JPS63265811A - Manufacture of feedstock powder of easily sinterable perovskite composite oxide - Google Patents

Manufacture of feedstock powder of easily sinterable perovskite composite oxide

Info

Publication number
JPS63265811A
JPS63265811A JP9618987A JP9618987A JPS63265811A JP S63265811 A JPS63265811 A JP S63265811A JP 9618987 A JP9618987 A JP 9618987A JP 9618987 A JP9618987 A JP 9618987A JP S63265811 A JPS63265811 A JP S63265811A
Authority
JP
Japan
Prior art keywords
precipitate
component
ingredient
composite oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9618987A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Tokuo Matsuzaki
徳雄 松崎
Masaru Kurahashi
優 倉橋
Koji Hayashi
浩二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9618987A priority Critical patent/JPS63265811A/en
Publication of JPS63265811A publication Critical patent/JPS63265811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain the titled easily sinterable, uniform feedstock powder which exhibits a high performance by preparing a precipitate in order by a wet method in a manufacturing of the feedstock powder of solid solution consisting of a perovskite structural composite oxide having a specific structure and a metallic oxide, and calcining the precipitate. CONSTITUTION:The feedstock powder of the solid solution consisting of the perovskite structural composite oxide indicated by a general formula (Ba1-xAx)BO3-aMO (A represents one or more of metals selected from Pb, Ca, Sr, Ce and La; B represents one or more of metals selected from Ti, Zr, Sn, Zn, Nb, Mg, Ni and Co; MO represents one or more of metallic oxides selected from MnO2, Nb2O5, Ta2O5, Ca2O3 and Al2O3; and 0<=x<1; 0<a<0.2) and the metallic oxide is manufactured. At that time, one or more of each ingredient solutions of the Ba ingredient, A ingredient, B ingredient and M ingredient is brought into contact with one or more of precipitant solutions at a multistage, hence the precipitate is formed in order, and is calcined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ペロブスカイト構造複合酸化物(以下へロブ
スカイトという)と金属酸化物との固溶体の原料粉末の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a raw material powder of a solid solution of a perovskite structure composite oxide (hereinafter referred to as herovskite) and a metal oxide.

従来、ペロブスカイトは、圧電体、誘電体、半導体、セ
ンサー、オプトエレクトロニクス材料等の機能性セラミ
ックスとして広く知られている。
Conventionally, perovskites have been widely known as functional ceramics for piezoelectrics, dielectrics, semiconductors, sensors, optoelectronic materials, and the like.

実際には、ペロブスカイトの機能性の向上または実用上
要求される特性の付与等のために、通常ペロブスカイト
と金属酸化物との固溶体として使われている。しかしな
がら、従来から使われているペロブスカイトと金属酸化
物との固溶体は、均一性、特性の面で充分でないため、
均一で高機能を発現するペロブスカイトと金属酸化物と
の固溶体の製造技術の開発が要望されている。
In fact, a solid solution of perovskite and metal oxide is usually used in order to improve the functionality of perovskite or impart properties required for practical use. However, the conventionally used solid solution of perovskite and metal oxide is insufficient in terms of uniformity and properties.
There is a need for the development of a manufacturing technology for a solid solution of perovskite and metal oxide that is uniform and exhibits high functionality.

(従来技術およびその問題点) 従来、ペロブスカイトと金属酸化物との固溶体の製造方
法としては、乾式法が知られており、以下の2つの手法
がある。
(Prior Art and its Problems) Conventionally, a dry method is known as a method for producing a solid solution of perovskite and a metal oxide, and there are the following two methods.

(1)ベロプスカイI−粉末を乾式法、共沈法等により
合成し、次いでペロブスカイト粉末と金属酸化物粉末を
乾式で混合し、混合物を仮焼する方法。
(1) A method in which Velovskite I-powder is synthesized by a dry method, a coprecipitation method, etc., then a perovskite powder and a metal oxide powder are mixed in a dry method, and the mixture is calcined.

(2)ペロブス力・イトの構成原料成分の化合物と金属
酸化物粉末を乾式で混合し、混合物を仮焼する方法。
(2) A method of dry mixing a compound of the raw material components of Perobus force/ITO and metal oxide powder, and calcining the mixture.

しかしながら、いずれの方法も、得られた粉末が組成的
に均一になり難くまた。優れた機能も発現しにくい、さ
らに粉末の粒径が大きくなりがちで、焼結性も十分でな
い。
However, in either method, it is difficult for the obtained powder to be uniform in composition. It is difficult to develop excellent functions, and furthermore, the particle size of the powder tends to be large, and the sinterability is not sufficient.

(発明の目的) 本発明の目的は、従来の乾式法における欠点をなくすこ
とができる方法、さらには湿式法によって易焼結性、均
一性、低コスI・、高嵩密度で、かつ高機能を発現する
ペロブスカイトと金属酸化物との固溶体の原料粉末を効
率よく製造することができる方法を提供することである
(Objective of the Invention) The object of the present invention is to provide a method that can eliminate the drawbacks of the conventional dry method, and furthermore, to achieve easy sinterability, uniformity, low cost I, high bulk density, and high functionality by a wet method. An object of the present invention is to provide a method that can efficiently produce raw material powder of a solid solution of perovskite and metal oxide that expresses the following.

(問題点を解決するための技術的手段)本発明者等は前
記目的を達成すべく鋭意研究の結果、本発明に到った。
(Technical Means for Solving the Problems) The inventors of the present invention have conducted intensive research to achieve the above-mentioned object, and as a result, have arrived at the present invention.

本発明は、一般式(Ba1−xAx’IBO3−a M
O(ただし、AはPb、Ca、Br、Ce、Laから這
ばれる一種以上の金属を示し、BはTi、Zr、Sn、
Zn。
The present invention is based on the general formula (Ba1-xAx'IBO3-a M
O (However, A represents one or more metals derived from Pb, Ca, Br, Ce, and La, and B represents Ti, Zr, Sn,
Zn.

Nb、Mg、 N i、Coから選ばれる一種以上の金
属を示し、MOはMnO2,Nb2o5.Ta2o5.
Co2O3゜Al103から選ばれる一種以上の金属酸
化物を示し、0≦x<1.O<a<0.2である。)で
表されるペロブスカイト構造複合酸化物と金属酸化物と
の固溶体の原料粉末の製造に際し、Ba成分、A成分、
B成分およびM成分の各成分溶液を一種以上の沈澱形成
液と多段に接触させて、逐次的に沈澱を生成させた後、
得られた沈澱物を仮焼することを特徴とする易焼結性ペ
ロブスカイト系複合酸化物の原料粉末の製造法に関する
It represents one or more metals selected from Nb, Mg, Ni, Co, and MO is MnO2, Nb2o5. Ta2o5.
Indicates one or more metal oxides selected from Co2O3°Al103, and 0≦x<1. O<a<0.2. ) When producing a raw material powder of a solid solution of a perovskite structure composite oxide and a metal oxide, Ba component, A component,
After bringing each component solution of component B and component M into contact with one or more precipitate forming liquids in multiple stages to sequentially generate precipitates,
The present invention relates to a method for producing raw material powder of an easily sinterable perovskite complex oxide, which is characterized by calcining the obtained precipitate.

本発明において、「溶液」とは可溶物を溶解させた溶液
または不溶物を分散させた懸濁液を意味する。
In the present invention, the term "solution" refers to a solution in which soluble substances are dissolved or a suspension in which insoluble substances are dispersed.

本発明における、一般式(Ba1−xAx)BO3−a
MOで表されるペロブスカイトと金属酸化物との固溶体
のA成分はPb、Ca、Br、Ce、Laから選ばれる
一種以上の金属であり、B成分はT i、 Z r。
In the present invention, general formula (Ba1-xAx)BO3-a
The A component of the solid solution of perovskite and metal oxide represented by MO is one or more metals selected from Pb, Ca, Br, Ce, and La, and the B component is Ti, Zr.

Sn、Zn、Nb、Mg、N i、Coから選ばれる一
種以上の金属であり、MOはMn O2,Nb2O5,
’I’a205゜c 0203 、Al203から選ば
れる一種以上の金属酸化物であり、0≦x<1.0<a
<0.2である。
One or more metals selected from Sn, Zn, Nb, Mg, Ni, Co, and MO is MnO2, Nb2O5,
'I'a205゜c 0203, one or more metal oxides selected from Al203, 0≦x<1.0<a
<0.2.

aが0.2以上では特性的に問題となるので好ましくな
い。
If a is 0.2 or more, it is not preferable because it causes problems in terms of characteristics.

前記一般式におけるBa成分、A成分、B成分およびM
成分の金属元素を含む化合物の溶液を調製するための各
成分化合物としては、特に限定されないが、それらの水
酸化物、炭酸塩、オキシ塩、硫酸塩、硝酸塩、塩化物等
の無機塩、!1:酸塩、しゆう酸塩等の有機酸塩、酸化
物等から適宜選択される。これらは−・般に水溶液とし
て使用されるが水に可溶でない場合には酸を添加して可
溶させればよく、不溶原料については懸濁溶液として使
用してもよい、また水溶液のかわりにアルコール溶液を
使用してもよい。
Ba component, A component, B component and M in the general formula
Each component compound for preparing a solution of a compound containing a component metal element is not particularly limited, but may include inorganic salts such as hydroxides, carbonates, oxysalts, sulfates, nitrates, chlorides, etc. 1: Suitably selected from acid salts, organic acid salts such as oxalates, oxides, etc. These are generally used as an aqueous solution, but if they are not soluble in water, they can be made soluble by adding an acid, and insoluble raw materials may be used as a suspension solution, or instead of an aqueous solution. Alcohol solutions may also be used.

沈澱形成液としては、アンモニア、炭酸アンモニウム、
炭酸水素アンモニウム、しゅう酸、しゅう酸アンモニウ
ム、苛性アルカリ、アルキルアミン等の溶液が挙げられ
る。 アルキルアミンとしては、メチルアミン、エチル
アミン、プロピルアミン、ブチルアミンなどの低級アル
キル基を有する第一アミン、シクロヘキシルアミンの如
き第一アミン、ジメチルアミン、ジエチルアミンなどの
低級アルキル基を有する第二アミン、トリエチルアミン
の如き低級アルキル基を有する第三アミンを挙げること
ができる。
Precipitation forming liquids include ammonia, ammonium carbonate,
Examples include solutions of ammonium hydrogen carbonate, oxalic acid, ammonium oxalate, caustic alkali, alkylamine, and the like. Examples of alkylamines include primary amines having a lower alkyl group such as methylamine, ethylamine, propylamine, and butylamine, primary amines having a lower alkyl group such as cyclohexylamine, secondary amines having a lower alkyl group such as dimethylamine and diethylamine, and triethylamine. Mention may be made of tertiary amines having lower alkyl groups such as

本発明においては、Ba成分、A成分、B成分およびM
成分の各成分溶液を一種以上の沈澱形成液と多段に接触
させて、逐次的に沈澱を生成させる。このように多段に
沈澱を生成させることにより、各沈澱物の一次粒子の形
状は不均一であるが、その凝集体である二次粒子の形状
は均一・であり、しかも二次粒子の大きさはサブミクロ
ン程度の適度の粒子径となり分散性の良いものとなる。
In the present invention, Ba component, A component, B component and M
A solution of each of the components is brought into contact with one or more precipitate-forming liquids in multiple stages to sequentially form a precipitate. By producing precipitates in multiple stages in this way, the shape of the primary particles of each precipitate is nonuniform, but the shape of the secondary particles that are the aggregates is uniform, and the size of the secondary particles is The particles have an appropriate particle size of about submicron and have good dispersibility.

構成成分の沈澱を生成するには沈澱形成液を撹拌しなが
ら、沈澱形成液に、各構成成分の溶液を添加してもよく
、その反対に添加してもよい、添加に際しては液を十分
に撹拌しながら行うことが好ましい。
To generate a precipitate of the constituent components, the solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa. It is preferable to carry out the reaction while stirring.

また沈澱の生成に際し、例えば一つの成分の沈澱を生成
した後、陰イオンを除去するために水洗した後、沈澱物
を新しい水またはアルコール中に分散して、さらに他成
分の溶液と沈澱形成液を添加して沈澱を生成してもよい
In addition, when forming a precipitate, for example, after forming a precipitate of one component, the precipitate is washed with water to remove anions, the precipitate is dispersed in fresh water or alcohol, and then the precipitate is mixed with a solution of other components. may be added to form a precipitate.

前記方法により得られた沈澱物は通常の洗浄方法により
水等で洗浄して、P別、乾燥した後、仮焼する。乾燥は
、大気圧下で行っても減圧下で行ってもよい。
The precipitate obtained by the above method is washed with water or the like by a conventional washing method, separated from P, dried, and then calcined. Drying may be performed under atmospheric pressure or under reduced pressure.

仮焼温度としては、過度に低いと沈澱物の脱水、熱分解
が不十分であり、また過度に高いと粉末が粗大化するの
で、通常、仮焼温度は500〜1300℃の範囲が好適
である。
If the calcination temperature is too low, the dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse. be.

(実施例) 以下に実施例および比較例を示し、さらに詳しく本発明
について説明する。
(Example) The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例I Ba Ti 03−0.03Nb205−0.02Co
203しゆう酸37.8gを水10100Oに溶解し、
さらに28%アンモニア水100mJlを加えた。
Example I BaTi 03-0.03Nb205-0.02Co
Dissolve 37.8g of 203 oxalic acid in 10100O of water,
Furthermore, 100 mJl of 28% ammonia water was added.

これに硝酸バリウム[B a (N O3)2] 49
−66 gを水10100O!に溶解した溶液とチタン
テトライ’/7”0ボキシド[T + (OCH(CH
3)2甲54,00gをエタノール500mjlに溶解
した溶液分撹拌しながら加えた。さらに、五塩化ニオブ
(NbCl)5) 3.2419 gをエタノール10
0mJ中に溶解した溶液を撹拌しながら加えた。
To this, barium nitrate [B a (N O3)2] 49
-66 g of water 10100O! solution of titanium tetra'/7''0 box [T + (OCH(CH
3) A solution of 54,00 g of 2K dissolved in 500 mjl of ethanol was added with stirring. Furthermore, 3.2419 g of niobium pentachloride (NbCl)5) was added to 10 g of ethanol.
A solution dissolved in 0 mJ was added with stirring.

得られた沈澱物をイオン交換水3!Jでデカンテーショ
ンを5回繰返して洗浄した0次いで沈澱物を含む溶液に
、ジエチルアミン7.5gを水100mNに加えた溶液
を加え、さらに水を加えて全量を1.51とした0次に
硝酸コバルト[co(N03)2・6H20] 232
80gを水100mNに溶解した溶液を撹拌しながら滴
下した。この沈澱物をイオン交換水で洗浄し、濾過、乾
燥した後、9゜0℃で2時間仮焼した。得られた粉末を
透過型電子顕微鏡で観察したところ、粒径は0.2μm
程度で粒度分布はシャ・−ブで均一なものであった。
The obtained precipitate was poured into ion-exchanged water 3! A solution of 7.5 g of diethylamine in 100 mN of water was added to the solution containing the precipitate, which had been washed by repeating decantation 5 times with J. Cobalt [co(N03)2・6H20] 232
A solution of 80 g dissolved in 100 mN of water was added dropwise while stirring. This precipitate was washed with ion-exchanged water, filtered, dried, and then calcined at 9.0°C for 2 hours. When the obtained powder was observed with a transmission electron microscope, the particle size was 0.2 μm.
The particle size distribution was coarse and uniform.

この13末にポリビニルアルコールを0.8重ffi%
添加してit/−で成型し、1300℃で2時間焼成し
た。得られた焼結体の密度は5.9g/−であっな、さ
らに、この焼結体に銀ペーストを塗布後、600℃で焼
付けして、室温で電気特性を測定したところ、比誘電率
4850、tanδ0o83%であった。また焼結体の
抗折力強度を測定したところ、1200kg/cJであ
った。
Add 0.8% polyvinyl alcohol to this 13 powder.
It was added, molded with it/-, and baked at 1300°C for 2 hours. The density of the obtained sintered body was 5.9 g/-.Furthermore, after applying silver paste to this sintered body, it was baked at 600°C and its electrical properties were measured at room temperature. 4850, tan δ0o83%. Further, the transverse rupture strength of the sintered body was measured and found to be 1200 kg/cJ.

比較例1 実施例1と同じ組成となるように酸化チタン(Ti O
)37.95g、炭酸バリウム(Ba Co3)93.
74g、酸化ニオブ(Nb205)3.9872 gお
よび酸化コバルト(C0203) 1.6586 gを
秤取し、これらに水を加えてボールミルで十分に混合し
た後、濾過、乾燥し、これを1150’Cで2時間仮焼
した。得られた粉末の粒径は約3μmであり0.5〜5
μmの巾広い粒度分布があった0次いで、この粉末を実
施例1と同様にして成型、焼成した。得られた焼結体の
電気特性を測定したところ、比誘電率2150、tan
δ1.3%であった。
Comparative Example 1 Titanium oxide (TiO
) 37.95g, barium carbonate (Ba Co3) 93.
74 g of niobium oxide (Nb205), 3.9872 g of cobalt oxide (C0203), and 1.6586 g of cobalt oxide (C0203) were weighed out, water was added thereto, and the mixture was thoroughly mixed in a ball mill, filtered and dried, and heated at 1150'C. It was calcined for 2 hours. The particle size of the obtained powder is approximately 3 μm, which is 0.5 to 5 μm.
This powder had a particle size distribution with a wide range of .mu.m.Then, this powder was molded and fired in the same manner as in Example 1. When the electrical properties of the obtained sintered body were measured, the dielectric constant was 2150, tan
δ was 1.3%.

また焼結体の密度は5.65g/−であり、抗折力強度
は、780 kg/−であった。
Further, the density of the sintered body was 5.65 g/-, and the transverse rupture strength was 780 kg/-.

比較例2 実施例1と同じ組成となるようにチタン酸バリウム(1
3a ’ri o3)’ 110.79 g−酸化ニオ
ブ(Nb205)3.9872 gおよび酸化コバルト
(C020s ) I−6586gを秤取し、これらを
比較例1と同様にして混合、仮焼、成型、焼成した。
Comparative Example 2 Barium titanate (1
3a 'ri o3)' 110.79 g - 3.9872 g of niobium oxide (Nb205) and 6586 g of cobalt oxide (C020s) I- were weighed, and mixed, calcined, molded, and mixed in the same manner as in Comparative Example 1. Fired.

得られた焼結体の電気特性を測定したところ、比誘電率
1870、tanδ1.2%であった。また焼結体の密
度は5.60g/cjであり、抗折力強度は、7501
qr/−であった。
When the electrical properties of the obtained sintered body were measured, it was found that the dielectric constant was 1870 and the tan δ was 1.2%. The density of the sintered body is 5.60 g/cj, and the transverse rupture strength is 7501
It was qr/-.

実施例2〜8 実施例1と同様な方法により第1表に示す組成のものを
製造した。得られた粉末および焼結体の特性評価結果を
第2表に示す。
Examples 2 to 8 Products having the compositions shown in Table 1 were manufactured in the same manner as in Example 1. Table 2 shows the characteristics evaluation results of the obtained powder and sintered body.

比較例3〜9 実施例2〜8に対応する組成物を比較例1と同様な方法
により乾式法で製造した。得られた粉末および焼結体の
特性評価結果を第2表に示す。
Comparative Examples 3 to 9 Compositions corresponding to Examples 2 to 8 were produced in the same manner as in Comparative Example 1 using a dry method. Table 2 shows the characteristics evaluation results of the obtained powder and sintered body.

(発明の効果) 一般式 (Ba1.、xAxIBO3−a MO(ただ
し、Aはpb、ca、sr、ce、t、aから選ばれる
一種以上の金属を示し、BはTt、zr、sn、zn。
(Effect of the invention) General formula (Ba1., xAxIBO3-a MO (where A represents one or more metals selected from pb, ca, sr, ce, t, and a, and B represents Tt, zr, sn, zn .

Nb、M(1,Ni、Coから選ばれる一種以上の金属
を示し、MOはMn O,、、Nb2O,、、Ta20
5.Co2O3゜Ag2O3から選ばれる一種以上の金
属酸化物を示し、0≦x<1.O<a<0.2である。
Nb, M (1, indicates one or more metals selected from Ni, Co, MO is Mn O,..., Nb2O,..., Ta20
5. It represents one or more metal oxides selected from Co2O3°Ag2O3, and 0≦x<1. O<a<0.2.

)で表されるペロブスカイトと金属酸化物との固溶体の
原料粉末の製造に際し、従来の乾式法とは異なり、湿式
法により各成分を一種以上の沈澱形成液と多段に接触さ
せて逐次的に沈澱を生成させることにより、全成分を完
全に沈澱させることができ、また二相以上の相が高度に
相互分散した状態の沈澱物が得られる結果、沈澱生成時
に′a集、もしくは乾燥、仮焼時に凝結を起こしにくく
、高嵩密度で易焼結性であり、高機能を発現する粉末を
再現性よく製造することができる。
) When producing the raw material powder of a solid solution of perovskite and metal oxide represented by By forming a It is possible to produce a powder with good reproducibility that does not easily cause aggregation, has a high bulk density, is easily sinterable, and exhibits high functionality.

また本プロセスでは各相が高度に相互分散しており、従
ってこのものを仮焼したものは粒度分布が狭く、粒子も
揃っており、しかも組成的にも十分な均一性が達成され
る。さらにプロセスが簡単であることに由来して、再現
性良く低コストで易焼結性で高機能を発現する粉末が得
られる等の優れた効果を有する。
Furthermore, in this process, each phase is highly mutually dispersed, so that the calcined product has a narrow particle size distribution, uniform particles, and sufficient compositional uniformity. Further, since the process is simple, it has excellent effects such as being able to obtain a powder that is easily sinterable and exhibits high functionality at a low cost with good reproducibility.

Claims (1)

【特許請求の範囲】[Claims] 一般式(Ba_1_−_xA_x)BO_3−aMO(
ただし、AはPb、Ca、Br、Ce、Laから選ばれ
る一種以上の金属を示し、BはTi、Zr、Sn、Zn
、Nb、Mg、Ni、Coから選ばれる一種以上の金属
を示し、MOはMnO_2、Nb_2O_5、Ta_2
O_5、Co_2O_3、Al_2O_3から選ばれる
一種以上の金属酸化物を示し、0≦x<1、0<a<0
.2である。)で表されるペロブスカイト構造複合酸化
物と金属酸化物との固溶体の原料粉末の製造に際し、B
a成分、A成分、B成分およびM成分の各成分溶液を一
種以上の沈澱形成液と多段に接触させて、逐次的に沈澱
を生成させた後、得られた沈澱物を仮焼することを特徴
とする易焼結性ペロブスカイト系複合酸化物の原料粉末
の製造法。
General formula (Ba_1_-_xA_x)BO_3-aMO(
However, A represents one or more metals selected from Pb, Ca, Br, Ce, and La, and B represents Ti, Zr, Sn, and Zn.
, Nb, Mg, Ni, and Co, and MO represents MnO_2, Nb_2O_5, Ta_2
Indicates one or more metal oxides selected from O_5, Co_2O_3, Al_2O_3, 0≦x<1, 0<a<0
.. It is 2. ) When producing a raw material powder of a solid solution of a perovskite structure composite oxide and a metal oxide, B
Each component solution of component a, component A, component B, and component M is brought into contact with one or more precipitate forming liquids in multiple stages to sequentially generate precipitates, and then the obtained precipitates are calcined. A method for producing a raw material powder of easily sinterable perovskite complex oxide.
JP9618987A 1987-04-21 1987-04-21 Manufacture of feedstock powder of easily sinterable perovskite composite oxide Pending JPS63265811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9618987A JPS63265811A (en) 1987-04-21 1987-04-21 Manufacture of feedstock powder of easily sinterable perovskite composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9618987A JPS63265811A (en) 1987-04-21 1987-04-21 Manufacture of feedstock powder of easily sinterable perovskite composite oxide

Publications (1)

Publication Number Publication Date
JPS63265811A true JPS63265811A (en) 1988-11-02

Family

ID=14158360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9618987A Pending JPS63265811A (en) 1987-04-21 1987-04-21 Manufacture of feedstock powder of easily sinterable perovskite composite oxide

Country Status (1)

Country Link
JP (1) JPS63265811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690684A1 (en) * 1992-05-01 1993-11-05 Murata Manufacturing Co Non-reducible dielectric ceramic composition.
DE19740262C1 (en) * 1997-09-12 1999-04-22 Siemens Matsushita Components Sintered ceramic consisting of single perovskite phase
CN1047767C (en) * 1994-12-26 1999-12-29 珠海经济特区天年高科技国际企业公司 Super-fine trace element biochemical mixture and its foam plastic product contained
WO2011027625A1 (en) * 2009-09-07 2011-03-10 株式会社 村田製作所 Dielectric ceramic composition, and laminated ceramic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153115A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPS61253710A (en) * 1985-04-30 1986-11-11 太陽誘電株式会社 Dielectric ceramic composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153115A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPS61253710A (en) * 1985-04-30 1986-11-11 太陽誘電株式会社 Dielectric ceramic composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690684A1 (en) * 1992-05-01 1993-11-05 Murata Manufacturing Co Non-reducible dielectric ceramic composition.
CN1047767C (en) * 1994-12-26 1999-12-29 珠海经济特区天年高科技国际企业公司 Super-fine trace element biochemical mixture and its foam plastic product contained
DE19740262C1 (en) * 1997-09-12 1999-04-22 Siemens Matsushita Components Sintered ceramic consisting of single perovskite phase
WO2011027625A1 (en) * 2009-09-07 2011-03-10 株式会社 村田製作所 Dielectric ceramic composition, and laminated ceramic capacitor
US8592335B2 (en) 2009-09-07 2013-11-26 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic capacitor
JP5455164B2 (en) * 2009-09-07 2014-03-26 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
US5096642A (en) Process for producing a high density ceramic of perovskite
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
JPH0559048B2 (en)
JPS63265811A (en) Manufacture of feedstock powder of easily sinterable perovskite composite oxide
JPH0159967B2 (en)
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JPS6363511B2 (en)
JPH0556287B2 (en)
JPS63319214A (en) Powder material for condenser
JPH0456777B2 (en)
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPS6325223A (en) Production of ceramic raw material powder
JPS63285147A (en) Production of niobium-containing perovskite ceramic
JPS6325265A (en) Manufacture of high density bznt base ferroelectric ceramic
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
JPS63285150A (en) Production of neodymium-containing dielectric material ceramic
JPH0260629B2 (en)
JPH0457615B2 (en)
JPS63265822A (en) Manufacture of composite perovskite feedstock powder for low temperature sintering
JPH01122907A (en) Production of perovskite oxide powder
JPS6325263A (en) Manufacture of high density bzt base ferroelectric ceramic
JPS62226812A (en) Production of easy-to-sinter perovskite powder
JPS6325264A (en) Manufacture of high density bzn base ferroelectric ceramic