JPS63263401A - Displacement measuring method - Google Patents

Displacement measuring method

Info

Publication number
JPS63263401A
JPS63263401A JP9748987A JP9748987A JPS63263401A JP S63263401 A JPS63263401 A JP S63263401A JP 9748987 A JP9748987 A JP 9748987A JP 9748987 A JP9748987 A JP 9748987A JP S63263401 A JPS63263401 A JP S63263401A
Authority
JP
Japan
Prior art keywords
light
component
displacement
luminous flux
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9748987A
Other languages
Japanese (ja)
Other versions
JPH0575325B2 (en
Inventor
Masakazu Hayashi
正和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9748987A priority Critical patent/JPS63263401A/en
Publication of JPS63263401A publication Critical patent/JPS63263401A/en
Publication of JPH0575325B2 publication Critical patent/JPH0575325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure an extremely close interval to an object body with high accuracy by measuring the displacement of the body to be measured from the relation between the quantity of reflected light which has its minimum value at a position nearby the total reflecting surface of an optical component and the quantity of displacement of the body to be measured. CONSTITUTION:Luminous flux emitted by a laser light source 1 is incident on the left flank A of the optical component 2 and enters the component 2. The luminous flux L2 traveling in the component 2 is incident on a point B on the bottom surface S of the component 2, reflected totally to travel to the right flank of the component 2 as luminous flux L3, and projected from the component 2 at a point C. The projected luminous flux L4 is incident on a photoelectric sensor 3 and converted photoelectrically and the output of the sensor 3 is inputted to a processor 4. When the object body 5 approaches the bottom surface of the component 2 to wavelength order, leaking light of the luminous flux L2 impinges on the body 5 and is reflected at the point B, so that luminous flux which travels to the sensor 3 decreases. Here, the output of the sensor 3 is measured and the processor 4 calculates the gap (x) (or its variation quantity dx) from the value (variation quantity) and displays it on a display device 6.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、非接触変位測定装置に係り、特に光の反射面
からのにじみ出しを利用して、対象物体との変位を高精
度に測定する変位測定方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-contact displacement measuring device, and in particular, the present invention relates to a non-contact displacement measuring device, and in particular, the present invention relates to a non-contact displacement measuring device, and in particular, to a non-contact displacement measuring device, which measures the displacement of a target object by utilizing the seepage of light from a reflective surface. This invention relates to a displacement measurement method for measuring displacement with high precision.

(従来の技術) 従来、光を用い九非接触測定方式としては、第5図のよ
うに、対象物体(入)にHe−Neレーザー光(B)を
照射し、対象物体(入)に当った光のスポットをレンズ
系(C)などで例えばP2O(PositionSen
sing Dlode)などのような、光電素子(D)
(この素子では、例えばlQm X IQmの光電素子
面に当った光の位置(x、y)に比例し九電圧が出力で
きる。)面に結偉させ、この出力電圧からセンサ(E)
と物体(入)との距離aiの弯動を算出する方式がある
(Prior art) Conventionally, as shown in Fig. 5, a non-contact measurement method using light is to irradiate a He-Ne laser beam (B) onto a target object (enter) and hit the target object (enter). The spot of the light is detected using a lens system (C), for example, as a P2O (Position Sen).
Photoelectric elements (D) such as sing Dlode etc.
(This element can output nine voltages proportional to the position (x, y) of the light hitting the photoelectric element surface, for example lQm x IQm.)
There is a method of calculating the deflection of the distance ai between the object (input) and the object (input).

このような変位計は装置化され、市販されている。Such a displacement meter is commercially available.

一方、別の方式としては、第6図のように、対撒物体(
F)とセンサ(G)面を図のような配置とし、セ/す(
G)面からの反射光R1と対象物体からの反射光電の干
渉を利用して、距離dの変動(変位)を算出する方式な
どがある。この方式を装置化したものはあまり市販され
ている例がな(^が、測定方式としては、きわめて一般
的である。
On the other hand, as another method, as shown in Fig.
Arrange the F) and sensor (G) surfaces as shown in the figure, and
G) There is a method of calculating the variation (displacement) of the distance d by using the interference between the reflected light R1 from the surface and the reflected photoelectricity from the target object. There are not many commercially available devices using this method (^^, but it is a very common measurement method.

しかるに、前者のPADによる方式では、変位aの分甥
能は一般的には数p〜数10μm程度であり、光の波長
の数100倍のオーダーである011作動距離(wor
k distance)は数m〜数1−が必要である。
However, in the former PAD method, the dispersion of the displacement a is generally on the order of several micrometers to several tens of micrometers, and the working distance (wor) is on the order of several hundred times the wavelength of light.
k distance) is required to be several m to several 1-.

マ九後者の干渉(こよる方式では、変位dの分解能は、
光の数分の1波長オーダーである。免とえば、図中の光
路を1と置くと、良く知られている干渉の条件から 21=nλl  n−1,2131λ:光の波長を満す
1については、明るい縞が検出できる。また、 21=(m十−)λ、   m5=l、2.3を満す1
については、暗い縞が検出できる◇し九かって、これを
利用し免干渉による変位検出方式では、最初に検出でき
るのは暗い縞でj=’/4(m=1のとき)であり、作
動距離(work distance)゛ λ    
      λ は、/以上9分解能/(1〜32)(九だし、内挿法を
用いた場合)程度が一般的である。
(In the latter method, the resolution of the displacement d is
It is on the order of a fraction of the wavelength of light. For example, if the optical path in the figure is set to 1, bright fringes can be detected for 1 that satisfies the wavelength of 21=nλl n-1, 2131λ: light based on the well-known interference condition. Also, 21=(m×−)λ, m5=l, 1 that satisfies 2.3
Therefore, in the displacement detection method using interference interference, the first thing that can be detected is a dark stripe at j = '/4 (when m = 1), and the operation is difficult. Work distance゛ λ
Generally, λ is approximately 9 resolution/(1 to 32) (9 resolution, when interpolation is used).

(発明が解決しようとする問題点) 本発明は、上述し九従来の変位測定方式が、作動距離が
長く且つ測定精度にも限界があることを顧慮してなされ
たもので、センサー面に非常に近接した作動距離(具体
的には波長λ以内)で、きわめて高分解能(波長λの数
十分の1〜数百分の1)で対象物体との距離、もしくは
物体の変位を測定する変位測定方法を提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention was developed in consideration of the fact that the above-mentioned nine conventional displacement measurement methods have a long working distance and limited measurement accuracy. Displacement that measures the distance to the target object or the displacement of the object at a working distance close to (specifically, within wavelength λ) and with extremely high resolution (several tenths to several hundredths of wavelength λ) The purpose is to provide a measurement method.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)光を出射する光
源と、上記光を入射する入射面並びに入射面を介して内
部に入射してきた光を全反射し且つ非透光性の被測定物
に対向して設けられる全反射面を有する光学的手段と、
上記全反射面からの光を受光して光電変換する光電変換
手段とを有し、全反射面近傍位置にて極小値を有する反
射先着と被測定物の変位量との関係を求す特性曲線をあ
らかじめ記憶し、この特性曲線に基づいて、変位測定す
るようにしたものである。
(Means and actions for solving the problem) A light source that emits light, an incident surface that enters the light, and a non-transparent measurement target that totally reflects the light that has entered the interior through the incident surface. an optical means having a total reflection surface provided facing the object;
A characteristic curve comprising a photoelectric conversion means for receiving and photoelectrically converting light from the total reflection surface, and determining the relationship between the first-come-first-served reflection and the displacement of the object to be measured, which has a minimum value at a position near the total reflection surface. is stored in advance, and the displacement is measured based on this characteristic curve.

(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図にこの実施例の変位測定方法に用いられる装置の
構成を示している。この装置は、He −Neレーザ光
を出射するレーザ光源(1)と、レーザ光束を通過反射
させる光学部品(2)と、レーザ光束の光量を測定する
フォトダイオード、フォトトランジスタなどの光電セン
ナ(3)と、光電センナ(3)の出力(電圧または電流
)を入力し後述する処理を行うマイクロコンビエータを
主体とする処理装置(4)と、この処理装置(4)にお
ける処理結果である光学部品(2)と対象物体(5)の
間隔Xまたは対象物体(5)の変位量dxを表示する表
示装置(6)とから構成されている〇ことでは、対象物
体(5)は、金属さラーのように光が反射する物体とす
る。
FIG. 1 shows the configuration of an apparatus used in the displacement measuring method of this embodiment. This device consists of a laser light source (1) that emits a He-Ne laser beam, an optical component (2) that passes through and reflects the laser beam, and a photoelectric sensor (3) such as a photodiode or phototransistor that measures the light intensity of the laser beam. ), a processing device (4) mainly consisting of a micro combinator that inputs the output (voltage or current) of the photoelectric sensor (3) and performs the processing described below, and an optical component that is the processing result of this processing device (4). (2) and a display device (6) that displays the distance X between the target object (5) or the displacement dx of the target object (5). Let it be an object that reflects light, like this.

つぎに、上記構成の変位測定装置を用いた本実施例の変
位測定方法について述べる。
Next, the displacement measuring method of this embodiment using the displacement measuring device having the above configuration will be described.

まず、レーザ光源(1)から出射した光束L1は、例え
ば第1図のような光学部品(2)の左側面黒人へ入射角
θゑ、で入射する。そして、透過光は、屈折角θt。
First, the light beam L1 emitted from the laser light source (1) is incident on the left side surface of the optical component (2) as shown in FIG. 1, for example, at an incident angle θ. The transmitted light has a refraction angle θt.

で光学部品内に進入する。今、光学部品(2)の屈折率
をflop 、光学部品(2)外の媒質の屈折率flo
utとすると、良く知られている屈折の法則又は5ne
llの法則から 血θt+/自at、 = nop/ nout = n
op −outとなる。一般的には外の媒質を空気とす
るとnop−Out > 1である◇そして、光学部品
(2)内部を進む光束り、は、光学部品(2)の底面S
の点Bへ入射角θ鵞で入射する。この発明では、入射角
θ、は、θ!〉0、を満すように設定されている。喪だ
しθ、は臨界角で血θ2 = nout−op = n
out/nop = l  を満す角度とする0 これは、いわゆる全反射の状態で、光束り、はすべての
光が角θ、で反射して光束り、とiって、光学部品の右
側面へ向うことを示している。光学部品(2)の右側面
上の点Cでは、左側面黒人で生じたのと同様に、屈折の
法則より、 alnOi、/mθt、 == nop −Outの関
係を有する角0−で、光束L4は光学部品を出射する。
to enter the optical component. Now, the refractive index of optical component (2) is flop, and the refractive index of the medium outside optical component (2) is flop.
If ut, then the well-known law of refraction or 5ne
From the law of ll, blood θt+/self at, = nop/nout = n
It becomes OP-OUT. Generally, if the outside medium is air, nop-Out > 1 ◇Then, the light beam traveling inside the optical component (2) is the bottom surface S of the optical component (2).
is incident on point B at an incident angle θ. In this invention, the angle of incidence θ, is θ! >0. Mourning θ is the critical angle and blood θ2 = nout-op = n
The angle satisfies out/nop = l0 This is a state of so-called total internal reflection, where all the light is reflected at the angle θ, and i is the right side of the optical component. It indicates heading towards. At point C on the right side of optical component (2), the light flux at angle 0- with the relationship alnOi, /mθt, == nop -Out, according to the law of refraction, similar to what occurred on the left side L4 emits the optical component.

この光束玩は先に述べた光電センサ(3)へ向い、光電
変換される。センサ(3)から得られた出力は、電圧又
は電流の形で処理装置(4)へ入力される。
This light beam is directed to the photoelectric sensor (3) mentioned above and is photoelectrically converted. The output obtained from the sensor (3) is input to the processing device (4) in the form of voltage or current.

従来のマクロ的な光学では、光学部品(2)の底面Sで
全反射した光は、光学部品外では、存在していないと考
えるのが一般的である。しかし、微視的に見ると、光学
部品(2)と外界の媒質の境界では、わずかに外界に光
かにじみ出していることが認められる。そこで、光学部
品(2)の底面Sを第2!Hのよう1こ拡大し示した。
In conventional macroscopic optics, it is generally considered that the light totally reflected by the bottom surface S of the optical component (2) does not exist outside the optical component. However, when viewed microscopically, it is recognized that light leaks slightly into the outside world at the boundary between the optical component (2) and the outside medium. Therefore, the bottom surface S of the optical component (2) is the second! It is shown enlarged by 1 area as shown in H.

この光学部品(2)の外界の媒質に対する屈折率”0p
−Out=nとすると、仮想の透過光−と光束り、を考
え、先の屈折の法則より、−1膜性を失わずに 血θim /7θ、 = n となる。そこで、これから 内θ!=龜θim/n とすれば、光束り、の位相項は となる◇すなわち、振幅が境界からの距離Zの指数関数 で減衰するが、波動(光束)かにじみ出している事がわ
かる。実質的な、光束の進入深さは、4−λ −4−なわち、波長程度であるといわれている。
The refractive index of this optical component (2) with respect to the external medium is "0p"
When -Out=n, considering the virtual transmitted light and the light flux, and from the law of refraction mentioned above, blood θim/7θ, = n without losing the -1 film property. So, from now on, Uchi θ! = θim/n, then the phase term of the luminous flux becomes ◇In other words, the amplitude attenuates as an exponential function of the distance Z from the boundary, but it can be seen that the wave (luminous flux) oozes out. It is said that the substantial penetration depth of the light beam is about 4-λ-4-, that is, the wavelength.

そこで、このにじみ出している光をに2の物体に反射さ
せることを考える。すなわち、先の光学部品(2)の底
面Sに対象物体(5)を近ずけると、対象物体(5)と
の間隔Xが波長オーダー(0,3〜0.6μm)の距離
以上離れている場合は、光束り、は点Bで全反射して、
光束り、、L、となって光電センサ(3)に向う。
Therefore, let's consider how to reflect this oozing light onto the second object. In other words, when the target object (5) is brought close to the bottom surface S of the optical component (2), the distance If there is, the luminous flux is totally reflected at point B,
The light flux becomes L, and heads toward the photoelectric sensor (3).

しかし、対象物体(5)が、波長オーダまで、光学部品
(2)の底面Sに近ずくと、光束り、は、にじみ出した
光゛が対象物体(5)に当たりその結果として、点Bで
反射して光束り、、L4となりてセンサ(3)へ向う光
束が減少する。これを、光電センサ(3)の出力でとら
えたのが第3図で、光束玩の強度が物体(5)の接近と
共に急激に減少しているのが認められる◇そこで、光電
センサ(3)の出力を測定し、この値(変化量)から間
隔X(またはその変化量dx)を、マイクロコンビ1−
ターを用いた処理装置(4)によ秒算出し、表示装置(
6)に表示を行なう。処理装置(4)で行なう間隔Xの
算出は、間隔Xが、第3図のように例えばaからbの範
囲(図では0.6〜0.9μmの範囲)で光電センサ(
3)出力と真の関係を直線りで近似して、出力から間隔
Xを求める。
However, when the target object (5) approaches the bottom surface S of the optical component (2) by a wavelength order, the light flux is reduced, and the oozing light hits the target object (5) and is reflected at point B. As a result, the light flux becomes L4, and the light flux heading toward the sensor (3) decreases. This is captured by the output of the photoelectric sensor (3) in Figure 3, and it can be seen that the intensity of the light flux decreases rapidly as the object (5) approaches ◇Therefore, the photoelectric sensor (3) Measure the output of , and from this value (amount of change), calculate the interval
The processing device (4) using a processor calculates the seconds, and the display device (
6). The calculation of the interval X performed by the processing device (4) is performed when the interval
3) Approximate the output and true relationship with a straight line to find the interval X from the output.

以上のように、この実施例の変位測定方法は、対象物体
(5)との非常に近接した間隔(波長距離以内)を極め
て高精度(λ/10〜λ/1000)で測定できる。ま
た、測定に必要な平面の面積はレーザビームの面Sでの
面積(例えば直径1■)でよく、先端の極めて小さい非
接触変位計を構成することができる。さらに、単純な光
量検出だけで間隔測定を行うことができる利点を有して
いる。
As described above, the displacement measuring method of this embodiment can measure a very close distance (within the wave length) to the target object (5) with extremely high accuracy (λ/10 to λ/1000). Further, the area of the plane necessary for measurement may be the area on the surface S of the laser beam (for example, 1 square in diameter), and a non-contact displacement meter with an extremely small tip can be constructed. Furthermore, it has the advantage that distance measurement can be performed by simply detecting the amount of light.

なお、本発明は、上記実施例に限ることなく、下記のよ
うに種々変形可能である。
Note that the present invention is not limited to the above embodiments, and can be modified in various ways as described below.

■第1図では光源としてHe −Ne レーザ光を用い
た例を示し九が、光源としては、その他アルゴンなどの
レーザ光又は、半導体レーザ光、一般のハロゲンランプ
、赤外、紫外ランプなど、光学部品(2)を透過しその
底面Sで全反射する光束を発生するものであればいかな
る光源も用いることが可能である◇ ■受光系としてはフォトダイオードなどの光電変換素子
を用いる例を示したが、光電を電気信号に変換できる素
子であれば、フォトダイオード。
■Figure 1 shows an example in which a He-Ne laser beam is used as a light source, but other light sources include laser beams such as argon, semiconductor laser beams, general halogen lamps, infrared lamps, ultraviolet lamps, etc. Any light source can be used as long as it generates a luminous flux that passes through component (2) and is totally reflected at its bottom surface S. ◇ ■An example of using a photoelectric conversion element such as a photodiode as the light receiving system is shown. However, if it is an element that can convert photoelectricity into electrical signals, it is a photodiode.

フォトトランジスタ、フォトアルチプライヤなどの素子
または光電子倍増管が考えられる。また、特殊な例とし
ては、COD素子や撮儂管など、画像を対象としたもの
でも良い。ただし、このような画像を対象とする変換器
(センサ)では、画像を処理してその撮像面に当ってい
る光量の総量を抽出する処理が必要と々る。
Elements such as a phototransistor, a photomultiplier, or a photomultiplier tube can be considered. Further, as a special example, it may be a COD device, a camera tube, or the like that targets images. However, a converter (sensor) that targets such an image requires processing to process the image and extract the total amount of light hitting the imaging surface.

■第1図では光学部品(2)として図のような2等辺形
状のプリズムを考え、光束は左右側面で光が屈折するタ
イプのものを示した。しかし、この光学部品(2)の役
目は、その底面Sで光束が全反射する機能を持てば良く
この条件さえ整えば、種々のタイプの光学部品の形状が
可能である。
■ In Figure 1, an isosceles prism as shown in the figure is considered as the optical component (2), and the light beam is of the type in which the light is refracted at the left and right sides. However, the role of this optical component (2) is only to have the function of total reflection of the luminous flux at its bottom surface S, and as long as this condition is met, various types of optical component shapes are possible.

第4図の光学部品(2)′はその例である。第1図では
光学部品(2)に光束が左右から入射するために、構成
装置が比較的大きくなっている。しかし、第4図ではこ
れを改善している。すなわち、光源(1)。
Optical component (2)' in FIG. 4 is an example of this. In FIG. 1, since the light flux enters the optical component (2) from the left and right sides, the component device is relatively large. However, this is improved in Fig. 4. That is, the light source (1).

光電センサ(3)はプリズム上方に設けられ、プリズム
(2)′上面から垂直入射した光束は左右側と底面で全
反射して図のような光路となって(へる。光学部品(2
)’(プリズム)底面で生ずる現徽は、先に述べたのと
同様である。
The photoelectric sensor (3) is installed above the prism, and the light beam vertically incident from the top surface of the prism (2)' is totally reflected on the left and right sides and the bottom surface, forming an optical path as shown in the figure.Optical components (2)
)' (prism) The current reflection that occurs on the bottom surface is the same as described above.

■本発明の実施例では第3図の特性曲線の区間(a、b
)で曲線を直線1に近似した例を曲べたカー、変位を得
るには、この区間ばかりで衾く、この区間(a、b)よ
りさらに小さい変位である曲線下降部(第3図、直線1
′参照)を直線近似して用いることもでき、さらに直線
近似を用いることなくこの特性曲線そのものをコンビエ
ータ等の処理装置内にもち、この曲線から変位Xを算出
する方式なども可能である。
■ In the embodiment of the present invention, the section (a, b) of the characteristic curve in FIG.
) is an example of approximating a curve to straight line 1. To obtain the displacement, we need to study only this section. 1
It is also possible to use a linear approximation of the characteristic curve (see '), and it is also possible to have this characteristic curve itself in a processing device such as a combiator without using a linear approximation, and calculate the displacement X from this curve.

〔発明の効果〕〔Effect of the invention〕

本発明は、以下のような格別の効果を奏する。 The present invention has the following special effects.

(イ)従来微小な間隔の測定方式としては、前述したよ
うに、光の干渉による方式が一般的である。
(a) As mentioned above, as a conventional method for measuring minute intervals, a method using optical interference is generally used.

この方式は、作動距離が数波長で、測定の分解能λ もλ〜’100のオーダであった。This method has a working distance of several wavelengths and a measurement resolution of λ was also on the order of λ~'100.

それに比し、本発明は、対象物体との非常に近接した間
隔(波長距離以内)を非常の高精度(匂。
In contrast, the present invention can measure very close distances (within the wave length) to the target object with very high accuracy.

λ 〜4゜。。)で測定することができる。λ ~4°. . ) can be measured.

(ロ)従来の光の干渉による測定方式では、光学部品と
対象物体の相対する面が干渉を起こす必要があり、した
がって一般的には、干渉縞を観察できる糧度の広い平面
が必要である。
(b) In the conventional measurement method using light interference, it is necessary for the opposing surfaces of the optical component and the target object to cause interference, and therefore, generally, a plane with a wide surface area is required to observe interference fringes. .

しかし、本発明によれば、光束瑞として普通のHe −
Neレーザ光源(ビーム径1!11鱈)を用いることが
でき、点BICかいて必要な平面は11■穐変でよく、
先端のきわめて小さい非接触変位計を構成することがで
きる。
However, according to the present invention, ordinary He −
A Ne laser light source (beam diameter 1!11) can be used, and the required plane by drawing the point BIC can be 11㎜.
A non-contact displacement meter with an extremely small tip can be constructed.

(ハ)従来の光の干渉による方式では、測定範囲は数波
長と広いものの、フリンジ(縞)の解析のために画偉を
発生させこれを解析し九り、そこ゛まで複雑な処理を行
なわないまでも、縞の移動した数をカウントするなど、
縞解析のための複雑な処理回路が必要であり九〇しかし
、本発明によれば単純な光量検出だけで、きわめて簡単
に高い分解能と精度で間隔を測定することができる0に
)ま七、本発明に先だつ特願昭61−256817号明
細書では、全反射面と対象物体が接触し九所で出力が最
小となる特性であったため、実際適用の場合には全反射
面に傷壜どが発生しやすいなどの問題があったが、本特
許では、金属物体と全反射面は1μm以下ではあるが、
わずかに離れた所で極小値を発生するため、変位針とし
て実用化がきわめて高い利点がある。
(c) Conventional optical interference methods have a wide measurement range of several wavelengths, but in order to analyze fringes, image depth is generated and analyzed, which requires such complicated processing. Even if it is not, it is possible to count the number of stripes that have moved, etc.
A complex processing circuit is required for stripe analysis, but according to the present invention, intervals can be measured with high resolution and accuracy with simple light intensity detection. In the specification of Japanese Patent Application No. 61-256817, which precedes the present invention, the total reflection surface and the target object are in contact and the output is minimized at nine points. However, in this patent, although the metal object and the total reflection surface are less than 1 μm,
Since the minimum value is generated at a slightly distant location, it has the advantage of being highly practical as a displacement needle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の変位測定方法に用いられる
装置の構成図、第2図及び第3図は第1図の測定原理の
説明図、第4図は本発明の他の実施例の変位測定方法に
用いられる装置を示す図、第5図及び第6図は従来技術
の説明図である。 (1)・・・光源。 (2)・・・光学部品(光学的手段)。 (3)・・・光電センサ(光電変換手段)。 (4)・・・処理装置(演算手段)。 (5)・・・対象物体(被測定物)。 第2図 第4図 [、−] 第 3 図 第5図 第6rlA
FIG. 1 is a configuration diagram of a device used in a displacement measuring method according to an embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams of the measurement principle of FIG. 1, and FIG. 4 is a diagram showing another embodiment of the present invention. FIGS. 5 and 6, which show an apparatus used in the example displacement measuring method, are explanatory diagrams of the prior art. (1)...Light source. (2)...Optical components (optical means). (3)...Photoelectric sensor (photoelectric conversion means). (4) Processing device (calculating means). (5)...Target object (object to be measured). Figure 2 Figure 4[,-] Figure 3 Figure 5 Figure 6rlA

Claims (2)

【特許請求の範囲】[Claims] (1)入射面及び全反射面を有する光学的手段の上記全
反射面に不透光性の被測定物を対向させる工程と、上記
入射面に光を入射させ上記入射面を介して内部に入射し
てきた光を上記全反射面にて反射させる工程と、上記全
反射面にて反射した反射光を受光して光電変換する工程
と、上記光電変換により得られた上記反射光量を示す電
気信号に基づいて上記被測定物の上記全反射面に対する
間隔又は変位と上記反射光量との関係を示し且つ上記全
反射面近傍位置にて上記反射光量が極小値となる特性曲
線を求めて記憶させる工程と、この記憶されている特性
曲線に基づいて上記被測定物の上記全反射面に対する間
隔又は変位を算出する工程とを具備することを特徴とす
る変位測定方法。
(1) A step of placing an opaque object to be measured against the total reflection surface of an optical means having an entrance surface and a total reflection surface, and causing light to enter the inside through the entrance surface. a step of reflecting the incident light on the total reflection surface, a step of receiving and photoelectrically converting the reflected light reflected on the total reflection surface, and an electric signal indicating the amount of the reflected light obtained by the photoelectric conversion. A step of determining and storing a characteristic curve that shows the relationship between the distance or displacement of the object to be measured with respect to the total reflection surface and the amount of reflected light, and in which the amount of reflected light has a minimum value at a position near the total reflection surface based on the above. and calculating the distance or displacement of the object to be measured with respect to the total reflection surface based on the stored characteristic curve.
(2)被測定物は金属からなることを特徴とする特許請
求の範囲第1項記載の変位測定方法。
(2) The displacement measuring method according to claim 1, wherein the object to be measured is made of metal.
JP9748987A 1987-04-22 1987-04-22 Displacement measuring method Granted JPS63263401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9748987A JPS63263401A (en) 1987-04-22 1987-04-22 Displacement measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9748987A JPS63263401A (en) 1987-04-22 1987-04-22 Displacement measuring method

Publications (2)

Publication Number Publication Date
JPS63263401A true JPS63263401A (en) 1988-10-31
JPH0575325B2 JPH0575325B2 (en) 1993-10-20

Family

ID=14193685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9748987A Granted JPS63263401A (en) 1987-04-22 1987-04-22 Displacement measuring method

Country Status (1)

Country Link
JP (1) JPS63263401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354405A (en) * 1989-07-24 1991-03-08 Hitachi Ltd Apparatus for measuring floating amount of magnetic head slider
US5239183A (en) * 1991-04-30 1993-08-24 Dainippon Screen Mfg. Co., Ltd. Optical gap measuring device using frustrated internal reflection
US5475319A (en) * 1993-06-08 1995-12-12 Dainippon Screen Mfg. Co., Ltd. Method of measuring electric charge of semiconductor wafer
US5554939A (en) * 1992-12-22 1996-09-10 Dainippon Screen Manufacturing Co., Ltd. Non-destructive measuring sensor for semiconductor wafer and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873209A (en) * 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
JPS63111403A (en) * 1986-10-30 1988-05-16 Toshiba Corp Displacement measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873209A (en) * 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
JPS63111403A (en) * 1986-10-30 1988-05-16 Toshiba Corp Displacement measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354405A (en) * 1989-07-24 1991-03-08 Hitachi Ltd Apparatus for measuring floating amount of magnetic head slider
US5239183A (en) * 1991-04-30 1993-08-24 Dainippon Screen Mfg. Co., Ltd. Optical gap measuring device using frustrated internal reflection
US5554939A (en) * 1992-12-22 1996-09-10 Dainippon Screen Manufacturing Co., Ltd. Non-destructive measuring sensor for semiconductor wafer and method of manufacturing the same
US5475319A (en) * 1993-06-08 1995-12-12 Dainippon Screen Mfg. Co., Ltd. Method of measuring electric charge of semiconductor wafer

Also Published As

Publication number Publication date
JPH0575325B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
CN105444700B (en) A kind of many parallelism of optical axis detection means of multi-wavelength and detection method
CN104568389A (en) Bilateral dislocation differential confocal element parameter measuring method
JPS63241336A (en) Particle size measuring apparatus
JP2001504592A (en) Distance measuring method and distance measuring device
JPS62197711A (en) Optically image forming type non-contacting position measuring apparatus
JPS62201301A (en) Laser interference length measuring machine
JPS63263401A (en) Displacement measuring method
CN202281596U (en) Laser speckle measurement device for simultaneously measuring in-plane displacement and off-plane displacement
CN104792732B (en) A kind of refractometer of distribution of light sources from reference
JPS63111403A (en) Displacement measuring instrument
US4707132A (en) Process for sensing defects on a smooth cylindrical interior surface in tubing
JPS63193003A (en) Apparatus for measuring depth of recessed part and thickness of film
JPH0228541A (en) Optical concentration detector
JPS58216903A (en) Thickness measuring device
Wallhead et al. Optimisation of the optical method of caustics for the determination of stress intensity factors
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JP2911283B2 (en) Non-contact step measurement method and device
KR100344344B1 (en) Potable Nondestructive and Noncontact Optical Measurement System
JPS61155902A (en) Interference measuring apparatus
JPS63233305A (en) Displacement sensor
CN216900213U (en) Flying spot scanning white light spectrum light splitting interferometer
JPS63255606A (en) Displacement measuring apparatus
JPH08122026A (en) Measuring method for very small difference in level
JP3230977B2 (en) Object positioning device for light wave interference device
JPS6316232A (en) Measuring method for diameter of laser beam

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees