JPS63264379A - Linear light source device for printer - Google Patents

Linear light source device for printer

Info

Publication number
JPS63264379A
JPS63264379A JP62098957A JP9895787A JPS63264379A JP S63264379 A JPS63264379 A JP S63264379A JP 62098957 A JP62098957 A JP 62098957A JP 9895787 A JP9895787 A JP 9895787A JP S63264379 A JPS63264379 A JP S63264379A
Authority
JP
Japan
Prior art keywords
light
electron beam
phosphor
light source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62098957A
Other languages
Japanese (ja)
Other versions
JPH0829604B2 (en
Inventor
Michio Okajima
道生 岡嶋
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9895787A priority Critical patent/JPH0829604B2/en
Publication of JPS63264379A publication Critical patent/JPS63264379A/en
Publication of JPH0829604B2 publication Critical patent/JPH0829604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/4476Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using cathode ray or electron beam tubes

Abstract

PURPOSE:To contrive the realization of a linear light source device for a printer with luminance, by exposing the side edge surface of a fluorescent light emitting part in the state of a light-diffused surface. CONSTITUTION:In this linear light source device, phosphor light-emitting parts 6 comprising ZnO:Zn having a smooth surface, being transparent and having a light guiding property are provided on a substrate glass 4 adjacent to electron beam controlling electrodes 5, and an exposed side edge part 7 constitutes a light-emitting element 8 corresponding to each of the electrodes 5. Accelerating electrodes 9 are provided between a linear thermal cathode 3 and the light- emitting parts 6. Light emitted from the light-emitting part at an angle greater than a critical angle is guided to the side edge part 7, whereby outgoing light 10 is emitted. Light emitted from the light emitting element 8 is focused on a photosensitive drum through a selfoc lens disposed in parallel to a light- emitting element row 11 at a predetermined position in x-axis direction, to form an image. By this, an electrophotographic type optical printer can be obtained with high speed, high resolution and high printing quality.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光プリンタ用線光源装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a line light source device for an optical printer.

従来の技術 第7図、第8図に発光ダイオードアレイを用いた光プリ
ンタ用線光源の一例を示す。このプリンタは発光ダイオ
ード点光源40(以後LEDともよぶ)を−次元アレイ
状に多数個並べた構造になっている。
2. Description of the Related Art FIGS. 7 and 8 show an example of a line light source for an optical printer using a light emitting diode array. This printer has a structure in which a large number of light emitting diode point light sources 40 (hereinafter also referred to as LEDs) are arranged in a -dimensional array.

各々の点光源は、G a A s PもしくはG a 
A I A s等の半導体チップ上にモノリシックに形
成されたLEDよ構成る。
Each point light source is G a A s P or G a
It consists of an LED monolithically formed on a semiconductor chip such as AIAs.

現在の半導体技術では、A4もしくはA3原稿長にも及
ぶLEDアレイをモノリシックに形成できる大きさの半
導体基板を形成することは困難であるため、第8図に示
すような長さ5〜20m’jf程度のアレイチップ41
を所定の長さになる様につながあわせて構成されている
。本従来例では1チツプあたシロ4個のLEDを配列し
たものを64個つなぎあわせて計4096絵素で、B4
サイズに対応している。
With current semiconductor technology, it is difficult to form a semiconductor substrate large enough to monolithically form an LED array as long as an A4 or A3 document. Array chip 41
It is constructed by connecting them to a predetermined length. In this conventional example, 64 LEDs are arranged with 4 LEDs per chip, making a total of 4096 pixels, and B4
It corresponds to the size.

発光波長は670nm、1lLEDの発光部面積は40
8mX50μmであり、62.5μmピンチでならんで
いる。1ドツト当9の光量は4μW/ドツト(2mW/
−に相当)である。
The emission wavelength is 670 nm, and the light emitting area of 1l LED is 40 nm.
It is 8 m x 50 μm, and is lined up with a 62.5 μm pinch. The light intensity of 9 per dot is 4μW/dot (2mW/
-).

これらの発光ダイオード点光源4oは並設された専用ド
ライバLSI42によシ駆動点灯される。
These light emitting diode point light sources 4o are driven and lit by a dedicated driver LSI 42 arranged in parallel.

LEDよシ発せられた光はセルフォックレンズアレイ4
3を介して、感光体ドラム上に結像する。
The light emitted from the LED comes from SELFOC lens array 4.
3, the image is formed on the photoreceptor drum.

発光ダイオードアレイを用いた光プリンタは、すでに商
品化されている。
Optical printers using light emitting diode arrays have already been commercialized.

しかし、現在実用化されている汎用感光体は、その感度
が可視短波長域になるにつれ高くなるものが多いが、上
記の様なLEDによシ構成されたプリンタの発光波長は
、短くとも650nm程度までである。また、各LED
毎の輝度バラツキが10〜16%程度あり、これを5%
以下に均一に保つことは、かなり難しかった。
However, the sensitivity of general-purpose photoreceptors currently in practical use increases as the visible wavelength range increases, but the emission wavelength of printers configured with LEDs as described above is at least 650 nm. To a certain extent. In addition, each LED
There is a luminance variation of about 10 to 16%, and this can be reduced to 5%.
It was quite difficult to keep it uniform below.

そこで上記問題点を解消し、高精度で、感光体との波長
マツチングがとれて、発光輝度のバラツキが小さく、安
価に製造できる光プリンタ用線光源として最近、螢光電
子管式の一次元アレイ光源が注目されている。
Therefore, to solve the above problems, a fluorescent electron tube type one-dimensional array light source has recently been developed as a line light source for optical printers that has high precision, wavelength matching with the photoreceptor, small variation in luminance, and can be manufactured at low cost. is attracting attention.

具体的には、数10v〜1oO■程度の低速電子線によ
シ高い効率で励起でき、しかも発光波長は500nm付
近である酸化亜鉛の粉末螢光体層に電子線を照射し、発
光させる。1)従来の螢光表示管同様にシャワー状に電
子ビームを照射し、発光させ、基板ガラスとは対向方向
に出射する光を利用する方法(特開昭58−22324
3号公報)11)線状熱陰極から放射された電子ビーム
を収束電極を用いて帯状に収束して、パワー密度を上げ
て螢光体層に照射し、基板ガラスを透過して出射する光
を利用する方法(特願昭60−1273号)等がある。
Specifically, a powder phosphor layer of zinc oxide, which can be excited with high efficiency by a slow electron beam of several tens of volts to 100 volts and has an emission wavelength of around 500 nm, is irradiated with an electron beam to cause it to emit light. 1) Similar to conventional fluorescent display tubes, a shower-like electron beam is irradiated to emit light, and the light is emitted in a direction opposite to the substrate glass.
Publication No. 3) 11) The electron beam emitted from the linear hot cathode is focused into a band using a focusing electrode, the power density is increased, the phosphor layer is irradiated, and the light is transmitted through the substrate glass and emitted. There is a method using (Japanese Patent Application No. 60-1273).

第9図、第10図に、特願昭60−1273号に示され
た、11)の方式の一実施例を示す。線状熱陰極63.
電子゛ビーム取シ出し電極67、収束電極62.加速電
極69.電子ビーム制御電極56上に形成された螢光体
粉末層56等が真空外囲器61の中に封入されており、
線状熱陰極63から放射された電子ビームを収束電極6
2を用いて帯状に収束し、スリン)60を通して螢光体
粉末層56に照射2発光させる。アレイ状に並んだ発光
点は第10図に示す様に、その下に設けられた電子ビー
ム制御電極66に数10vの電位を印加するか否かで、
電子ビームを制御し、光をスイッチングする。電子ビー
ム制御電極56は透明導電膜でできておシ、基板ガラス
64を透過した光は、その下部に設けたセルフォックレ
ンズを介して、感光ドラム上に集光、結像される。
FIGS. 9 and 10 show an embodiment of the method 11) shown in Japanese Patent Application No. 1273/1983. Linear hot cathode 63.
Electron beam extraction electrode 67, focusing electrode 62. Accelerating electrode 69. A phosphor powder layer 56 and the like formed on the electron beam control electrode 56 are enclosed in a vacuum envelope 61.
The electron beam emitted from the linear hot cathode 63 is focused on the converging electrode 6
The phosphor powder layer 56 is irradiated with phosphor powder 56 through a sulin (surin) 60 to cause it to emit light. As shown in FIG. 10, the light emitting points arranged in an array can be controlled by applying a potential of several tens of volts to the electron beam control electrode 66 provided below.
Control electron beams and switch light. The electron beam control electrode 56 is made of a transparent conductive film, and the light transmitted through the substrate glass 64 is focused and imaged onto the photosensitive drum via a SELFOC lens provided below.

発明が解決しようとする問題点 ところが、上記の様な、螢光電子管式アレイ光源には、
十分な輝度が得にくいという問題点があった。
Problems to be Solved by the Invention However, the above-mentioned fluorescent electron tube array light source has the following problems:
There was a problem in that it was difficult to obtain sufficient brightness.

上記1)の方式のアレイ光源では、電子ビームのパワー
密度を上げることは難しく、十分な輝度は得られなかっ
た。また11)の方式では、電子ビームを収束すること
によりビームパワー密度は上げることができるが、30
0〜400 mW/mjの高パワー密度の電子ビームを
照射して3〜4mW/71i(の高光出力を得ようとし
ても、電子ビーム照射により螢光体粉末層表面の温度が
2o○°C〜300°Cにも達し、螢光体は温度消光を
おこし、発光効率は大幅に低下し、いくら電子ビームの
)(ワー密度を上げても、発光量は飽和してしまって、
高光出力は得にくかった。
With the array light source of the method 1) above, it is difficult to increase the power density of the electron beam, and sufficient brightness cannot be obtained. In addition, in the method 11), the beam power density can be increased by converging the electron beam, but the
Even if an attempt is made to obtain a high optical output of 3 to 4 mW/71i (by irradiating an electron beam with a high power density of 0 to 400 mW/mj), the temperature of the surface of the phosphor powder layer due to electron beam irradiation will be 2°C to 40°C. At temperatures as high as 300°C, the phosphor undergoes temperature quenching, its luminous efficiency drops significantly, and no matter how high the electron beam density is, the amount of light emitted reaches saturation.
High light output was difficult to obtain.

本発明は、上記問題点を解決し、高アレイ密度で、且つ
、各発光素の光量を飛躍的に増加することのできる螢光
管式アレイ光源方式のプリンタ用線光源装置を提供する
ことを目的とする。
The present invention aims to solve the above-mentioned problems and provide a line light source device for a printer using a fluorescent tube array light source system, which has a high array density and can dramatically increase the amount of light from each light emitting element. purpose.

問題点を解決するための手段 電子ビームを放射する線状もしくは帯状の熱陰極と、前
記電子ビームを加速する加速電極と、アレイ状に配列さ
れた複数の短冊状の電子ビーム制御電極が真空中に封入
されている構造のプリンタ用線光源装置において、誘電
体基板上に、透明で、少なくとも真空側及び前記基板側
界面が平滑な、光ガイド性を有する短冊状の螢光体発光
部をそれぞれの電子ビーム制御電極に対応してアレイ状
に形成し、しかも前記螢光体発光部の911j縁端部表
面を光拡散表面状態で露出させるとともに、前記螢光体
発光部のmJ記−[1++1縁端部以外の表面に、部分
的に、前記電子ビーム制御電極に導通した導電層を設け
た構造とし、前記側縁端部界面から外部に放射する光を
利用する。
Means for Solving the Problem A linear or band-shaped hot cathode that emits an electron beam, an acceleration electrode that accelerates the electron beam, and a plurality of strip-shaped electron beam control electrodes arranged in an array are placed in a vacuum. In the line light source device for printers, a linear light source device for a printer has a structure in which a transparent strip-shaped phosphor light-emitting portion having a light guide property and having smooth interfaces at least on the vacuum side and the substrate side is provided on a dielectric substrate. are formed in an array corresponding to the electron beam control electrodes of the phosphor light emitting section, and the edge surface of the phosphor light emitting section 911j is exposed in a light diffusing surface state, and mJ of the phosphor light emitting section -[1++1 A conductive layer electrically connected to the electron beam control electrode is partially provided on the surface other than the edge portion, and light emitted to the outside from the side edge interface is utilized.

作  用 螢光体発光部表面に電子ビームが照射され発光した光の
うち、その法線となす角が螢光体発光部と誘電体基板の
屈折率比で決まる臨界角よシも大きな角で放射される光
線は真空側界面と基板側界面で全反射を繰シ返しながら
、螢光体発光部の側縁端部まで、はとんど減衰せず導か
れる。螢光体発光部の電子ビームが照射される表面の面
積は内面反射した光が射出される側縁端部の面積より広
いので、電子ビームのビームパワー密度がさほど高くな
くても、内面反射によシ導かれ側縁端部より射出される
光のパワーは大きくなる。螢光体発光部の電子ビームが
照射される表面の面積は、線光源アレイのピッチにかか
わらず、アレイ方向とは垂直の方向に短冊状に細長く広
げることができるため、側縁端部から射出される光パワ
ーもそれに応じて大きくできる。さらには、短冊状に広
く電子ビーム照射面積をとシ、且つ、電子ビームのパワ
ー密度を上げてやれば、側縁端部から射出される光のパ
ワーは、飛躍的に高まる。この際、螢光体発光部は、そ
の下の誘電体基板に密着しているため放熱性が良い。し
たがって発光部の温度消光による発光効率の低下はおこ
らない。また、螢光体発光部の側縁端部表面以外の表面
には、部分的に電子ビーム制御電極に導通した導電層を
設けであるので、ビーム電流量が大きくても、チャージ
アップは僅かで、実効電子ビームのパワーはほとんど低
下しない。
Of the light emitted when an electron beam is irradiated onto the surface of the working phosphor light-emitting part, the angle it makes with the normal is a larger angle than the critical angle determined by the refractive index ratio of the phosphor light-emitting part and the dielectric substrate. The emitted light beam is repeatedly totally reflected at the vacuum-side interface and the substrate-side interface, and is guided without attenuation to the side edge of the phosphor light-emitting section. The area of the surface of the phosphor light-emitting part that is irradiated with the electron beam is larger than the area of the side edge where the internally reflected light is emitted, so even if the beam power density of the electron beam is not very high, it can be easily The power of the light that is guided further and emitted from the side edge becomes large. Regardless of the pitch of the line light source array, the area of the surface of the phosphor light-emitting section that is irradiated with the electron beam can be spread out into a long and thin strip in the direction perpendicular to the array direction, so that the electron beam is emitted from the side edge. The optical power generated can also be increased accordingly. Furthermore, if the electron beam irradiation area is widened in the form of a strip and the power density of the electron beam is increased, the power of the light emitted from the side edge portions can be dramatically increased. At this time, the fluorescent light emitting section has good heat dissipation because it is in close contact with the dielectric substrate underneath. Therefore, the luminous efficiency does not decrease due to temperature quenching of the light emitting part. In addition, a conductive layer that is partially electrically connected to the electron beam control electrode is provided on the surface of the fluorescent light emitting part other than the side edge surface, so even if the beam current is large, charge-up is slight. , the effective electron beam power hardly decreases.

また、側縁端部表面は光拡散性の表面状態であるため、
側縁端部表面から出射する光の放射強度は拡散性の角度
分布を示す。したがって、側縁端部表面の鉛直軸方向所
定の位置にセルフォックレンズを配することにより、出
射光をセルフォックレンズ系を介して、感光ドラム上に
、効率良く伝送することができる。
In addition, since the side edge surface has a light-diffusing surface condition,
The radiant intensity of the light emitted from the side edge surfaces exhibits a diffuse angular distribution. Therefore, by arranging the SELFOC lens at a predetermined position in the vertical axis direction on the side edge surface, the emitted light can be efficiently transmitted onto the photosensitive drum via the SELFOC lens system.

以上の作用により、前記螢光体発光部の側縁端部が発光
素である本発明は、従来に比べて非常に高輝度のプリン
タ用線光源装置を実現する。
As a result of the above-described effects, the present invention, in which the side edges of the phosphor light-emitting portion are light-emitting elements, realizes a line light source device for printers with much higher brightness than conventional printers.

実施例 第1〜第3図に本発明の一実施例を示す。1は真空外囲
器であシ、ガラス等で形成した容器である。真空外囲器
1の内面には、背面電極2が設けられており、外部から
の電界によって線状熱陰極3から放射される電子ビーム
が影響されないようにしている。4は基板ガラスで、真
空外囲器1と低融点ガラス等によ多接合して、内部を真
空にしている。基板ガラス4の表面には、短冊状の電子
ビーム制御電極6が一定の間隔で配列されている。
Embodiment FIGS. 1 to 3 show an embodiment of the present invention. Reference numeral 1 denotes a vacuum envelope, which is a container made of wood, glass, or the like. A back electrode 2 is provided on the inner surface of the vacuum envelope 1 to prevent the electron beam emitted from the linear hot cathode 3 from being affected by an external electric field. Reference numeral 4 denotes a substrate glass, which is bonded to the vacuum envelope 1 with low melting point glass or the like to create a vacuum inside. On the surface of the substrate glass 4, strip-shaped electron beam control electrodes 6 are arranged at regular intervals.

電子ビーム制御電極6のピッチは、プリンタの必要解像
度によって決められる。本実施例は16役物の解像度を
必要とする場合で、62.5μmピンチで、図内座漂の
y軸方向に297Hにわたってアレイ状に形成されてい
る。電子ビーム制御電極5に隣接して基板ガラス4上に
、各々11表面が平滑で透明な、光ガイドI3E、を有
する螢光体発光部6が形成されており、イの側縁端部7
がそれぞれの電子ビーム制御電極6に対応した発光素8
となる。
The pitch of the electron beam control electrodes 6 is determined by the required resolution of the printer. In this embodiment, a resolution of 16 pixels is required, and the pixels are formed in an array over 297H in the y-axis direction in the figure with a pinch of 62.5 μm. On the substrate glass 4 adjacent to the electron beam control electrode 5, phosphor light emitting parts 6 each having a smooth and transparent light guide I3E are formed.
is a light emitting element 8 corresponding to each electron beam control electrode 6
becomes.

線状熱陰匝3と、螢光体発光部6の間には、所定の間げ
き全おいて加速電極9が設けられている。
An accelerating electrode 9 is provided between the linear hot shade 3 and the fluorescent light emitting section 6 at a predetermined interval.

加速電極9は金属メソンユから成る格子電極である。The accelerating electrode 9 is a grid electrode made of metal mesh.

線状熱陰極は、直径20〜s o pmのタングステン
線表面に酸化物放射材料を電着等によって設けたものを
使用することができる。線状熱陰極3は、必要電子ビー
ム電流量に応じて所定の本数架張する。線状熱陰極3か
ら放射された電子ビームは、加速電極9の電位によって
加速電極9に向は加速される。電子ビーム制御電極5に
は、ワイアポンド等によシ接続されている駆動用LSI
よシ、画像信号に応じた所定の電位が駆動回路側から与
えられ、加速電極9にsoVの正電位が与えられている
状態で、例えば、ある電子ビーム制御電極5にSOVの
電位が与えられ、その他の電子ビーム制御電極5の電位
がoVの場合、SOVの電位と与えられた電子ビーム制
御電極5上の螢光体発光部にのみ選択的に、加速電極9
のメツシュを通過した電子ビームを照射することができ
る。なお電子ビームのクロストークを防ぐため、加速電
極9と螢光体発光部6との間げきは200μmと狭い。
As the linear hot cathode, one in which an oxide emissive material is provided on the surface of a tungsten wire having a diameter of 20 to so pm by electrodeposition or the like can be used. A predetermined number of linear hot cathodes 3 are installed depending on the required electron beam current amount. The electron beam emitted from the linear hot cathode 3 is accelerated toward the acceleration electrode 9 by the potential of the acceleration electrode 9. A driving LSI connected to the electron beam control electrode 5 by a wire pond or the like is connected to the electron beam control electrode 5.
In a state where a predetermined potential according to an image signal is applied from the drive circuit side and a positive potential of soV is applied to the accelerating electrode 9, for example, when a certain electron beam control electrode 5 is applied with an SOV potential. , when the potential of the other electron beam control electrodes 5 is oV, the accelerating electrode 9 is selectively applied only to the SOV potential and the phosphor light-emitting portion on the given electron beam control electrode 5.
can be irradiated with an electron beam that has passed through the mesh. In order to prevent crosstalk of the electron beam, the gap between the accelerating electrode 9 and the fluorescent light emitting section 6 is as narrow as 200 μm.

螢光体発光部は、数10■の低速電子線でも高い発光効
率で発光する、ZnO:Zn螢光体より形成されている
。電子ビームの照射によりその表面で発光した光のうち
、表面の法線となす角が基板ガラス4とZnO: Zr
1螢光体との屈折率比によってきまる臨界角よシ大きい
角度で出射する光は、螢光体内を全反射によシ側縁端部
7にまで導かれ発光する(出射光10)。発光素8よシ
出射した光は、X軸方向の所定の位置に発光素列11に
平行に配置されたセルフォ1ツクレンズを介して、感光
ドラム上に集光、結像される。
The phosphor light-emitting portion is made of a ZnO:Zn phosphor that emits light with high luminous efficiency even with a low-speed electron beam of several tens of square meters. Of the light emitted from the surface by electron beam irradiation, the angle between the surface normal line and the substrate glass 4 and ZnO: Zr
The light emitted at an angle larger than the critical angle determined by the refractive index ratio with respect to the phosphor 1 is guided to the side edge 7 by total internal reflection within the phosphor and emits light (emitted light 10). The light emitted from the light-emitting element 8 is focused and imaged onto the photosensitive drum via a self-photo lens arranged parallel to the light-emitting element array 11 at a predetermined position in the X-axis direction.

次に、本発明の作用と効果を、上記実施例に基づいて説
明する。第2図は、螢光体発光部付近の拡大斜視図、第
3図はそのy面の断面図である。
Next, the functions and effects of the present invention will be explained based on the above embodiments. FIG. 2 is an enlarged perspective view of the fluorescent light emitting portion and its vicinity, and FIG. 3 is a y-plane cross-sectional view thereof.

本実施例では、電子ビーム制御電極6は、チタンタング
ステン、モリブデン等の金属蒸着膜で、側面金属コート
12.背面金属コート13は前記金属蒸着膜もしくはア
ルミニウム蒸着膜である。厚さは約2000八である。
In this embodiment, the electron beam control electrode 6 is a metal vapor-deposited film of titanium tungsten, molybdenum, etc., and the side metal coating 12. The back metal coat 13 is the metal vapor deposited film or aluminum vapor deposited film. The thickness is approximately 2,000 mm.

螢光体発光部6は、厚さ30μm、幅50μm、長さ2
0111Nの短冊状のZnO:Zn螢光体薄膜で、可視
光に対する吸収は小さく、ZnO:Znの発光波長であ
る5 00 nm付近の波長の光は低減衰で進行する。
The fluorescent light emitting section 6 has a thickness of 30 μm, a width of 50 μm, and a length of 2
0111N strip-shaped ZnO:Zn phosphor thin film has low absorption of visible light, and light with a wavelength around 500 nm, which is the emission wavelength of ZnO:Zn, travels with low attenuation.

しかも、螢光体発光部6と真空もしくは基板ガラス4と
の界面は非常に平滑なのでこの螢光体発光部6は対向す
る平行な界面での全反射による光ガイド性を有する。
Furthermore, since the interface between the phosphor light emitting section 6 and the vacuum or the substrate glass 4 is very smooth, the phosphor light emitting section 6 has light guiding properties due to total reflection at the opposing parallel interfaces.

第3図において、5oeVの入射エネルギーで入射した
電子ビーム束14の侵入長は数10人程度と非常に浅く
、発光も、短い寿命で、表層付近でおこる。いま、螢光
体発光部60表層部の微小面dA(15)  よシ放射
された光は、拡散性の放射強度分布工(のを示す。即ち
、ここでは !(の=LOCO3θdA         ・・・・
・・・・・・・・・・(1)L0=一定 θ:螢光体発光部表面の法線と光線がなす角波長500
 nmの光に対する螢光体発光部6の屈折率はn pm
 2−07 、同じく基板ガラスの屈折率はng=1.
50である。したがって、螢光体発光部6と真空との界
面(以後界面Vとよぶ)での臨界角及び螢光体発光部6
と基板ガラス4との界面(以後界面q)での臨界角はそ
れぞれ である。
In FIG. 3, the penetration depth of the electron beam bundle 14 incident with an incident energy of 5 oeV is very shallow, on the order of several tens of beams, and the light emission is short-lived and occurs near the surface layer. Now, the light emitted from the microscopic surface dA(15) of the surface layer of the phosphor light-emitting part 60 shows a diffuse radiation intensity distribution (=LOCO3θdA...)
・・・・・・・・・・・・(1) L0 = Constant θ: Angular wavelength between the normal to the surface of the phosphor light-emitting part and the light ray: 500
The refractive index of the fluorescent light emitting part 6 for light of nm is npm.
2-07, similarly, the refractive index of the substrate glass is ng=1.
It is 50. Therefore, the critical angle at the interface between the phosphor light emitting section 6 and vacuum (hereinafter referred to as interface V) and the phosphor light emitting section 6
The critical angles at the interface (hereinafter referred to as interface q) between the substrate glass 4 and the substrate glass 4 are different from each other.

したがって、θ〉θC9の放射束のみ界面V及びqで全
反射しながら、理想的には減衰せず螢光体光ガイド部1
6を経てX軸方向へ伝播してゆく。
Therefore, only the radiant flux of θ〉θC9 is totally reflected at the interfaces V and q, and ideally it is not attenuated and the phosphor light guide section 1
6 and propagates in the X-axis direction.

θくθCqの光については、界面で基板ガラス4もしく
は真空側に透過してゆく成分と、フレネル反射によって
内部へ再び反射される成分とがある。
Regarding the light of θ Cq, there is a component that passes through the interface toward the substrate glass 4 or the vacuum side, and a component that is reflected back into the interior by Fresnel reflection.

フレネル反射成分については、幾度か反射するうちに急
速に0に近づいてゆき、伝播してゆかない。
As for the Fresnel reflection component, it rapidly approaches 0 after being reflected several times and does not propagate.

基板ガラス4側への透過成分については、基板側光吸収
層17が外部の基板ガラス40表面にスクリーン印刷等
により形成されており、他の発光素に対応した螢光体発
光部へのフレア光とならない様にしている。
Regarding the transmitted component to the substrate glass 4 side, a substrate side light absorption layer 17 is formed on the surface of the external substrate glass 40 by screen printing or the like, and flare light is transmitted to the phosphor light emitting parts corresponding to other light emitting elements. I try not to do that.

いま簡単のため、伝播中に光減衰が全くないとし、全反
射した光はすべて側縁端部7にまで到達すると仮定する
と、全放射束工、。、に対して側縁端部7にまで到達し
た光バヮーエの比は= 1−5in  θq =c0S2θ9 =47.5%     ・旧・・・・・・旧・・(4)
側縁端部7の界面(以後界面e)についても、非常に細
かい粗面であシ、微視的に見てやった場合、ある光線が
その表面と交わる角度は、Qoから90°の間ですべて
等しい確率で分布していると仮定する。また、界面eで
の7レネル反射も小さいとして無視して、単に全反射成
分のみが反射して出射されず、残りはすべて出射すると
すれば、界面θに入射する光バワーエiユに対して出射
する元のパワーエ。。、の比は単に ■。。t /工in ”ψcv/90°=32.1%・
川・・・・(6)−1”v 但しψQv:5I11 5=θCv ψは界面eの法線と入射光の なす角 となる。また入射光強度はLcosθ即ち]、sinψ
の角度分有金もつが界面eから出射する光強度は、拡散
性の、即ちL cos t7に近い角度分布をもつと考
えてよい。
For the sake of simplicity, let us assume that there is no optical attenuation during propagation and that all the totally reflected light reaches the side edge 7.The total radiant flux is: , the ratio of the optical beam that has reached the side edge 7 is = 1-5 in θq = c0S2θ9 = 47.5% - Old... Old... (4)
The interface of the side edge 7 (hereinafter referred to as interface e) is also a very fine rough surface, and when viewed microscopically, the angle at which a certain light ray intersects with that surface is between 90 degrees from Qo. Assume that all are distributed with equal probability. In addition, if we ignore the 7-Renel reflection at the interface e as being small and only the total reflection component is reflected and not emitted, and all the rest is emitted, the light incident on the interface θ is emitted from the power source i. The original power to do. . , the ratio of is simply ■. . t/work in ”ψcv/90°=32.1%・
River...(6)-1"v However, ψQv: 5I11 5=θCv ψ is the angle between the normal to the interface e and the incident light. Also, the intensity of the incident light is Lcosθ, that is, ], sinψ
The light intensity emitted from the interface e can be considered to be diffuse, that is, to have an angular distribution close to L cos t7.

したがって螢光体発光部での全発光エネルギーψtot
に対して出射光エネルギーΦ。utO比は、(4) j
 (5)よ〕、 Φ。ut/Φ1n==47.5%X32.1%=15.
2%     ・・・・・・・・・・・・・・・(6)
したがってエネルギー密度比M。ut//Min はそ
れぞれの面積yfI:SA、SBとすればMout/M
、n=5A/SB×Φout”in= 1. Oij/
1.e x 1o−%ノX 15.2%=100倍  
    ・・・・・・・・・(7)となる。
Therefore, the total luminous energy ψtot in the fluorescent light emitting part
For the output light energy Φ. The utO ratio is (4) j
(5), Φ. ut/Φ1n==47.5%X32.1%=15.
2% ・・・・・・・・・・・・・・・(6)
Therefore, the energy density ratio M. ut//Min is the area yfI:SA, SB, then Mout/M
, n=5A/SB×Φout”in=1.Oij/
1. e x 1o-%ノX 15.2% = 100 times
......(7).

しかし、実際には、様々な光損失がある。However, in reality, there are various optical losses.

いま界面eからIの距離の微小面dAから角度θでy方
向に出た光の減衰を考えると、まず、螢光体内部の吸収
によるロスがある。
Now, when considering the attenuation of light emitted in the y direction at an angle θ from the microscopic surface dA at a distance I from the interface e, there is first a loss due to absorption inside the phosphor.

螢光体の吸収係数をαとすると exp (−αX/31110)      ・・・・
・・・・・・・・(8)で表わされる。それから、界面
v、qは実際には理想的な全反射面ではなく、小さな凹
凸等によシAv、gの損失があるとすると、全反射によ
るトータルの損失は、 (1−ス、+g)z/a tan fl    −−”
・”・(9)但しαは螢光体発光部の厚さ したがって、y面内界面eにむかっての光伝播のみを考
えても exp(−αx/sinθ)x(1−X)”/”―θ−
・−・(1o)の光減衰がある。
If the absorption coefficient of the phosphor is α, then exp (-αX/31110)...
......It is expressed as (8). Then, assuming that the interfaces v and q are not actually ideal total reflection surfaces, and there are losses of Av and g due to small irregularities, the total loss due to total reflection is (1-s, +g) z/a tan fl --”
・”・(9) However, α is the thickness of the phosphor light-emitting part. Therefore, even if we consider only the light propagation towards the interface e in the y-plane, exp(-αx/sinθ)x(1-X)”/ ”-θ-
There is an optical attenuation of ...(1o).

また、他にも側面金属コート12.背面金属コ−)13
.側縁端部7等における7レネル反射による損失の寄与
があシ、側縁端部7よシ出てくる出射光の発光エネルギ
ーに対する比は実際には(6)。
In addition, there are also side metal coats 12. Back metal code) 13
.. Since there is a contribution of loss due to 7-Renel reflection at the side edge 7, etc., the ratio of the emitted light coming out from the side edge 7 to the luminous energy is actually (6).

(7)よシかなり小さくなる。(7) It becomes considerably smaller.

次に、ZnO:Zn螢光体自体、CRT用螢光体とは異
なシ比抵抗は103〜105Ω・備とかなり低抵抗で電
子ビームとして螢光体発光部6に入射する電荷は、側面
金属コート12もしくは背面金属コート13を介して電
子ビーム制御電極6へ流れるため照射電流量を増加させ
ても、チャージアップによる実効入射lヒ子ビームパワ
ーの減少はなく、発7:着を相当高めることができる。
Next, the ZnO:Zn phosphor itself has a specific resistance of 103 to 105 Ω, which is different from that of a CRT phosphor. Since the electron beam flows to the electron beam control electrode 6 via the coat 12 or the back metal coat 13, even if the irradiation current amount is increased, the effective incident beam power does not decrease due to charge-up, and the emission rate can be considerably increased. Can be done.

また、入射する電子ビームのパワーを上げても、螢光体
発光部6と基板ガラス4は密着しており、熱放散が良い
ため、従来の粉末層状螢光体面でおこっていた温度消光
は回避でき、エネルギー発光効率は減少せず、発光量を
相描高めることができる。
In addition, even if the power of the incident electron beam is increased, the phosphor light emitting part 6 and the substrate glass 4 are in close contact and heat dissipation is good, so the temperature quenching that occurs with the conventional powder layered phosphor surface is avoided. Therefore, the energy emission efficiency does not decrease, and the amount of light emission can be significantly increased.

螢光体発光部6の成膜方法としては、基板ガラス表面を
鏡面研磨した上に、まず、スパッタ法によりZn○薄膜
を6o〜100人堆製し、その上に、こんどは、水素ガ
スをキャリアガスとした気相輸送法によりZn○:Zn
薄膜層を3o/im堆積したところ、表面が非常に平滑
な、低光損失の膜を得ることができた。このスパッタ法
によってあらかじめZnO薄膜層を薄く堆積しておく方
法によシ、低光損失の膜を得たという報告は以前にある
(例えば、ティー、シオサキ(T、5hLosaki 
) 、 ニス。
The method for forming the phosphor light-emitting section 6 is to first deposit 6 to 100 Zn○ thin films by sputtering on the glass surface of the substrate, which is mirror-polished, and then to apply hydrogen gas on top of it. Zn○:Zn by vapor phase transport method using carrier gas
When the thin film layer was deposited at 30/im, a film with a very smooth surface and low optical loss could be obtained. It has previously been reported that films with low optical loss were obtained by pre-depositing a thin ZnO film layer using this sputtering method (for example, T., Shiosaki et al.
), varnish.

オー二’/ (S、0hnishi)、アンド、エイ、
カワバタ(A 、 Kawaba t a ) ;ジャ
ーナルオプアプ、lyイドフィジックス(J 、App
l 、Phys、)5(X5) (1979)3113
P〜3117P)。また、気相輸送によるZn○:Zn
n螢光全発光ノー形成は、例えば特願昭61−2289
81号に示された装置に類似の装置で行った。
Ohni'/ (S, 0hnishi), and, ei,
Kawabata (A, Kawabata) ; Journal Op-App, Lyoid Physics (J, App
l, Phys, )5(X5) (1979) 3113
P~3117P). In addition, Zn○:Zn by gas phase transport
For example, Japanese Patent Application No. 61-2289
It was carried out on an apparatus similar to that shown in No. 81.

また側縁端部7において、#400〜#1000ていど
のサンドペーパーでその表面を粗面化することにより、
良好な光拡散性表面を得ることができた。これは、サン
ドブラスト法やエツチング法等によっても同様の効果を
有する。
In addition, by roughening the surface of the side edge portion 7 with sandpaper of #400 to #1000,
A good light-diffusing surface could be obtained. Similar effects can be obtained by sandblasting, etching, etc.

得られた本実施例に示すプリンタ用線光源装置において
、線状熱陰極5本から計100 mA々の電流密度の電
子ビームを電子ビーム制御電極5からsoVの電圧を印
加した螢光体発光部に照射することによシ、発光素8か
ら約6μ鴇佛元素の放射パワーを得ることができた。ま
た、フレア光による光漏話はなく、輝度バラツキは5%
以内であった。出射光1oは拡散性の放射強度分布を示
した。発光素列11と所定の間隔をおいて平行に設置し
たセルフォックレンズアレイを介して、出射光を感光体
ドラムに集光、結像することによシ、高速、高解像度、
高印字品質の電子写真式光プリンターを実現することが
できた。
In the obtained line light source device for a printer shown in this example, an electron beam with a total current density of 100 mA was applied from five linear hot cathodes to a phosphor light emitting unit to which a voltage of soV was applied from the electron beam control electrode 5. By irradiating the light, it was possible to obtain a radiation power of approximately 6 μm from the light-emitting element 8. In addition, there is no optical crosstalk due to flare light, and the brightness variation is 5%.
It was within The emitted light 1o showed a diffuse radiation intensity distribution. By condensing and imaging the emitted light onto the photoreceptor drum through a SELFOC lens array installed in parallel with the light emitting element array 11 at a predetermined interval, high speed, high resolution,
We were able to realize an electrophotographic optical printer with high print quality.

第4図から第6図に、本発明の他の実施例を示す。全体
の構成は実施例1と同様で第1図に示す通りであるが、
各螢光体発光部6の近傍の構成に以下のような違いがあ
る。
Other embodiments of the present invention are shown in FIGS. 4 to 6. The overall configuration is the same as that of Example 1, as shown in FIG.
There are the following differences in the configuration near each fluorescent light emitting section 6.

本実施例において第4図は螢光体発光部付近の拡大斜視
図、第5図は同螢光体発光部のy面断面図、第6図は螢
光体発光部付近をZ軸方向から見た図である。
In this embodiment, Fig. 4 is an enlarged perspective view of the vicinity of the fluorescent light emitting part, Fig. 5 is a y-plane sectional view of the fluorescent light emitting part, and Fig. 6 is a view of the vicinity of the fluorescent light emitting part from the Z-axis direction. This is a view.

本実施例においては、電子ビーム制御電極6に導通した
導電層として、第6図、第6図に示すように、基板ガラ
ス4と螢光体発光部6の間に、螢光体発光部6の一直下
にI軸方向に等間隔で形成された梯子状の部分的な導電
層20が設けられている。導電層20は電子ビーム制御
電極6と同じチタン、タングステンもしくはモリブデン
の金属薄膜またはネサ膜等の透明導電膜でも良い。本実
施例では膜厚約20ooへのチタン薄膜を用いた。
In this embodiment, as a conductive layer electrically connected to the electron beam control electrode 6, a phosphor light emitting part 6 is provided between the substrate glass 4 and the phosphor light emitting part 6, as shown in FIGS. Ladder-shaped partial conductive layers 20 formed at equal intervals in the I-axis direction are provided immediately below the conductive layer 20 . The conductive layer 20 may be the same metal thin film of titanium, tungsten, or molybdenum as the electron beam control electrode 6, or a transparent conductive film such as a NESA film. In this example, a titanium thin film having a thickness of about 20 oo was used.

一方、第4図において、側面光遮蔽コート21゜背面光
遮蔽コート22はZnO:Zn製の螢光体発光部6よシ
も低屈折率の光非透過性の誘電体薄膜で形成されている
On the other hand, in FIG. 4, the side light shielding coat 21 and the rear light shielding coat 22 are formed of a light-opaque dielectric thin film with a low refractive index, as is the ZnO:Zn phosphor light emitting section 6. .

実施例1同様、電子ビームの照射によシその表面で発光
した光のうち、表面の法線とする角θが基板ガラス4と
ZnO:Zn螢光体との屈折率比できまる臨界角より大
きい角度で出射する光は、大部分は螢光体と基板ガラス
4との界面及び真空との界面で全反射する。一方、部分
的に設けられた梯子状の導電層2oとの界面での反射は
、フレネル反射で、若干光強度は減衰する。光は、これ
らの反射を繰り返しながら、螢光体内を伝播し、側縁端
部7にまで到達し発光する(出射光10)。
As in Example 1, of the light emitted from the surface by electron beam irradiation, the angle θ with respect to the normal to the surface is smaller than the critical angle determined by the refractive index ratio of the substrate glass 4 and the ZnO:Zn phosphor. Most of the light emitted at a large angle is totally reflected at the interface between the phosphor and the substrate glass 4 and at the interface with the vacuum. On the other hand, reflection at the interface with the partially provided ladder-shaped conductive layer 2o is Fresnel reflection, and the light intensity is slightly attenuated. The light propagates within the phosphor while repeating these reflections, reaches the side edge portion 7, and emits light (outgoing light 10).

なお、第6図、第6図では梯子状の部分的な導電層2o
は3本しか示されていないが、実際には本実施例では1
本の幅が60μmで、螢光体発光部6の!軸方向の長さ
2Off内に、1′nIピツチで計20本形成した。
In addition, in FIGS. 6 and 6, a ladder-shaped partial conductive layer 2o
Although only three are shown, in reality, in this example, one
The width of the book is 60 μm, and the fluorescent light emitting part 6! A total of 20 pieces were formed at a 1'nI pitch within an axial length of 2Off.

本実施例における作用と効果も、はぼ実施例1と同様で
あるが、前述の様に導電層2oとの界面での光の反射の
ロスがあシ、光伝達効率は実施例1に比べれば低下する
The functions and effects of this example are similar to those of Example 1, but as described above, there is a loss of light reflection at the interface with the conductive layer 2o, and the light transmission efficiency is lower than that of Example 1. decreases.

即ち、実際の光損失は、実施例1と同様に、界面eから
Xの距離の微小面dAから角度θでy方向に出た光の減
衰を考えると、螢光体内吸収によるロス分、 exp(−αx/sinθ)・・・・・・・・・・・(
11)全反射面におけるロス分、 (・−λv、g )(x“a −”’(0))、、、、
、、、、、 (,2>但しn′は導電層20との 界面での反射回数 の他に新たに、 導電層20との界面でのフレネル反射によるロス分、(
1−Rf(#)) ”(0)・−・−−−−−−−・・
(13)但しRf(のフレネル反射のエ ネルギー反射率 が乗算される。
That is, as in Example 1, considering the attenuation of light emitted in the y direction at an angle θ from the microscopic surface dA at a distance of X from the interface e, the actual optical loss is the loss due to absorption within the fluorophore, exp (-αx/sinθ)・・・・・・・・・・・・(
11) Loss at total reflection surface, (・−λv,g)(x“a−”′(0)),,,
,,,,, (,2>However, n' is the loss due to Fresnel reflection at the interface with the conductive layer 20, in addition to the number of reflections at the interface with the conductive layer 20, (
1-Rf(#)) ”(0)・−・−−−−−−・・
(13) However, the energy reflectance of Fresnel reflection of Rf is multiplied.

しかし、梯子状の部分的な導電層2oの面積は、螢光体
発光部6及び螢光体光ガイド部16と基板ガラス4との
界面の全面積の1720.で、導電層2゜におけるフレ
ネル反射のロス分は小さい。
However, the area of the ladder-shaped partial conductive layer 2o is 1720.0% of the total area of the interface between the phosphor light emitting section 6 and the phosphor light guide section 16 and the substrate glass 4. Therefore, the Fresnel reflection loss at 2° of the conductive layer is small.

その他、側面光遮蔽コート21.背面光遮蔽コ−)22
.側縁端部7等におけるフレネル反射による光損失があ
ることは、実施例1と同様である。
Other side light shielding coats 21. Rear light shielding code) 22
.. As in Example 1, there is optical loss due to Fresnel reflection at the side edge portions 7 and the like.

ところで、ZnO:Zn螢光体自体、CRT用螢光体と
は異なシ、比抵抗は103〜105Ω・1と低抵抗で、
電子ビームとして螢光体発光部6に入射する電荷は、螢
光体発光部直下におかれた、梯子犬の導電層2oを介し
て、電子ビーム制御電極5へ流れるため、照射電流量を
増加させても、チャージアップによる実効入射電子ビー
ムノ(ワーの減少は少なく発光量を相当高めることがで
きる。
By the way, the ZnO:Zn phosphor itself is different from the CRT phosphor, and has a low specific resistance of 103 to 105 Ω・1.
The charge that enters the phosphor light emitting section 6 as an electron beam flows to the electron beam control electrode 5 via the conductive layer 2o of the ladder placed directly below the phosphor light emitting section, increasing the amount of irradiation current. Even if it is, the effective incident electron beam power due to charge-up is not significantly reduced, and the amount of light emitted can be considerably increased.

また、入射する電子ビームのパワーを上げても、螢光体
発光部6と基板ガラス4は密着しており、熱放散が良い
ため、従来の粉末層状螢光体面でおこっていた温度消光
は回避でき、エネルギー発光効率は減少せず、発光量を
相当高めることができる。
In addition, even if the power of the incident electron beam is increased, the phosphor light emitting part 6 and the substrate glass 4 are in close contact and heat dissipation is good, so the temperature quenching that occurs with the conventional powder layered phosphor surface is avoided. Therefore, the energy emission efficiency does not decrease, and the amount of light emission can be considerably increased.

螢光体発光部6の成膜方法についても、基板ガラス表面
を鏡面研磨した上に、まず導電層2oを蒸着し、所定の
形状にパターンニングしてやった上で、実施例1と同じ
気相輸送法を用いた。
Regarding the film formation method of the phosphor light emitting part 6, the conductive layer 2o is first vapor-deposited on the substrate glass surface, which is mirror-polished, and then patterned into a predetermined shape. The law was used.

得られた本実施例に示すプリンタ用線光源装置において
、線状熱陰極5本から計100mA/’zの電流密度の
電子ビームを電子ビーム制御電極6から50Vの電圧を
印加した螢光体発光部6に照射することによシ、発光素
8から約4.5μW/発元素の放射パワーを得ることが
できた。また、フレア光による光漏話はなく、輝度バラ
ツキは6%以内であった。出射光1oは拡散性の放射強
度分布を示した。発光素列11と所定の間隔をおいて平
行に設置したセルフォックレンズアレイを介して、出射
光を感光体ドラムに集光、結像することにより、高速、
高解像度、高印字品質の電子写真式光プリンターを実現
することができた。
In the obtained line light source device for a printer shown in this example, an electron beam with a total current density of 100 mA/'z was emitted from five linear hot cathodes and a voltage of 50 V was applied from the electron beam control electrode 6. By irradiating the light emitting element 6, a radiation power of about 4.5 μW/emitting element could be obtained from the light emitting element 8. Further, there was no optical crosstalk due to flare light, and the luminance variation was within 6%. The emitted light 1o showed a diffuse radiation intensity distribution. By condensing and imaging the emitted light onto the photoreceptor drum through a SELFOC lens array installed in parallel with the light emitting element array 11 at a predetermined interval, high-speed,
We were able to create an electrophotographic optical printer with high resolution and high print quality.

発明の効果 本発明により、コンパクトで、汎用感光体との波長マツ
チングの良い、高輝度、低輝度バラツキの電子写真式光
プリンタ用線光源装置が容易に実現できる。それにより
、コンパクトな高速高印字品質の電子写真式プリンタ等
が安価に実現できる。
Effects of the Invention According to the present invention, it is possible to easily realize a line light source device for an electrophotographic optical printer that is compact, has good wavelength matching with a general-purpose photoreceptor, and has high brightness and low brightness variations. As a result, a compact electrophotographic printer with high speed and high print quality can be realized at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるプリンタ用線光源装
置の斜視図、第2図は同実施例におけるプリンタ用線光
源装置の螢光体発光部付近の拡大斜視図、第3図は同螢
光体発光部のy面での断面図、第4図は本発明の他の実
施例におけるプリンタ用線光源装置の螢光体発光部付近
の拡大斜視図、第5図は同螢光体発光部のy面での断面
図、第6図は同螢光体付近部分近をZ軸方向からみた図
、第7図は従来のLEDアレイを用いたプリンタ用線光
源装置の一部切欠いた斜視図、第8図は同プリンタ用線
光源装置のアレイチップ部の拡大平面図、第9図は従来
の螢光管式プリンタ用線光源装置の一部切欠いた斜視図
、第10図は同螢光体付近部分の拡大断面図を示す。 3・・・・・・線状熱陰極、4・・・・・・基板ガラス
、5・・・・・・電子ビーム制御電極、6・・・・・・
螢光体発光部、7・・・・・・側縁端部、8・・・・・
・発光素、9・・・・・・加速電極、1゜・・・・・・
出射光、12・・・・・・側面金属コート、2o・・・
・・・導電層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1ム墓板側九吸収壜 第8図 刀〃ドブ 第9図 第10図 、sd、ss
FIG. 1 is a perspective view of a line light source device for a printer according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of the vicinity of the fluorescent light emitting part of the line light source device for a printer according to the same embodiment, and FIG. 3 is the same. FIG. 4 is an enlarged perspective view of the vicinity of the fluorescent light emitting section of a line light source device for a printer according to another embodiment of the present invention, and FIG. 5 is a sectional view of the fluorescent light emitting section in the y plane. Figure 6 is a cross-sectional view of the light emitting unit in the y-plane, Figure 6 is a view of the vicinity of the phosphor as seen from the Z-axis direction, Figure 7 is a partially cutaway view of a line light source device for printers using a conventional LED array. 8 is an enlarged plan view of the array chip section of the line light source device for printers, FIG. 9 is a partially cutaway perspective view of the conventional line light source device for fluorescent tube type printers, and FIG. 10 is the same. An enlarged cross-sectional view of a portion near the phosphor is shown. 3... Linear hot cathode, 4... Substrate glass, 5... Electron beam control electrode, 6...
Fluorescent light emitting part, 7...Side edge end, 8...
・Light emitting element, 9... Accelerating electrode, 1°...
Outgoing light, 12...Side metal coating, 2o...
...conductive layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Mu Grave Plate Side 9 Absorption Bottle Figure 8 Sword Dough Figure 9 Figure 10, sd, ss

Claims (1)

【特許請求の範囲】 (1)電子ビームを放射する線状もしくは帯状の熱陰極
と、前記電子ビームを加速する加速電極と、アレイ状に
配列された複数の短冊状の電子ビーム制御電極が真空中
に封入されている構造のプリンタ用線光源装置において
、誘電体基板上に、透明で少なくとも真空側及び前記基
板側界面が平滑な、光ガイド性を有する短冊状の螢光体
発光部がそれぞれの電子ビーム制御電極に対応してアレ
イ状に形成されており、しかも前記螢光体発光部の側縁
端部表面が光拡散表面状態で露出しており、前記螢光体
発光部の前記側縁端部以外の表面に、部分的に、前記電
子ビーム制御電極に導通した導電層を設けた構造を有し
、前記側縁端部界面から外部に放射する光を利用するこ
とを特徴とするプリンタ用線光源装置。 (2)螢光体発光部の面積が、その側縁端部の面積の2
0倍以上であることを特徴とする特許請求の範囲第1項
に記載のプリンタ用線光源装置。 (3)電子ビーム制御電極に導通した導電層が、螢光体
発光部の隣接する螢光体発光部に面した側面に形成され
た導電性被覆であることを特徴とする特許請求の範囲第
1項に記載のプリンタ用線光源装置。 (4)電子ビーム制御電極に導通した導電層が、螢光体
発光部と誘電体基板との間に部分的に部分的に形成され
た導電性薄膜であって、前記導電性薄膜の面積が、前記
螢光体発光部の面積の1/10以下であることを特徴と
する特許請求の範囲第1項に記載のプリンタ用線光源装
置。 (2)螢光体発光部が、低速電子線励起螢光体薄膜であ
ることを特徴とする特許請求の範囲第1項に記載のプリ
ンタ用線光源装置。 (6)低速電子線励起螢光体薄膜がZnO:Znより形
成されていることを特徴とする特許請求の範囲第1項に
記載のプリンタ用線光源装置。
[Scope of Claims] (1) A linear or strip-shaped hot cathode that emits an electron beam, an acceleration electrode that accelerates the electron beam, and a plurality of strip-shaped electron beam control electrodes arranged in an array are arranged in a vacuum. In the line light source device for a printer, the linear light source device for a printer has a structure in which a dielectric substrate is provided with a transparent strip-shaped phosphor light emitting portion having a light guide property and having smooth interfaces at least on the vacuum side and the substrate side. are formed in an array corresponding to the electron beam control electrodes of the phosphor light emitting section, and the side edge end surface of the phosphor light emitting section is exposed as a light diffusing surface, and the side edge of the phosphor light emitting section is exposed as a light diffusing surface. It has a structure in which a conductive layer that is electrically connected to the electron beam control electrode is partially provided on the surface other than the edge, and the light emitted to the outside from the side edge interface is utilized. Line light source device for printers. (2) The area of the fluorescent light emitting part is 2 of the area of its side edge.
The line light source device for a printer according to claim 1, wherein the light source is 0 times or more. (3) The conductive layer electrically connected to the electron beam control electrode is a conductive coating formed on the side surface of the phosphor light-emitting section facing the adjacent phosphor light-emitting section. The line light source device for printers according to item 1. (4) The conductive layer electrically connected to the electron beam control electrode is a conductive thin film partially formed between the phosphor light emitting part and the dielectric substrate, and the area of the conductive thin film is The line light source device for a printer according to claim 1, wherein the area of the fluorescent light emitting section is 1/10 or less. (2) The line light source device for a printer according to claim 1, wherein the phosphor light emitting section is a phosphor thin film excited by a slow electron beam. (6) The line light source device for a printer according to claim 1, wherein the low-speed electron beam-excited phosphor thin film is formed of ZnO:Zn.
JP9895787A 1987-04-22 1987-04-22 Line light source device for printer Expired - Lifetime JPH0829604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9895787A JPH0829604B2 (en) 1987-04-22 1987-04-22 Line light source device for printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9895787A JPH0829604B2 (en) 1987-04-22 1987-04-22 Line light source device for printer

Publications (2)

Publication Number Publication Date
JPS63264379A true JPS63264379A (en) 1988-11-01
JPH0829604B2 JPH0829604B2 (en) 1996-03-27

Family

ID=14233564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9895787A Expired - Lifetime JPH0829604B2 (en) 1987-04-22 1987-04-22 Line light source device for printer

Country Status (1)

Country Link
JP (1) JPH0829604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047511A (en) * 2006-08-14 2008-02-28 Samsung Sdi Co Ltd Light-emitting device and display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047511A (en) * 2006-08-14 2008-02-28 Samsung Sdi Co Ltd Light-emitting device and display device
US7800294B2 (en) 2006-08-14 2010-09-21 Samsung Sdi Co., Ltd. Light emission device and display device using the light emission device as light source
JP4650840B2 (en) * 2006-08-14 2011-03-16 三星エスディアイ株式会社 Light emitting device and display device

Also Published As

Publication number Publication date
JPH0829604B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US5418377A (en) Pixelized phosphor
US5302423A (en) Method for fabricating pixelized phosphors
US5391879A (en) Radiation detector
EP0856202A2 (en) Visible light emitting devices including uv-light emitting diode and uv-excitable, visible light emitting phosphor, and method of producing such devices
JPH10189251A (en) Display device
JPH11354271A (en) Photosensitive material writing device
US3473066A (en) X-ray image intensifier tube having a non-specular backing for the scintillator layer
JP2004119147A (en) Light emitting module, substrate for it, and member for it
JP3062315B2 (en) Radiation luminescence light source
EP0199426A2 (en) Radiographic image intensifier
TWI790394B (en) Sensor for electron detection
JPS63264379A (en) Linear light source device for printer
US7960906B2 (en) Electron emission device, light emission apparatus including the same, and method of manufacturing the electron emission device
US6534772B1 (en) High resolution high output microchannel based radiation sensor
JPS6391998A (en) El light emission array
JPH0689075A (en) Production of display device and fluorescent screen used therein
JPH06151061A (en) Electroluminescent element
US3825787A (en) Image intensifier with improved input screen
JP2008091279A (en) Light emitting device
US5101136A (en) High-efficiency cathodoluminescent screen for high-luminance cathode-ray tubes
JP2001337396A (en) Exposure device
JP3187213B2 (en) Light emitting and receiving diode
FR2797520A1 (en) Light emitting cell, useful for large, energy efficient, high light output, monochrome or color displays, comprises a light emitting material responsive to electron emission from a carbon nanotube layer
US7187124B2 (en) Transparent electron source emitter device and method
JPH06303625A (en) Display device and manufacture of fluorescent screen