

Tiの含有量をo、 oi〜5.0w1%と限定したの
は、Tiの含有間がO,01wt%未満では所望の強度
が19られないからであり、Tiの含有量が5.0wt
%を超える場合は高い強度は1qられるが冷間加工性や
曲げ成型性の低下が大きく半田付は性やメッキ密着性も
低下するからである。
The reason why the Ti content is limited to 0.01 wt% is that the desired strength cannot be achieved if the Ti content is less than 0.01 wt%.
%, the high strength will be reduced by 1q, but the cold workability and bending formability will be greatly reduced, and the solderability and plating adhesion will also be reduced.

さらにSn、N i、Zn、Mn、co、A1゜ML 
As、ca、v、Y、希土類元素、In。
Furthermore, Sn, Ni, Zn, Mn, co, A1゜ML
As, ca, v, Y, rare earth element, In.

Pb、Sb、Bi、Te、Ag、Au、P、B。Pb, Sb, Bi, Te, Ag, Au, P, B.

Cr、Ga、 Zr、 Ge (以下これらを副成分と
記す)において、2.2wt%以下のsnとそれぞれ2
.5wt%以下のN i、Zn、Mn、Co。
In Cr, Ga, Zr, Ge (hereinafter referred to as subcomponents), sn of 2.2 wt% or less and 2
.. 5 wt% or less of Ni, Zn, Mn, Co.

A1とそれぞれ0.5wt%以下のMg、As。A1 and 0.5 wt% or less of Mg and As, respectively.

(:、a、V、Y、希土類元i、In、Pb、Sb。(:, a, V, Y, rare earth element i, In, Pb, Sb.

s i、 Te、 Ag、 Au、p、B、cr、aa
s i, Te, Ag, Au, p, B, cr, aa
.

Zr、Qeの1種又は2種以上を合計15.0wt%以
下と限定したのは、これらを添加することにより電子部
品として良好な強度、半田イ」【プ性。
The reason why one or more of Zr and Qe is limited to a total of 15.0 wt% or less is that by adding these, good strength and solderability can be achieved as an electronic component.

メッキ密着性及び優れた鋳造性を有するからであり、添
加量が合計で5.0 wt%を超えると鋳造性、半田付
は性及びメッキ密着性が劣るからである。
This is because it has excellent plating adhesion and castability, and if the total amount added exceeds 5.0 wt%, castability, solderability, and plating adhesion will be poor.

次に上記組成の合金を連続vi造後後表面研削るのは、
鋳造時の欠陥や偏析を除去するためでおり、機械的ある
いは化学的な方法で表層を研削すれば良い。その後の冷
間加工の加工率を20〜95%と限定したのは20%未
満では俊工程の熱処理時に再結晶を起こさせるのに不十
分であり、95%を超えると材料組織の不均一性をtS
<ためである。
Next, after continuous VI forming, the alloy with the above composition is subjected to surface grinding.
This is to remove defects and segregation during casting, and the surface layer can be ground by mechanical or chemical methods. The processing rate of the subsequent cold working was limited to 20-95% because if it is less than 20%, it is insufficient to cause recrystallization during heat treatment in the rapid process, and if it exceeds 95%, the material structure will be non-uniform. tS
<For the sake of it.

引き続いての熱処理で加熱温度を300〜900℃と限
定したのは300 ℃未満では材料の再結晶が不十分で
あり、900°Cを超えると粗大な結晶粒を生じ特性を
劣化するからである。さらに加熱時間を5秒〜24時間
と限定したのは5秒未満では再結晶を伴なう焼鈍の効果
がなく、24時間を超える熱処理は生産性を低下させコ
スト高の要因となるからである。その後の冷却速度を0
、01・〜500℃/秒と限定したのは0.01℃/秒
未満では冷却終了までの時間が長く、生産性が低下する
からであり、500℃/秒を超えると冷却に伴なう材料
内部の温度差のため材料変形が生じるからである。また
以上の熱処理を非酸化性雰囲気で行なうのは材料の表面
及び内部の酸化を防止するためでおる。
The heating temperature in the subsequent heat treatment was limited to 300 to 900°C because if it is less than 300°C, the recrystallization of the material is insufficient, and if it exceeds 900°C, coarse crystal grains will form and the properties will deteriorate. . Furthermore, the reason why the heating time was limited to 5 seconds to 24 hours is because if it is less than 5 seconds, the annealing effect accompanied by recrystallization will not be effective, and if the heat treatment exceeds 24 hours, it will reduce productivity and increase costs. . Then set the cooling rate to 0
, 01-500°C/sec is because if it is less than 0.01°C/sec, it will take a long time to finish cooling and productivity will decrease, and if it exceeds 500°C/sec, the cooling will be delayed. This is because material deformation occurs due to temperature differences inside the material. The reason why the above heat treatment is performed in a non-oxidizing atmosphere is to prevent oxidation on the surface and inside of the material.

次に表面を溶解又は研削により清浄化するのは製造工程
中の材料の酸化や冷間圧延時の圧延油の付着に伴なう熱
処理時の変色をそのまま放置して製品とすると半田付は
性やメッキ密着性に著しい低下を引き起こして信頼性を
大きく損なうのでこれらを防ぐためでり、酸やパフ等を
用い0,1〜5μm程度表面層を除去するのが望ましく
、5μmを超えると表面が荒れることにより半田付()
性及びメッキ密着性が低下してしまう。
Next, the surface is cleaned by melting or grinding. If the discoloration during heat treatment due to oxidation of the material during the manufacturing process or adhesion of rolling oil during cold rolling is left as is, the soldering will be difficult. To prevent this, it is desirable to use acid or a puff to remove the surface layer of about 0.1 to 5 μm, and if it exceeds 5 μm, the surface will deteriorate. Soldering due to roughness ()
Otherwise, the properties and plating adhesion will deteriorate.

その俊の施す冷間加工を5〜90%と限定したのは5%
未満では材料の平坦度や面相関が劣り、強度も小さいか
らであり、90%を超えると材料組織の不均一性を招く
からである。さらに引き続いての熱処理が仕上げ加工後
の最終焼鈍である場合は該熱処理は材料の調質と内部歪
の除去のために行なうものであり、他方中間焼鈍である
場合は該熱処理は以後に続く加工を容易にするためのも
のであり、それぞれの加熱温度を200〜650℃、加
熱時間を5秒〜24時間と限定したのは、これら範囲外
では所期の目的を達せられないからである。なお最終焼
鈍の場合は再結晶温度以下、即ち200〜560℃で5
秒〜24時間の処理が望ましく、中間焼鈍の場合は再結
晶温度以上即ち400〜650℃で10秒〜24時間の
処理が望ましい。さらに上記熱処理を非酸化性雰囲気中
で行なう理由は材料の表面及び内部酸化を抑制するため
でおる。
Shun limited the cold processing applied to 5% to 90% to 5%.
This is because if it is less than 90%, the flatness and surface correlation of the material will be poor and the strength will be low, and if it exceeds 90%, the material structure will become non-uniform. Furthermore, if the subsequent heat treatment is a final annealing after finishing processing, the heat treatment is performed for refining the material and removing internal strain, whereas if it is an intermediate annealing, the heat treatment is performed for the subsequent processing. The reason why the heating temperature was limited to 200 to 650° C. and the heating time was limited to 5 seconds to 24 hours was because the intended purpose could not be achieved outside these ranges. In addition, in the case of final annealing, the temperature is below the recrystallization temperature, that is, 200 to 560°C.
The treatment time is preferably from seconds to 24 hours, and in the case of intermediate annealing, the treatment is preferably from 10 seconds to 24 hours at a temperature higher than the recrystallization temperature, that is, from 400 to 650°C. Furthermore, the reason for performing the above heat treatment in a non-oxidizing atmosphere is to suppress surface and internal oxidation of the material.

また上記表面清浄とそれに続く冷間加工及び熱処理を適
宜繰り返して行なう事により平滑で表面欠陥のない表面
性の優れた高強度かつ伸びの良好な材料を得ることがで
きる。
Further, by appropriately repeating the above-mentioned surface cleaning and subsequent cold working and heat treatment, it is possible to obtain a material that is smooth, has no surface defects, has excellent surface properties, and has high strength and good elongation.

なお最終的に歪取りと形状矯正のためテンションレベラ
ー又はテンションアニール等を行なうことにより所望の
特性に調整することができる。
Finally, desired characteristics can be adjusted by performing a tension leveler or tension annealing to remove distortion and correct the shape.

(実施例〕 次に本発明の実施例について説明する。(Example〕 Next, examples of the present invention will be described.

第1表に示す組成の合金をそれぞれ溶解し水平連続鋳造
により厚さ10.の鋳塊を得、片面0.5sづつ研削し
て冷間圧延により厚さ1.5Mとした後、非酸化性雰囲
気中で580℃の温度で2時間保持し、0.03℃/秒
の冷却速度で冷却した。その後、表面を清浄化し、0.
42mmの厚さまで冷間圧延を行なった後非酸化性雰囲
気中にて540℃で1時間保持して中間焼鈍を施し、0
.03℃/秒の冷却速度で冷却し、再び表面清浄化を行
ない冷間圧延により厚さを0.25iiとした後、非酸
化性雰囲気中にて300℃で2時間保持して仕上焼鈍を
施し、0.05℃/秒の冷却速度で冷却した。このよう
な本発明による供試材についてそれぞれ引張強さ、伸び
1曲げ成型性、半田接合強度、メッキ密着性を調査し、
その結果を第1表に併記した。
Each alloy having the composition shown in Table 1 was melted and horizontally continuously cast to a thickness of 10. After grinding 0.5 seconds on each side and cold rolling to a thickness of 1.5M, the ingot was kept at a temperature of 580°C for 2 hours in a non-oxidizing atmosphere, and rolled at a rate of 0.03°C/second. Cooled at the cooling rate. After that, the surface was cleaned and 0.
After cold rolling to a thickness of 42 mm, intermediate annealing was performed by holding at 540°C for 1 hour in a non-oxidizing atmosphere.
.. After cooling at a cooling rate of 0.3°C/sec, surface cleaning was performed again, and the thickness was reduced to 0.25ii by cold rolling, final annealing was performed by holding at 300°C for 2 hours in a non-oxidizing atmosphere. , at a cooling rate of 0.05°C/sec. The tensile strength, elongation 1 bending formability, solder joint strength, and plating adhesion were investigated for each of the test materials according to the present invention.
The results are also listed in Table 1.

なお曲げ成型性は先端半径(R)の異なる90゜ダイス
の先端折り曲げ軸を供試材の圧延方向と平行に合わせて
供試材を折り曲げ、マイクロクラックの発生の有無を調
べて板厚(1)との比R/lで表わし、半田接合強度は
供試材の直径12Mの部分に引張り用リード線を共晶半
田付けした後、150℃で600時間保持してから引張
り試験を行ないその強度で表わし、さらにメッキ密着性
は供試材をホウフッ化物浴を用いて3n−5%Pb合金
を7.5μmの厚さにメッキした後105°Cr100
0時間保持し、その後180°ニ折り曲げ、折り曲げ部
のメッキ層の剥離の有無を検鏡した。
The bending formability was determined by bending the test material by aligning the end bending axis of 90° dies with different tip radii (R) parallel to the rolling direction of the test material, checking for the occurrence of microcracks, and determining the plate thickness (1 ), and the solder joint strength is determined by eutectic soldering of a tensile lead wire to a 12M diameter part of the specimen, holding it at 150°C for 600 hours, and then carrying out a tensile test. Furthermore, the plating adhesion was determined by plating the test material with 3n-5% Pb alloy to a thickness of 7.5 μm using a fluoride bath at 105°Cr100.
The sample was held for 0 hours, and then bent 180 degrees, and examined using a microscope to check for peeling of the plating layer at the bent portion.

次に第1表のNα3の組成の合金を溶解し、水平連続鋳
造して厚さ1ommの鋳塊を1q、該鋳塊を片面o、5
sづつ研削し、冷間圧延により厚さ1.5mとした後、
非酸化性雰囲気中にて第2表に示す条件でそれぞれ熱処
理を施し、その後表面を清浄化して冷間圧延にて厚さ0
.42mとし非酸化性雰囲気中にて460℃で1時間保
持して中間焼鈍を施し、0.03°C/秒の冷却速度で
冷却し再び表面を清浄化して冷間圧延にて厚さ0.25
Mとし、非酸化性雰囲気中にて300 ℃で2ft5間
保持して仕上焼鈍を施し、0.05℃/秒の冷却速度で
冷却して供試材とし、それぞれ引張り強さ。
Next, the alloy having the composition of Nα3 in Table 1 was melted and horizontally continuously cast to produce 1q of ingots with a thickness of 10 mm.
After grinding in s increments and cold rolling to a thickness of 1.5 m,
Heat treatment was performed in a non-oxidizing atmosphere under the conditions shown in Table 2, and the surface was then cleaned and cold rolled to a thickness of 0.
.. 42 m, and was held at 460°C for 1 hour in a non-oxidizing atmosphere to perform intermediate annealing, cooled at a cooling rate of 0.03°C/sec, cleaned the surface again, and cold rolled to a thickness of 0.02 m. 25
M, was held at 300°C for 2ft5 in a non-oxidizing atmosphere, was subjected to final annealing, and was cooled at a cooling rate of 0.05°C/sec to obtain a test material, and the tensile strength of each specimen was determined.

伸び1曲げ成型性、半田接合強度、メッキ密着性を調査
してその結果を第2表にイガ記した。
The elongation, bending formability, solder joint strength, and plating adhesion were investigated, and the results are listed in Table 2.

次に第1表のNo、 3の組成の合金を溶解し、水平連
続鋳jΔして厚さ10mmの鋳塊を1q、該鋳塊を片面
0.5sづつ研削し、冷間圧延により厚さ1.5mとし
た後、非酸化性雰囲気中にて480℃で5時間保持し、
0.02℃/秒の冷却速度で冷却し表面を清浄化し、そ
の後第3表に示す条件で冷間圧延を施したものを中間焼
鈍をぜずに非酸化性雰囲気中にて300 ℃で20寺間
保持して仕上焼鈍をし、0.05℃/秒の冷却速度で冷
却して供試材とし、それぞれ引張り強さ、伸び1曲げ成
型性、半田接合強度及びメッキ密着性を調査してその結
果を第3表に併記した。
Next, the alloys with the composition No. 3 in Table 1 were melted, horizontally continuous casting was carried out to obtain 1 q of ingots with a thickness of 10 mm, the ingots were ground for 0.5 s on each side, and the thickness was reduced by cold rolling. After setting it to 1.5 m, it was held at 480°C for 5 hours in a non-oxidizing atmosphere,
The surface was cleaned by cooling at a cooling rate of 0.02°C/sec, and then cold rolled under the conditions shown in Table 3, and then rolled at 300°C in a non-oxidizing atmosphere for 20 minutes without intermediate annealing. The specimens were subjected to final annealing while being held at the temple, and cooled at a cooling rate of 0.05°C/sec to prepare test materials.The tensile strength, elongation 1 bending formability, solder joint strength, and plating adhesion were investigated. The results are also listed in Table 3.

さらに第1表のNo3及びNα7の組成の合金を溶解し
、水平連続鋳造により厚さ10間の鋳塊を17、該vi
跪を片面0.5.づつ研削し、冷間圧延により厚さ1.
5#とじた後非酸化性雰囲気中にて520℃で2時間保
持し、0.03℃/秒の冷却速度で冷却し表面を清浄化
し、その後冷間圧延して厚さ0.42mとし非酸化性雰
囲気中にて460℃で1時間保持して中間焼鈍を施し、
0.03℃/秒の冷却速度で冷却し、しかる後再び表面
を清浄化し冷間圧延を行なって0.25mmの厚さとし
、第4表に示す条件にて仕上焼鈍を施して供試材とし、
それぞれ引張強さ、伸び2曲げ成型性、半田接合強度及
びメッキ密着性を調査してその結果を第4表に併記する
Further, alloys having compositions No. 3 and Nα7 in Table 1 were melted, and ingots with a thickness of 10 to 17 were made by horizontal continuous casting.
Kneeling on one side 0.5. It is ground and cold rolled to a thickness of 1.
After binding 5#, it was held at 520℃ for 2 hours in a non-oxidizing atmosphere, cooled at a cooling rate of 0.03℃/sec to clean the surface, and then cold rolled to a thickness of 0.42m and non-stick. Intermediate annealing is performed by holding at 460°C for 1 hour in an oxidizing atmosphere,
It was cooled at a cooling rate of 0.03°C/sec, and then the surface was cleaned again and cold rolled to a thickness of 0.25 mm, and finished annealed under the conditions shown in Table 4 to be used as a test material. ,
The tensile strength, elongation, bending formability, solder joint strength, and plating adhesion were investigated, and the results are also listed in Table 4.

第1表〜第4表から明らかなように本発明法ににる合金
はいずれも引張り強さにおいては60、8KFI f 
/ try以上、伸びについては10.0%以上及び半
田接合強度については0.9Nyf/s以上有し、また
曲げ成型性においてはいずれも0.8以下、さらにメッ
キ層の剥離は皆無であり、良好な特性を有している。こ
れに対し本発明法と製造条件の異なる比較法による合金
は少なくとも1つ以上の特性について本発明法による合
金より劣っていることが判る。即ち、比較法Nα15は
半田接合強度が小さく、曲げ成型性及びメッキ密着性が
劣っており、比較法No、 17は曲げ成型性及びメッ
キ密着性が悪い。また比較法N023及びNα29はい
ずれも引張り強さが小さく、比較法Nα16. NO,
22及びN028はいずれも伸びが小さく、曲げ成型性
が劣っている。
As is clear from Tables 1 to 4, all the alloys produced by the method of the present invention have a tensile strength of 60.8 KFI f.
/ try or more, elongation of 10.0% or more, solder joint strength of 0.9 Nyf/s or more, bending formability of 0.8 or less, and no peeling of the plating layer. It has good characteristics. On the other hand, it can be seen that the alloy produced by the comparative method, which has different manufacturing conditions from the method of the present invention, is inferior to the alloy produced by the method of the present invention in at least one property. That is, comparative method No. 15 has low solder joint strength and poor bending formability and plating adhesion, and comparative method No. 17 has poor bending formability and plating adhesion. In addition, comparative methods N023 and Nα29 both have low tensile strength, and comparative method Nα16. No,
Both No. 22 and No. 28 have low elongation and poor bending formability.

(発明の効果) このように本発明によれば電子機器部品のリードフレー
ム材、ヒートシンク材、電子部品のリード材や構成部品
のばね材及び各種端子材に利用する合金の製造において
熱間加工工程を廃止することによりコストを低減でき、
高強度と優れた加工性、半田性、メッキ性が1qられる
等工業上顕著な効果を秦するものである。
(Effects of the Invention) As described above, according to the present invention, the hot working process can be performed in the production of alloys used for lead frame materials of electronic device parts, heat sink materials, lead materials of electronic parts, spring materials of component parts, and various terminal materials. Costs can be reduced by abolishing
It has remarkable industrial effects such as high strength, excellent workability, solderability, and plating performance of 1q.

Claims (1)

【特許請求の範囲】[Claims] Ti0.01〜5.0wt%を含み、さらに2.2wt
%以下のSnとそれぞれ2.5wt%以下のNi、Zn
、Mn、Co、Alとそれぞれ0.5wt%以下のMg
、As、Ca、V、Y、希土類元素、In、Pb、Sb
、Bi、Te、Ag、Au、P、B、Cr、Ga、Zr
、Geの1種又は2種以上を合計で5.0wt%以下を
含み、残部Cuと不可避的不純物から成る銅合金を連続
鋳造し、該鋳塊の表面を研削した後、20〜95%の加
工率で冷間加工を行ない、しかる後非酸化性雰囲気中に
て300〜900℃で5秒〜24時間加熱して0.01
〜500℃/秒の冷却速度で冷却を行なう工程の後、表
面を溶解又は研削により清浄化し、5〜90%の加工率
で冷間加工を行ない、しかる後非酸化性雰囲気中にて2
00〜650℃で5秒〜24時間加熱する工程を1回以
上繰り返して行なうことを特徴とする高力銅基合金の製
造法。
Contains 0.01 to 5.0 wt% of Ti, and further contains 2.2 wt%
% or less Sn and 2.5wt% or less Ni, Zn, respectively
, Mn, Co, Al and 0.5 wt% or less of Mg each
, As, Ca, V, Y, rare earth elements, In, Pb, Sb
, Bi, Te, Ag, Au, P, B, Cr, Ga, Zr
A copper alloy containing one or more types of Ge, 5.0 wt% or less in total, and the balance consisting of Cu and unavoidable impurities is continuously cast, and after grinding the surface of the ingot, 20 to 95% of Cold working is performed at a processing rate of 0.01, followed by heating at 300 to 900°C for 5 seconds to 24 hours in a non-oxidizing atmosphere.
After cooling at a cooling rate of ~500°C/sec, the surface is cleaned by melting or grinding, cold-worked at a processing rate of 5-90%, and then heated for 2 hours in a non-oxidizing atmosphere.
A method for producing a high-strength copper-based alloy, comprising repeating the step of heating at 00 to 650°C for 5 seconds to 24 hours one or more times.
JP62101406A 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy Expired - Fee Related JP2555070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101406A JP2555070B2 (en) 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101406A JP2555070B2 (en) 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy

Publications (2)

Publication Number Publication Date
JPS63266054A true JPS63266054A (en) 1988-11-02
JP2555070B2 JP2555070B2 (en) 1996-11-20

Family

ID=14299837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101406A Expired - Fee Related JP2555070B2 (en) 1987-04-24 1987-04-24 Manufacturing method of high strength copper base alloy

Country Status (1)

Country Link
JP (1) JP2555070B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074193A (en) * 2012-10-02 2014-04-24 Jx Nippon Mining & Metals Corp Titanium copper and its manufacturing method
JP2017020115A (en) * 2016-08-29 2017-01-26 Jx金属株式会社 Titanium copper and manufacturing method therefor
CN112030033A (en) * 2020-09-14 2020-12-04 江西省科学院应用物理研究所 Rare earth copper alloy for high-strength high-conductivity contact line
JP2021050393A (en) * 2019-09-25 2021-04-01 Jx金属株式会社 Titanium copper alloy sheet for vapor chamber and vapor chamber
JP2021050392A (en) * 2019-09-25 2021-04-01 Jx金属株式会社 Titanium copper alloy sheet for vapor chamber and vapor chamber
CN115305423A (en) * 2022-08-16 2022-11-08 江西省科学院应用物理研究所 Preparation method of copper alloy strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143566A (en) * 1984-12-13 1986-07-01 Nippon Mining Co Ltd Manufacture of high strength and highly conductive copper base alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143566A (en) * 1984-12-13 1986-07-01 Nippon Mining Co Ltd Manufacture of high strength and highly conductive copper base alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074193A (en) * 2012-10-02 2014-04-24 Jx Nippon Mining & Metals Corp Titanium copper and its manufacturing method
JP2017020115A (en) * 2016-08-29 2017-01-26 Jx金属株式会社 Titanium copper and manufacturing method therefor
JP2021050393A (en) * 2019-09-25 2021-04-01 Jx金属株式会社 Titanium copper alloy sheet for vapor chamber and vapor chamber
JP2021050392A (en) * 2019-09-25 2021-04-01 Jx金属株式会社 Titanium copper alloy sheet for vapor chamber and vapor chamber
CN112030033A (en) * 2020-09-14 2020-12-04 江西省科学院应用物理研究所 Rare earth copper alloy for high-strength high-conductivity contact line
CN115305423A (en) * 2022-08-16 2022-11-08 江西省科学院应用物理研究所 Preparation method of copper alloy strip
CN115305423B (en) * 2022-08-16 2023-11-14 江西省科学院应用物理研究所 Preparation method of copper alloy strip

Also Published As

Publication number Publication date
JP2555070B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2555067B2 (en) Manufacturing method of high strength copper base alloy
JPS6239213B2 (en)
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JPS63266054A (en) Manufacture of high-strength copper-base alloy
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH06207232A (en) Copper alloy for electronic and electrical equipment and its production
JPS63266053A (en) Production of high tensile copper based alloy
JP3459520B2 (en) Copper alloy for lead frame
JP2555068B2 (en) Manufacturing method of high strength copper base alloy
JP2002194461A (en) Copper alloy for lead frame and its production method
JPS63266052A (en) Production of high tensile copper based alloy
JPH034612B2 (en)
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP2555069B2 (en) Manufacturing method of high strength copper base alloy
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JP2021046590A (en) Copper alloy, drawn copper article and electronic apparatus component
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPH09316569A (en) Copper alloy for lead frame and its production
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees