JPS63264125A - Dry dehumidifying component - Google Patents

Dry dehumidifying component

Info

Publication number
JPS63264125A
JPS63264125A JP62094310A JP9431087A JPS63264125A JP S63264125 A JPS63264125 A JP S63264125A JP 62094310 A JP62094310 A JP 62094310A JP 9431087 A JP9431087 A JP 9431087A JP S63264125 A JPS63264125 A JP S63264125A
Authority
JP
Japan
Prior art keywords
gas
dehumidifying
zeolite
dry
dehumidifying component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62094310A
Other languages
Japanese (ja)
Inventor
Fumikazu Toda
文和 戸田
Hisaaki Yokota
横田 久昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62094310A priority Critical patent/JPS63264125A/en
Publication of JPS63264125A publication Critical patent/JPS63264125A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/108Rotary wheel comprising rotor parts shaped in sector form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Abstract

PURPOSE:To obtain a dehumidifying material possible for a low dew point dehumidification, applicable in a broad temp. range and having less constraint in using, by employing a honeycomb structure consisting of a zeolite formulated at a proportion greater than a specific level. CONSTITUTION:A binder is added and mixed with the zeolite powder, and the honycomb structure is made by extrusion molding etc., to obtain the dehumidifying component 10. At this time, the content of zoelite is regulated to >=70wt.%. The dehumidifying component 10 thus obtained is driven to rate in the direction of arrow 13 around is center axis, and a gas to be dried 11 is passed through communicating pores of the dehumidifying component 10. Water content in the gas is adsorbed with the zeolite to obtain the dehumidified dry gas 12. The conventional chemical adsorbents are not used in this dehumidifying component 10, accordingly which does not have the defects of run-off and fly-loss of the adsorbents.

Description

【発明の詳細な説明】 [産業上の利用分舒1 本発明は、ガス中の水分を吸着除去する乾式除湿材に間
し、特に低露点乾燥ガスを得ることができる乾式除湿材
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications 1] The present invention relates to a dry dehumidifying material that adsorbs and removes moisture in gas, and particularly to a dry dehumidifying material that can obtain dry gas with a low dew point.

[従来の技I] 第5図は従来の連続式乾式除湿機を示す模式図である。[Conventional technique I] FIG. 5 is a schematic diagram showing a conventional continuous dry dehumidifier.

ハニカム状の除湿ロータ1はその連通孔が厚み方向に延
びる円柱状をなし、その中心軸を水平にして設置されて
いる。この除湿ロータ1はモータ(図示せず)により、
その中心軸の周りに矢印2方向に回転駆動される。
The honeycomb-shaped dehumidifying rotor 1 has a cylindrical shape with communication holes extending in the thickness direction, and is installed with its central axis horizontal. This dehumidifying rotor 1 is operated by a motor (not shown).
It is driven to rotate around its central axis in two directions indicated by arrows.

除湿すべき処理空気は、フィルタ4を通過した優、配管
3を介して除湿ロータ1に送られ、除湿ロータ1の例え
ば3/4の領域を通過して除湿される。除湿後の空気は
プロア5により強制的に吸引され、所定の乾燥空気使用
源に供給される。
The treated air to be dehumidified passes through the filter 4, is sent to the dehumidifying rotor 1 via the piping 3, and is dehumidified by passing through, for example, a 3/4 area of the dehumidifying rotor 1. The dehumidified air is forcibly sucked in by the prower 5 and supplied to a predetermined dry air usage source.

一方、除湿ロータ1を再生する再生空気は、配管6に配
設されたプロア9により強制的に吸引され、フィルタ7
により除塵された後、加熱器8により加熱されて除湿ロ
ータ1に供給される。この再生空気は、除湿ロータ1の
例えば1/4の領域を通過する間に除湿ロータ1に吸着
された水分を脱着し、除湿ロータを再生した後、外部に
排出される。
On the other hand, the regenerated air that regenerates the dehumidifying rotor 1 is forcibly sucked by a proa 9 installed in the piping 6, and is forcibly sucked into the filter 7.
After the dust is removed by the heater 8, it is heated by the heater 8 and supplied to the dehumidifying rotor 1. This regenerated air desorbs moisture adsorbed by the dehumidifying rotor 1 while passing through, for example, a 1/4 area of the dehumidifying rotor 1, regenerates the dehumidifying rotor, and is then discharged to the outside.

除湿ロータ1は矢印2方向に31!続的に回転している
から、除湿ロータ1のハニカム@層部材は処理空気の除
湿(水分吸着)と、再生空気による再生(水分脱着)と
を交互に且つ連続的に繰り返す。
Dehumidifying rotor 1 is 31 in the direction of arrow 2! Since it rotates continuously, the honeycomb layer member of the dehumidifying rotor 1 alternately and continuously repeats dehumidification (moisture adsorption) of the treated air and regeneration (moisture desorption) with the regeneration air.

除湿ロータ1は、一般に、ダンボールフルゲート方式に
てハニカム状に成形されており、吸着材としては、活性
炭、アスベストに塩化リチウムを含有させたもの、又は
その他の無機sHにシリカゲル若しくは活性アルミナを
含有させたもの等が使用されている。
The dehumidifying rotor 1 is generally formed into a honeycomb shape using a cardboard full gate method, and the adsorbent is activated carbon, asbestos containing lithium chloride, or other inorganic SH containing silica gel or activated alumina. etc. are used.

これらの吸着材のうち、塩化リチウム等の塩化物が具備
する化学吸湿力を利用して脱湿する場合においては、被
乾燥ガス中の水分濃度(絶対湿度)が低い状態であって
も、この化学吸着材は優れた吸湿力を有していることか
ら、低露点除湿が可能である。即ち、所定の低温下にお
いても結露を生じない程度に乾燥されたガスを得ること
ができる。
Among these adsorbents, when dehumidifying using the chemical hygroscopic power of chlorides such as lithium chloride, this adsorption material can be used even when the moisture concentration (absolute humidity) in the gas to be dried is low. Since chemical adsorbents have excellent moisture absorption ability, low dew point dehumidification is possible. That is, it is possible to obtain gas that is dried to the extent that no condensation occurs even at a predetermined low temperature.

このような利点を有するため、近時、化学吸着材は広く
利用されるに至っている。
Because of these advantages, chemical adsorbents have recently come into wide use.

[n明が解決しようとする問題点] しかしながら、化学吸着材は、吸湿して自らが潮解して
いくため、高湿度ガスを除去する場合には、配?f3の
吸着ゾーンにて多量に吸湿した後、配管6の再生ゾーン
に到達する迄に、塩化物水溶液となって流出し、飛散し
てしまうという欠点を有する。このような塩化物水溶液
の流出飛散が発生すると、除湿機の周辺の配管系統を腐
食させる外、塩化リチウムという有害物を周囲に飛散さ
せるので安全上問題が多い。
[Problems that Nmei is trying to solve] However, chemical adsorbents absorb moisture and deliquesce themselves, so when removing high humidity gas, it is difficult to use chemical adsorbents. After absorbing a large amount of moisture in the adsorption zone f3, it flows out as an aqueous chloride solution and scatters by the time it reaches the regeneration zone of the pipe 6. If such an aqueous chloride solution leaks and scatters, it not only corrodes the piping system around the dehumidifier, but also scatters a harmful substance called lithium chloride into the surrounding area, which poses many safety problems.

特に、多数の除湿機を使用する食品工業においては、こ
の化学吸着材の潮解性が大きな問題となっていて、この
種の除湿機を使用する場合には、相対湿度が75%以上
のときには使用しないこととしたり、機械停止時にはガ
ス経路を遮断して新たな水分の流入を防止したりする対
策が実施されている。従って、この従来の除2&1機は
使用上の制約が大きく極めて不便であるという難点があ
る。
Particularly in the food industry, where many dehumidifiers are used, the deliquescent nature of this chemical adsorbent is a major problem. Measures are being taken to prevent new moisture from entering, or by blocking the gas path when the machine is stopped. Therefore, this conventional 2 & 1 machine has the drawback of being extremely inconvenient due to its limitations in use.

なお、このような化学吸着材の欠点を解消するために、
活性炭、シリカゲル、又は活性アルミナ等を繊維シート
に含有させた物理吸着材を使用した除湿ロータが開発さ
れている。しかしながら、この物理吸着材は低露点除湿
用の除湿機には適用困難である。
In addition, in order to eliminate the drawbacks of such chemical adsorbents,
A dehumidifying rotor has been developed that uses a physical adsorbent in which a fiber sheet contains activated carbon, silica gel, activated alumina, or the like. However, this physical adsorbent is difficult to apply to dehumidifiers for low dew point dehumidification.

第3図は横軸に水蒸気分圧(awtlg)をとり、縦軸
に吸着容ff1(!1ffi%)をとって、両者の関係
を示すグラフ図である。この第3図に示すように、シリ
カゲル及び活性アルミナは、水蒸気分圧が高い場合には
優れた吸湿性能を有しているが、水蒸気分圧(絶対湿度
)が低い場合には、吸湿性能が著しく低下する。このた
め、処理ガス中の水分が低下した後、この物理吸着材に
更に水分を吸着させて低露点ガスを得るということは極
めて困難である。
FIG. 3 is a graph showing the relationship between the water vapor partial pressure (awtlg) on the horizontal axis and the adsorption capacity ff1 (!1ffi%) on the vertical axis. As shown in Figure 3, silica gel and activated alumina have excellent moisture absorption performance when the water vapor partial pressure is high, but when the water vapor partial pressure (absolute humidity) is low, the moisture absorption performance is poor. Significantly decreased. For this reason, it is extremely difficult to obtain a low dew point gas by further adsorbing moisture to this physical adsorbent after the moisture content in the process gas has decreased.

また、第4図は横軸に温度をとり、縦軸に吸着容ff1
(重量%)をとって両者の関係を示プグラフ図である。
In addition, in Figure 4, the horizontal axis represents temperature, and the vertical axis represents adsorption capacity ff1.
It is a graph diagram showing the relationship between the two (weight%).

この第4図に示すように、吸着材は一般的に低温ガスに
対して高い吸着性能を示す一方、高温下では吸着性能が
著しく低下する。この吸着性能の低下は、特に、シリカ
ゲル又は活性アルミナにおいて顕著であり、これらの物
理吸着材を使用した場合には、実用上、使用可能の上限
温度が50℃と低い。
As shown in FIG. 4, while adsorbents generally exhibit high adsorption performance for low-temperature gases, the adsorption performance significantly decreases at high temperatures. This decrease in adsorption performance is particularly noticeable in silica gel or activated alumina, and when these physical adsorbents are used, the upper limit temperature at which they can be used in practice is as low as 50°C.

以上のように、シリカゲル等の物理吸着材を使用した場
合は低露点ガスを得ることが困難であり、使用可能温度
が低いという問題点がある。
As described above, when a physical adsorbent such as silica gel is used, it is difficult to obtain a low dew point gas, and there is a problem that the usable temperature is low.

本発明はかかる事情に鑑みてなされたものであって、低
露点除湿が可能であると共に、広範な温度範囲に亘って
除湿することができ、使用上の制約が少ない乾式除湿材
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a dry dehumidifying material that is capable of dehumidifying at a low dew point and over a wide temperature range, and which has fewer restrictions on use. With the goal.

[問題点を解決するための手段] 本発明に係る乾式除湿材は、70季醋%以上のゼオライ
トで形成されたハニカム構造体を有し、その連通孔を被
乾燥ガスが通流する間に前記ガス中より水分を吸着除去
することを特徴とする特[作用〕 この発明においては、被乾燥ガスはハニカム構造をなす
除湿材を通過する間に除湿される。この除湿材は、70
重量%以上のゼオライトで形成されているから、水蒸気
分圧が低い場合であっても、高い吸着容量を有しており
、この除湿材により低露点ガスを得ることができる。
[Means for Solving the Problems] The dry dehumidifying material according to the present invention has a honeycomb structure formed of zeolite of 70% or more, and while the gas to be dried flows through the communication holes, Features characterized by adsorbing and removing moisture from the gas In this invention, the gas to be dried is dehumidified while passing through a dehumidifying material having a honeycomb structure. This dehumidifier is 70
Since it is made of zeolite that accounts for more than % by weight, it has a high adsorption capacity even when the partial pressure of water vapor is low, and a low dew point gas can be obtained with this dehumidifying material.

しかも、このゼオライトは潮解性を有しない物理吸着材
であるから、@層材の流出及び飛散は生じない。
Moreover, since this zeolite is a physical adsorption material that does not have deliquescent properties, no outflow or scattering of the @ layer material occurs.

また、ゼオライトは比較的高温においても高い吸着能を
保持しており、従って、本発明に係る吸着材はその温度
に拘らず安定した吸着性を具・働している。
Furthermore, zeolite maintains high adsorption capacity even at relatively high temperatures, and therefore, the adsorbent according to the present invention exhibits stable adsorption properties regardless of the temperature.

〔実施例〕〔Example〕

以下、添付の図面を参照して本発明の実施例について具
体的に説明する。第1図は本発明を第5図に示すような
乾式除湿ロータに適用した場合の実施例を示す。この除
SS材10は、ハニカム溝道の円板状又は円柱状をなし
、その連通孔は厚さ方向に、従フて中心軸に沿って延長
している。この除湿部材10も、第5図に示す除湿ロー
タ1と同様にその中心軸を水平にして設置され、この中
心軸の周りにモータ(図示せず)により、例えば、矢印
13方向に回転駆動される。被乾燥ガスは矢印11にて
示す方向に通流してきて、除湿部材10を通過した後、
矢印12にて示すように、乾燥ガスの使用源に送られる
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1 shows an embodiment in which the present invention is applied to a dry dehumidifying rotor as shown in FIG. This SS removal material 10 has a honeycomb grooved disc shape or a cylindrical shape, and its communication holes extend in the thickness direction and thus along the central axis. This dehumidifying member 10 is also installed with its central axis horizontal, similar to the dehumidifying rotor 1 shown in FIG. Ru. The gas to be dried flows in the direction shown by the arrow 11, and after passing through the dehumidification member 10,
As indicated by arrow 12, the drying gas is sent to a source of use.

本発明においては、除湿部材10は物理吸着材のゼオラ
イトを主成分として形成されており、このゼオライトの
含有量は7011%以上である。
In the present invention, the dehumidifying member 10 is formed mainly of zeolite, which is a physical adsorbent, and the content of this zeolite is 7011% or more.

ゼオライトとしては、A型、X型及びY型等の合成ゼオ
ライト、又はモルデナイト、クリノプチロライト及びチ
ャバサイト等の天然ゼオライト等があり、これらの中か
ら任意に選択することができる。しかしながら、吸着性
能の点から、合成ゼオライトを使用することが好ましい
Examples of the zeolite include synthetic zeolites such as A type, X type, and Y type, and natural zeolites such as mordenite, clinoptilolite, and chabasite, and any one can be selected from these. However, from the point of view of adsorption performance, it is preferable to use synthetic zeolites.

ハニカム41I造を製造する方法としては、押出成形及
びプレス成形等の任意の成形方法を利用することができ
る。ゼオライトは一般的に粉粒体として入手することが
でき、この粉粒体に必要に応じて有機結合材又は無機結
合材を添加して成形する。
As a method for manufacturing the honeycomb 41I structure, any forming method such as extrusion molding and press molding can be used. Zeolite can generally be obtained as a powder or granule, and an organic binder or an inorganic binder may be added to the powder or granule as necessary to form the zeolite.

結合剤は、粉体に対して粘結機能を有するものであれば
任意のものを使用することができる。代表的な有機結合
材としてはMC,CMC,澱粉、CMS (カルボキシ
メチルスターチ)、NEC(ヒドロキシエチルセルロー
ズ)、NPC(ヒドロキシプロピルセルローズ)、リグ
ニンスルホン酸ナトリウム、リグニンスルホン酸カルシ
ウム、ポリビニルアルコール、ポリアクリル酸エステル
、ポリメタクリル酸エステル、フェノール樹脂、又はメ
ラミン11脂等がある。
Any binder can be used as long as it has a caking function for powder. Typical organic binders include MC, CMC, starch, CMS (carboxymethyl starch), NEC (hydroxyethyl cellulose), NPC (hydroxypropyl cellulose), sodium lignin sulfonate, calcium lignin sulfonate, polyvinyl alcohol, and polyacrylic. Examples include acid ester, polymethacrylate ester, phenol resin, and melamine 11 fat.

一方、無機結合材としては、例えば、コロイダルシリ力
、コΩイダルアルミナ、コロイダルチタン、II酸塩、
アルミンM塩、金属アルコキシド、ベントナイト、カオ
リナイト、セビオライト、アタパルジャイト、又はリン
酸アルミニウム等がある。
On the other hand, examples of the inorganic binder include colloidal silica, colloidal alumina, colloidal titanium, II salt,
Examples include aluminum M salt, metal alkoxide, bentonite, kaolinite, seviolite, attapulgite, and aluminum phosphate.

なお、必要に応じてこれらの結合剤を2種類以上併用し
てもよい。また、ハニカム41I造の除湿部材を、加熱
による再生を伴なう!!統式乾式除湿機(第5図参照)
に組み込んで使用する場合には、加熱による結合剤成分
の劣化を防止するという観点から無機結合剤を選択する
ことが好ましい。
Note that two or more of these binders may be used in combination as necessary. In addition, the dehumidifying member made of honeycomb 41I is regenerated by heating! ! Integrated dry dehumidifier (see Figure 5)
When used in combination with an inorganic binder, it is preferable to select an inorganic binder from the viewpoint of preventing deterioration of the binder component due to heating.

ゼオライト粉末とこれらの結合材とは公知の装置又はl
lBを使用して混合し、混線することができる。また、
押出成形等により得られた成形品を通常の方法により、
乾燥し及び/又は焼成することにより、ゼオライトを主
成分とするハニカム構造体を得ることができる。
The zeolite powder and these binders are prepared using known equipment or
IB can be used to mix and crosstalk. Also,
Molded products obtained by extrusion molding etc. are processed by normal methods.
By drying and/or firing, a honeycomb structure containing zeolite as a main component can be obtained.

例えば、第2図に示すように、ハニカム構造の除湿部材
10をその中心軸を通る面で8等分割した扇形の分割素
体15を押出成形法により作成する。そして、この分割
素体15を例えば800℃で焼成して押出成形助剤の有
機成分を除去する。
For example, as shown in FIG. 2, a fan-shaped divided element body 15 is created by dividing the honeycomb-structured dehumidifying member 10 into eight equal parts along a plane passing through its central axis by extrusion molding. Then, this divided element body 15 is fired at, for example, 800° C. to remove the organic component of the extrusion aid.

次いで、8個の分割素体15を接合することにより、そ
の軸方向がガスの通過方向と平行の円板状又は円柱状の
除湿部材10を製造することができる。
Next, by joining the eight divided element bodies 15, it is possible to manufacture a disc-shaped or cylindrical dehumidifying member 10 whose axial direction is parallel to the gas passage direction.

一般的に、結合剤の添加量を詣加すれば、ハニカム構造
体の強度が向上するが、逆にこのハニカム構造体を構成
するゼオライトの表面が結合剤によって覆りでしまうた
めに、除湿部材の水分吸着能が低下する。従って、除湿
性能及び強度の双方を勘案して除湿部材中のゼオライト
と結合材との配合割合を決定する。
In general, adjusting the amount of binder added improves the strength of the honeycomb structure, but conversely, the surface of the zeolite that makes up the honeycomb structure is covered by the binder, so The moisture adsorption capacity of Therefore, the blending ratio of zeolite and binder in the dehumidifying member is determined by taking into account both dehumidifying performance and strength.

この場合に、除湿部材中のゼオライトの含有量が70重
量%未満であると、水蒸気分圧が低い条件下での吸湿性
能が著しく低下する。このため、低露点ガスを得ること
ができなくなり、本発明の目的が達成されないので、除
湿部材中のゼオライトの含有量は、70重量%以上にす
る。
In this case, if the content of zeolite in the dehumidifying member is less than 70% by weight, the moisture absorption performance under conditions of low water vapor partial pressure will be significantly reduced. For this reason, it becomes impossible to obtain a low dew point gas and the object of the present invention is not achieved, so the content of zeolite in the dehumidifying member is set to 70% by weight or more.

従って、結合剤の含有量は30重量%以下である。この
場合に、結合剤の含有量が2重量%未満になると、除湿
部材10の強度が著しく低下するので、結合材の含有量
は2重量%以上にすることが好ましい。
Therefore, the binder content is less than 30% by weight. In this case, if the content of the binder is less than 2% by weight, the strength of the dehumidifying member 10 will be significantly reduced, so the content of the binder is preferably 2% by weight or more.

このように構成される除湿部材10においては、除湿部
材10はその中心軸の周りに矢印13方向に回転駆動さ
れ、除湿部材10のガス通過面の、例えば3/4の領域
に向けて被乾燥ガスが送給され、残りの1/4の領域に
向けて加熱された再生ガスが送給される。被乾燥ガスは
矢印11方向に送られてきて、除湿部材10を通過して
除湿された後、矢印12方向に通流して乾燥ガスの使用
源まで送給される。一方、加熱された再生空気はこの被
乾燥ガスと逆の方向に除湿部材10を通流して除湿部材
10を脱湿再生する。従って、除湿部4410は、その
特定の領域に着目すると、被乾燥ガスの吸湿と、再生空
気による再生とを繰り返し、全体として、連続的に被乾
燥ガスを乾燥処理する。
In the dehumidifying member 10 configured in this way, the dehumidifying member 10 is rotationally driven in the direction of the arrow 13 around its central axis, and the gas passing surface of the dehumidifying member 10 is directed toward, for example, 3/4 of the region to be dried. Gas is supplied, and heated regeneration gas is supplied to the remaining 1/4 region. The gas to be dried is sent in the direction of arrow 11, passes through the dehumidifying member 10 to be dehumidified, and then flows in the direction of arrow 12 to be delivered to the source of use of the drying gas. On the other hand, the heated regeneration air flows through the dehumidifying member 10 in the opposite direction to the drying gas to dehumidify and regenerate the dehumidifying member 10. Therefore, when focusing on the specific region, the dehumidifying section 4410 repeatedly absorbs moisture in the gas to be dried and regenerates it with the regeneration air, thereby continuously drying the gas to be dried as a whole.

ところで、本発明においては、ゼオライトを主成分とす
る乾式除湿部材10を使用するが、このゼオライトは第
3図に示すように、水蒸気分圧が極めて低い場合にも高
い吸着容量を保持している。
Incidentally, in the present invention, a dry dehumidification member 10 mainly composed of zeolite is used, and as shown in FIG. 3, this zeolite maintains a high adsorption capacity even when the partial pressure of water vapor is extremely low. .

つまり、活性炭、活性アルミナ、又はシリカゲル等を主
成分とする他の乾式除湿部材と異なり、ゼオライトを主
成分とする乾式除湿部材は水蒸気分圧が低い条件下での
水分吸着能が著しく優れている。
In other words, unlike other dry dehumidifiers whose main ingredients are activated carbon, activated alumina, or silica gel, dry dehumidifiers whose main ingredient is zeolite have significantly superior moisture adsorption ability under conditions of low water vapor partial pressure. .

また、前述の如く、近時、広く利用されている塩化リチ
ウム(LiCβ)等の化学吸着材を使用する乾式除湿部
材においては、化学吸着材の流出及び飛散等の問題があ
るが、物理吸着材であるゼオライトを主成分とする場合
には、このような不都合がない。このため、ゼオライト
を主成分とする乾式除湿材は、低露点ガスを得るための
優れた乾式除湿部材であるということができる。  □
更に、第4図に示すように、ゼオライトはシリカゲル等
と異なり、100℃以上の高湿においても吸着容Φが高
く、十分な吸湿能力を有している。
In addition, as mentioned above, dry dehumidification components that use chemical adsorbents such as lithium chloride (LiCβ), which have been widely used in recent years, have problems such as outflow and scattering of the chemical adsorbents, but physical adsorbents When the main component is zeolite, there is no such inconvenience. Therefore, it can be said that a dry dehumidifying material containing zeolite as a main component is an excellent dry dehumidifying member for obtaining a low dew point gas. □
Furthermore, as shown in FIG. 4, unlike silica gel and the like, zeolite has a high adsorption capacity Φ even at high humidity of 100° C. or higher, and has sufficient moisture absorption ability.

これは、連続式乾式除湿機(第5図参照)に適用する場
合に、極めて有利である。つまり、連続式乾式除8機に
おいては低温の被乾燥ガスとIL温の再生ガスとが交互
に除湿部材10(又は除湿ロータ1)を通過する。例え
ば、除湿部材は、再生ゾーンにおいて140℃の熱風に
より加熱再生された後、吸湿ゾーンにおいて被乾燥ガス
によりしだいに冷却される。
This is extremely advantageous when applied to continuous dry dehumidifiers (see Figure 5). That is, in the continuous dry dehumidifier 8, the low-temperature drying gas and the IL-temperature regeneration gas alternately pass through the dehumidifying member 10 (or the dehumidifying rotor 1). For example, the dehumidifying member is heated and regenerated by hot air at 140° C. in the regeneration zone, and then gradually cooled by the gas to be dried in the moisture absorption zone.

この場合に、前述の如くシリカゲル等の物理吸着材は5
0℃を超えると水分吸着能力が著しく低下する。従って
、シリカゲル等で除湿部材を形成すると、再生ゾーンの
近傍の@湿ゾーンにおいては、温度が高過ぎるために除
湿部材は殆んど水分吸着能力を有しない。このため、除
湿部材は、被乾燥ガスの通過により冷却されて温度が約
50℃以下に低下する迄の期間は、被乾燥ガスを除湿し
得ず、この高湿の被乾燥ガスをそのまま通過させてしま
う。従って、低露点ガスを得ることは困難である。
In this case, as mentioned above, the physical adsorbent such as silica gel
If the temperature exceeds 0°C, the water adsorption ability will be significantly reduced. Therefore, if the dehumidifying member is formed of silica gel or the like, the dehumidifying member has almost no moisture adsorption ability in the @humidity zone near the regeneration zone because the temperature is too high. For this reason, the dehumidifying member cannot dehumidify the gas to be dried until the temperature drops to about 50°C or less after being cooled by the passage of the gas to be dried, and the dehumidifying member cannot dehumidify the gas to be dried by passing this highly humid gas to be dried. It ends up. Therefore, it is difficult to obtain low dew point gas.

なお、再生ゾーンと吸湿ゾーンとの間に、冷却ガスを流
して除湿部材を冷却する冷却ゾーンを設けている乾式除
湿機が公知である。しかしながら、このように冷却ゾー
ンを設けることは除湿様の構造を著しく複雑にしてしま
う。また、再生ガスの加熱源の都合上、再生ガスの温度
が200℃以上になる場合は、冷却ゾーンに大ff1f
fiの冷却ガスを流すことが必要になるか、又は十分な
冷却効采を得ることができないという問題点がある。
Note that a dry dehumidifier is known in which a cooling zone is provided between a regeneration zone and a moisture absorption zone to cool a dehumidifying member by flowing cooling gas. However, providing a cooling zone in this manner significantly complicates dehumidification-like structures. Also, due to the heating source of the regeneration gas, if the temperature of the regeneration gas exceeds 200℃, a large amount of ff1f is added to the cooling zone.
There is a problem that it is necessary to flow a cooling gas of fi, or it is not possible to obtain a sufficient cooling effect.

これに対し、本発明の実施例に係る除湿部材10は、ゼ
オライトを主成分とするから、第4図に示すように、1
00℃以上の温度に至るまで高い吸着容量を保持してお
り、高温における吸湿能力が高い。このため、上述のよ
うな冷却ゾーンを格別設けることなく、簡便に低露点ガ
スを得ることができる。
On the other hand, since the dehumidifying member 10 according to the embodiment of the present invention has zeolite as its main component, as shown in FIG.
It maintains high adsorption capacity up to temperatures of 00°C or higher, and has high moisture absorption ability at high temperatures. Therefore, low dew point gas can be easily obtained without providing a cooling zone as described above.

談た、装置設置雰囲気の温度が高い場合には、除湿部材
は再生空気による加熱に加えて、雰囲気温度によって昇
温する。しかしながら、本発明においては、ゼオライト
を主成分とする除湿部材10を使用するから、雰囲気温
度が高い場合でも、吸湿性能が低下することはない。つ
まり、雰囲気温度に拘らず、安定して低露点ガスを得る
ことができる。
As mentioned above, when the temperature of the atmosphere in which the device is installed is high, the temperature of the dehumidifying member is increased by the atmospheric temperature in addition to being heated by the regenerated air. However, in the present invention, since the dehumidifying member 10 containing zeolite as a main component is used, the moisture absorption performance does not deteriorate even when the ambient temperature is high. In other words, a low dew point gas can be stably obtained regardless of the ambient temperature.

次に、本発明に係る乾式除湿材を使用して除湿した場合
の実施例について、その比較例と共に説明する。
Next, examples of dehumidifying using the dry dehumidifying material according to the present invention will be described together with comparative examples thereof.

先ず、第2図に示すように、ハニカム構造の扇形分割素
体15を押出成形にて作成した後、押出成形助剤の成分
を800℃で焼成して除去する。
First, as shown in FIG. 2, a fan-shaped segmented element body 15 having a honeycomb structure is produced by extrusion molding, and then the components of the extrusion aid are removed by firing at 800°C.

次いで、8つの分割素体15を接合して円板を橋成し、
含湿ガス通過方向を中心軸とする円板状の乾式除湿ロー
タを作成した。このロータの直径は350顛、長さは2
00闇、ハニカムメツシュは400セル/in”である
Next, the eight divided element bodies 15 are joined to form a disk bridge,
A disc-shaped dry dehumidification rotor was created whose central axis is in the direction of passage of humid gas. The diameter of this rotor is 350 mm and the length is 2
00 darkness, honeycomb mesh is 400 cells/in''.

この乾式除湿〇−タを第5図に示すものと同様の除湿機
に組み込み、除湿試験した。この乾式除湿の仕様は以下
の通りである。
This dry dehumidifier was incorporated into a dehumidifier similar to that shown in FIG. 5, and a dehumidification test was conducted. The specifications of this dry dehumidification are as follows.

含湿ガスFaffi: 2000m3/時含湿ガス通過
面8%:0.27m叩 含湿ガス面風速:2m/秒 再生ガス流ffl:650m3/li 再生ガス通過面!#i:0.09m” 再生ガス面風速:2m/秒 下記第1表は、このロータ型除湿部材の構成成分の含有
量(単位はfiffi%)と、その最適除湿ロータ回転
数(単位はrph)を示す。
Moisture gas Faffi: 2000m3/hour Moisture gas passing surface 8%: 0.27m Moisture gas surface wind speed: 2m/sec Regeneration gas flow ffl: 650m3/li Regeneration gas flow surface! #i: 0.09 m" Regeneration gas surface wind speed: 2 m/sec Table 1 below shows the content of the constituent components of this rotor-type dehumidifying member (unit: fiffi%) and its optimum dehumidifying rotor rotation speed (unit: rph). ) is shown.

第1表 但し、ゼオライトとしては、実施例2のみ天然ゼオライ
トを使用し、他の実施例においては合成ゼオライトを使
用した。実施例1〜4はいずれもゼオライトの含有量が
70重量%以上である。これに対し、比較例1はシリカ
ゲルを主成分とするもの、比較例2及び3はシリカゲル
に対して夫々511%及び10重母%の塩化リチウムを
含浸させたもの、比較g44はゼオライトの含有量が6
0重量%と低いものである。
Table 1 However, as the zeolite, natural zeolite was used only in Example 2, and synthetic zeolite was used in other Examples. In Examples 1 to 4, the zeolite content is 70% by weight or more. On the other hand, Comparative Example 1 has silica gel as the main component, Comparative Examples 2 and 3 have silica gel impregnated with 511% and 10% lithium chloride, respectively, and Comparative G44 has a zeolite content. is 6
It is as low as 0% by weight.

この第1表に記載の組成を有する除湿ロータを、流出口
における除湿後のガスの湿度が最も低くなる最適回転数
(吸湿及び再生サイクルの最適条件)で回転させ、含湿
ガスをこのロータに通した。
A dehumidifying rotor having the composition listed in Table 1 is rotated at the optimum rotation speed (optimal conditions for moisture absorption and regeneration cycles) at which the humidity of the dehumidified gas at the outlet is the lowest, and the humid gas is transferred to this rotor. I passed it.

このように除湿試験した結果、下記第2表に示す除湿効
果が得られた。
As a result of the dehumidification test as described above, the dehumidification effects shown in Table 2 below were obtained.

第2表 0:良好、Δ:やや良好、×:不良 *:塩化リチウムの飛散発生 但し、この第2表において、「被乾燥ガスA」欄は、除
湿ロータへの流入口における相対湿度が80%RH,絶
M湿度が21.7y/Kg、温度が30℃の被乾燥ガス
を除湿した場合であり、[被乾燥ガスBJ欄は、同じく
相対湿度が50%、絶対湿度が13.6g/Ky、温度
が30℃の被乾燥ガスを除湿した場合である。第2表の
各数値は、除湿後の絶対湿度(g/Ky>を示し、前記
被乾燥ガスが、除湿ロータ通過後に、実施例欄及び比較
例欄に記載の値にまでその絶対湿度が低下したことを示
している。なお、再生ガスの温度は140℃及び200
℃である。
Table 2 0: Good, Δ: Slightly good, ×: Bad *: Lithium chloride scattering However, in this Table 2, the "Dried gas A" column indicates that the relative humidity at the inlet to the dehumidifying rotor is 80. %RH, absolute humidity is 21.7y/Kg, and the temperature is 30°C. Ky, this is a case where the gas to be dried at a temperature of 30° C. is dehumidified. Each value in Table 2 indicates the absolute humidity after dehumidification (g/Ky>), and after the gas to be dried passes through the dehumidifying rotor, the absolute humidity decreases to the values listed in the Examples and Comparative Examples columns. The temperature of the regeneration gas was 140°C and 200°C.
It is ℃.

この第2表に示すように、比較例1乃至4において、シ
リカゲルを主成分とする場合(比較例1)又はシリカゲ
ルに少量の塩化リチウムを含浸させた場合(比較例2)
には、吸着材の流出及び飛散は生じないけれども、低露
点除湿効果が十分に得られず、総合評価はΔである。塩
化リチウムの含有量が多い場合(比較例3)には、低露
点除湿効果があるものの、絶対湿度が21.7g/Ay
(相対湿度が80%)の高湿度ガスAを除湿するときに
塩化リチウムの流出及び飛散が発生した。従って、総合
評価はXである。また、ゼオライトを主成分とするがそ
の含有量が60重量%と低い場合(比較例4)には、十
分な低露点除湿効果が得られず、総合評価はΔである。
As shown in Table 2, in Comparative Examples 1 to 4, when silica gel is the main component (Comparative Example 1) or when silica gel is impregnated with a small amount of lithium chloride (Comparative Example 2)
Although no outflow or scattering of the adsorbent occurs, a sufficient low dew point dehumidification effect cannot be obtained, and the overall evaluation is Δ. When the content of lithium chloride is high (Comparative Example 3), although there is a low dew point dehumidifying effect, the absolute humidity is 21.7 g/Ay.
When dehumidifying high humidity gas A (relative humidity: 80%), lithium chloride leaked and scattered. Therefore, the overall evaluation is X. Moreover, when the main component is zeolite, but the content is as low as 60% by weight (Comparative Example 4), a sufficient low dew point dehumidification effect cannot be obtained, and the overall evaluation is Δ.

これに対して、実施例1〜5においては、ゼオライトを
70重量%以上含有するので、塩化リチウムを使用せず
ども低露点除湿効果を得ることができた。また、塩化リ
チウムを使用しないので、その流出及び飛散という事故
も発生しない、なお、シリカゲル等の吸着材を使用した
除湿、材(比較例1〜3)においては、再生ガス温度が
高い200℃の場合に140℃の場合よりも除湿効果が
低下するが、実施例1〜5の場合に畔、再生温度が高い
方が除湿効果が向上した。従って、本発明では200℃
という高温での再生、が可能であるから、迅速に再生処
理することができると共に、再生温度、ひいては再生ガ
スの加熱手段が限定されず、汎用性が高い。
On the other hand, in Examples 1 to 5, since 70% by weight or more of zeolite was contained, a low dew point dehumidifying effect could be obtained without using lithium chloride. In addition, since lithium chloride is not used, accidents such as leakage and scattering of lithium chloride do not occur.In addition, dehumidification materials using adsorbents such as silica gel (Comparative Examples 1 to 3) do not use lithium chloride at 200℃, where the regeneration gas temperature is high. However, in Examples 1 to 5, the higher the regeneration temperature, the better the dehumidification effect. Therefore, in the present invention, 200°C
Since regeneration at such high temperatures is possible, the regeneration process can be performed quickly, and the regeneration temperature and ultimately the means for heating the regeneration gas are not limited, making it highly versatile.

【発明の効果1 本発明によれば、除8材を70重量%以上のゼオライト
を含有するハニカム構造体としたから、高湿度ガスに対
して低露点除湿が可能であり、しかも従来のように化学
吸着材を使用しないからその流出及び飛散という事故も
回避される。
Effect of the invention 1 According to the present invention, since the dehumidifying material is a honeycomb structure containing 70% by weight or more of zeolite, it is possible to dehumidify a high-humidity gas at a low dew point. Since no chemical adsorbent is used, accidents such as spillage and scattering can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る乾式除湿部材を示す斜視
図、第2図は同じくその製造方法を説明する斜視図、第
3図は各種吸着材の水蒸気分圧と吸湿性能との関係を示
すグラフ図、第4図は各種吸着材の温度と吸湿性能の関
係を示す図、第5図は従来の乾式除湿装置を示す模式図
である。
Fig. 1 is a perspective view showing a dry dehumidifying member according to an embodiment of the present invention, Fig. 2 is a perspective view similarly explaining the manufacturing method thereof, and Fig. 3 is a relationship between water vapor partial pressure and moisture absorption performance of various adsorbents. FIG. 4 is a graph showing the relationship between temperature and moisture absorption performance of various adsorbents, and FIG. 5 is a schematic diagram showing a conventional dry dehumidification device.

Claims (5)

【特許請求の範囲】[Claims] (1)70重量%以上のゼオライトで形成されたハニカ
ム構造体を有し、その連通孔を被乾燥ガスが通流する間
に前記ガス中より水分を吸着除去することを特徴とする
乾式除湿材。
(1) A dry dehumidifying material having a honeycomb structure formed of 70% by weight or more of zeolite, which adsorbs and removes moisture from the gas while the gas to be dried flows through the communication holes. .
(2)前記ゼオライトは合成ゼオライトであることを特
徴とする特許請求の範囲第1項に記載の乾式除湿材。
(2) The dry dehumidifying material according to claim 1, wherein the zeolite is a synthetic zeolite.
(3)前記ハニカム構造体は2乃至30重量%の結合剤
を含有することを特徴とする特許請求の範囲第1項又は
第2項に記載の乾式除湿材。
(3) The dry dehumidifying material according to claim 1 or 2, wherein the honeycomb structure contains 2 to 30% by weight of a binder.
(4)前記結合剤は無機結合剤であることを特徴とする
特許請求の範囲第3項に記載の乾式除湿材。
(4) The dry dehumidifying material according to claim 3, wherein the binder is an inorganic binder.
(5)前記ハニカム構造体はその連通孔の延長方向を中
心軸とする円板状又は円柱状をなすことを特徴とする特
許請求の範囲第1項乃至第4項のいずれか1項に記載の
乾式除湿材。
(5) According to any one of claims 1 to 4, the honeycomb structure has a disk shape or a columnar shape whose central axis is the extending direction of the communication hole. Dry dehumidification material.
JP62094310A 1987-04-18 1987-04-18 Dry dehumidifying component Pending JPS63264125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62094310A JPS63264125A (en) 1987-04-18 1987-04-18 Dry dehumidifying component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62094310A JPS63264125A (en) 1987-04-18 1987-04-18 Dry dehumidifying component

Publications (1)

Publication Number Publication Date
JPS63264125A true JPS63264125A (en) 1988-11-01

Family

ID=14106705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62094310A Pending JPS63264125A (en) 1987-04-18 1987-04-18 Dry dehumidifying component

Country Status (1)

Country Link
JP (1) JPS63264125A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134422U (en) * 1991-05-31 1992-12-15 株式会社松井製作所 honeycomb rotor
JPH0523528A (en) * 1991-07-25 1993-02-02 Kawata Mfg Co Ltd Adsorbable honeycomb ceramic body and preparation thereof
JPH06327967A (en) * 1993-05-21 1994-11-29 Matsushita Electric Ind Co Ltd Honeycomb adsorbing body
US5580369A (en) * 1995-01-30 1996-12-03 Laroche Industries, Inc. Adsorption air conditioning system
US5660048A (en) * 1996-02-16 1997-08-26 Laroche Industries, Inc. Air conditioning system for cooling warm moisture-laden air
WO2006079448A1 (en) * 2005-01-26 2006-08-03 Klingenburg Gmbh Humidity- and/or heat-exchange device, for example a plate heat exchanger, sorption rotor, adsorption dehumidifying rotor or the similar
JP2010125396A (en) * 2008-11-28 2010-06-10 Orion Mach Co Ltd Method of recycling adsorbent cartridge
CN109210646A (en) * 2017-06-29 2019-01-15 有限会社科技新领域 Dehumidify humidifying rotor
JP2019209269A (en) * 2018-06-05 2019-12-12 東洋紡株式会社 Adsorption rotor and adsorption processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109118A (en) * 1981-12-18 1983-06-29 Seibu Giken:Kk Element for adsorption of gas and its production
JPS6328428A (en) * 1986-07-21 1988-02-06 Choichi Furuya Drying agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109118A (en) * 1981-12-18 1983-06-29 Seibu Giken:Kk Element for adsorption of gas and its production
JPS6328428A (en) * 1986-07-21 1988-02-06 Choichi Furuya Drying agent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134422U (en) * 1991-05-31 1992-12-15 株式会社松井製作所 honeycomb rotor
JPH0523528A (en) * 1991-07-25 1993-02-02 Kawata Mfg Co Ltd Adsorbable honeycomb ceramic body and preparation thereof
JPH06327967A (en) * 1993-05-21 1994-11-29 Matsushita Electric Ind Co Ltd Honeycomb adsorbing body
US5580369A (en) * 1995-01-30 1996-12-03 Laroche Industries, Inc. Adsorption air conditioning system
US5660048A (en) * 1996-02-16 1997-08-26 Laroche Industries, Inc. Air conditioning system for cooling warm moisture-laden air
US5890372A (en) * 1996-02-16 1999-04-06 Novelaire Technologies, L.L.C. Air conditioning system for cooling warm moisture-laden air
WO2006079448A1 (en) * 2005-01-26 2006-08-03 Klingenburg Gmbh Humidity- and/or heat-exchange device, for example a plate heat exchanger, sorption rotor, adsorption dehumidifying rotor or the similar
JP2010125396A (en) * 2008-11-28 2010-06-10 Orion Mach Co Ltd Method of recycling adsorbent cartridge
CN109210646A (en) * 2017-06-29 2019-01-15 有限会社科技新领域 Dehumidify humidifying rotor
JP2019011210A (en) * 2017-06-29 2019-01-24 株式会社テクノフロンティア Dehumidifying/humidifying rotor
JP2019209269A (en) * 2018-06-05 2019-12-12 東洋紡株式会社 Adsorption rotor and adsorption processing device

Similar Documents

Publication Publication Date Title
US4769053A (en) High efficiency sensible and latent heat exchange media with selected transfer for a total energy recovery wheel
EP1508359B1 (en) Dehumidification system and dehumidification method
US3844737A (en) Desiccant system for an open cycle air-conditioning system
US5300138A (en) Langmuir moderate type 1 desiccant mixture for air treatment
JPH0628173Y2 (en) Moisture exchange element
JP3346680B2 (en) Adsorbent for moisture exchange
KR20180083403A (en) Heat recovery adsorber as building ventilation system
JP2673300B2 (en) Low concentration gas sorption machine
AU2017208389A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
JPS63264125A (en) Dry dehumidifying component
JPS63240921A (en) Dry-type dehumidifying material and dry-type dehumidifying device
MX2012004401A (en) Honey comb matrix comprising macro porous desiccant, process and use thereof.
JP2000070659A (en) Dehumidifying material and dehumidifier
JP2015509832A (en) Desiccant-supporting honeycomb chemical filter and manufacturing method thereof
KR101487053B1 (en) Dehumidifying Rotor having air conditioning ability and Method of manufacturing the Dehumidifying Rotor
JPS63116727A (en) Dry dehumidifying material
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP3560004B2 (en) Method and apparatus for removing water and carbon dioxide
CA1285931C (en) High efficiency sensible and latent heat exchange media with selectedtransfer for a total energy recovery wheel
US11592195B2 (en) Dehumidifying air handling unit and desiccant wheel therefor
JP5844058B2 (en) Dehumidifier and desiccant dehumidifier equipped with the same
JPS63209734A (en) Dry dehumidifying material
WO2022196181A1 (en) Adsorption system
KR960004607B1 (en) High efficiency sensible and latent heat exchange media with selected transfer for a total energy recovery wheel
JPS5944891B2 (en) moisture desiccant