JPS63262878A - Manufacture of superconducting element - Google Patents

Manufacture of superconducting element

Info

Publication number
JPS63262878A
JPS63262878A JP62097974A JP9797487A JPS63262878A JP S63262878 A JPS63262878 A JP S63262878A JP 62097974 A JP62097974 A JP 62097974A JP 9797487 A JP9797487 A JP 9797487A JP S63262878 A JPS63262878 A JP S63262878A
Authority
JP
Japan
Prior art keywords
impurity
superconducting material
superconducting
oxide
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62097974A
Other languages
Japanese (ja)
Other versions
JPH0577349B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62097974A priority Critical patent/JPS63262878A/en
Publication of JPS63262878A publication Critical patent/JPS63262878A/en
Publication of JPH0577349B2 publication Critical patent/JPH0577349B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a Josephson device as a four-terminal circuit element, in which tunnel currents are caused to flow in the transverse direction, by controlling the quantity of an impurity added to an oxide superconducting material and changed into an impurity oxide through heat treatment and the width of an addition region. CONSTITUTION:An oxide superconducting material film, resistance of which is brought to zero at a desired temperature, is formed onto a substrate 1 with a non- superconductive surface. When an impurity such as Fe, Ni, Co, Si, Ge, B, Al, Ga, P, Ti, Ta, etc., is added to a central section through ion implantation by using a mask and thermally treated at a fixed temperature, the impurity is turned into an impurity oxide, and crystal structure is arranged. Consequently, a Josephson device 2 consisting of a first oxide superconducting material section 4 for a finite resistor, through which tunnel currents, width and impurity concentration of which are controlled in response to mask width and load, cross and flow, and second oxide superconducting materials 3, 5, resistance of which is brought to zero, on both sides of the material section 4 is shaped. When an insulating resistance film 11 and a control electrode 10 are formed onto the material 4, a four-terminal circuit element in which tunnel currents capable of also amplifying and controlling are caused to flow in the transverse direction is formed.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、酸化物系超電導(超伝導とも表す)材料を用
いた固体電子ディバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of the Invention The present invention relates to solid-state electronic devices using oxide-based superconducting (also referred to as superconducting) materials.

本発明は、入力端子と出力端子とを有する横接合型ジョ
セフソン素子およびこれに制御用電極を用いた4端子(
3端子を含む)素子の作製方法に関する。本発明は、か
かる素子に増幅機能、スイッチ機能を有せしめるととも
に、入力信号を制御用入力に印加することにより出力信
号を出力より検出せしめんとするものである。
The present invention provides a horizontal junction type Josephson element having an input terminal and an output terminal, and a four-terminal (
The present invention relates to a method for manufacturing a device (including three terminals). The present invention provides such an element with an amplifying function and a switching function, and also detects an output signal from the output by applying an input signal to a control input.

「従来の技術」 従来、超電導材料、例えばNb−Ge系(例とじてはN
b5Ge)等の金属材料を用いて固体電子ディバイスを
作る試みがなされてきた。
“Prior art” Conventionally, superconducting materials such as Nb-Ge (for example, N
Attempts have been made to make solid-state electronic devices using metallic materials such as b5Ge).

その代表が第1図に示すジョセフソン素子である。この
ジョセフソン素子は、超電導現象とトンネル電流現象と
を組み合わせ、スイッチングを行わんとするもので、2
端子回路よりなっている。
A typical example is the Josephson element shown in FIG. This Josephson element attempts to perform switching by combining superconductivity and tunnel current phenomena, and
It consists of a terminal circuit.

このジョセフソン接合型の素子は第1図に示す如く、第
1の超電導性材料(21)の上面にトンネル電流を流し
得る厚さで絶縁膜(23)を形成し、さらにその上に第
2の超電導性材料(24)を積層するものであった。そ
してトンネル電流を上下方向に流さんとするものである
As shown in FIG. 1, this Josephson junction type element has an insulating film (23) formed on the upper surface of a first superconducting material (21) with a thickness that allows tunneling current to flow, and a second The superconducting material (24) was laminated. The tunnel current is then caused to flow in the vertical direction.

「従来の問題点」 しかし、かかる基板表面に密接した絶縁膜を用いて、ジ
ョセフソン素子の構成をする場合、基板表面またはその
近傍においては酸化物超電導性材料を用いる限り、酸素
が欠乏してしまう傾向があった。そしてこの表面または
その近傍で超電導性すらなくなってしまう場合があった
。本発明はかかる欠点を除去するためにされたものであ
る。
``Conventional Problems'' However, when configuring a Josephson element using an insulating film closely attached to the substrate surface, as long as an oxide superconducting material is used at or near the substrate surface, oxygen is depleted. There was a tendency to put it away. In some cases, even superconductivity disappears at or near this surface. The present invention has been made to eliminate such drawbacks.

さらに本発明はかかる表面の酸素濃度敏怒性の欠点を除
去するにある。
Furthermore, the present invention seeks to eliminate the disadvantage of surface oxygen concentration sensitivity.

さらに、従来のジョセフソン接合型素子は2端子素子で
あるため、信号の増幅機能を有さず、系全体において入
力端より出力端に至るまでに信号が若干減衰して、いわ
ゆる利得(ゲイン)を1以上とすることができないとい
う大きな欠点を有する。
Furthermore, since the conventional Josephson junction type element is a two-terminal element, it does not have a signal amplification function, and the signal is slightly attenuated from the input end to the output end in the entire system, resulting in a so-called gain. It has a major drawback in that it cannot be made greater than 1.

本発明はかかる欠点を除去し、表面に用いない構成を有
せしめるジョセフソン素子を作らんとするものである。
The present invention aims to eliminate such drawbacks and to create a Josephson element having a structure that is not used on the surface.

さらに加えて、超高周波動作を4端子回路素子、即ち入
力信号を加える制御用電極および出力信号を導出する電
極とに有せしめんとするものである。
In addition, the four-terminal circuit element, ie, the control electrode for applying the input signal and the electrode for deriving the output signal, is intended to have ultra-high frequency operation.

「問題を解決すべき手段」 本発明はかかる問題を解決するため、非超電導性の絶縁
性表面を有する基板上に超電導性材料を薄膜状に選択的
に設け、その一部類域(中央部または設計上必要な領域
)に、超、電導材料を横切って動作をさせるべき所望の
温度で有限抵抗を有する第1の酸化物超電導性材料を設
ける。そしてその超電導材、料一方および他方には抵抗
が零になる第2の酸化物超電導性材料を設けている。そ
してこの一対の第2の超電導性材料間にはトンネル電流
を流し得る構成を有せしめている。
"Means to Solve the Problem" In order to solve the problem, the present invention selectively provides a superconducting material in the form of a thin film on a substrate having a non-superconducting insulating surface. A first oxide superconducting material having a finite resistance at the desired temperature at which operation is to be performed across the superconducting material is provided in a region required by the design. A second oxide superconducting material having zero resistance is provided on one side and the other side of the superconducting material. The structure is such that a tunnel current can flow between the pair of second superconducting materials.

この有限抵抗を有する材料は、超電導性材料に不純物を
添加し、この不純物により超電導性を破壊せしめたもの
である。さらにこの第1の超電導性材料(出発状態が超
電導性材料であり、不純物の添加により絶縁性等の物性
を有せしめるため、以下においても第1の超電導性材料
という)の上面または下面には、ここを流れる電流を制
御する制御用電極が設けられている。この制御用電極と
超電導材料との間に、電流の授受を禁止すべき被膜、特
に絶縁膜が設けられている。
This material with finite resistance is obtained by adding impurities to a superconducting material, and causing the superconductivity to be destroyed by the impurities. Furthermore, on the upper or lower surface of this first superconducting material (hereinafter also referred to as the first superconducting material because the starting state is a superconducting material and it has physical properties such as insulation by adding impurities), A control electrode is provided to control the current flowing therethrough. A film, particularly an insulating film, which should prohibit the transfer and reception of current is provided between the control electrode and the superconducting material.

本発明は、有限抵抗を有する第1の酸化物超電導性材料
として、抵抗零の第2の酸化物超電導性材料と同一成分
を用い、ここにイオン注入法等により不純物を添加した
ものである。
In the present invention, the same components as the second oxide superconducting material having zero resistance are used as the first oxide superconducting material having finite resistance, and impurities are added thereto by ion implantation or the like.

この不純物は、酸化物超電導性材料を構成する元素、例
えばY(イツトリウム) 、 F4 (Cu) 、バリ
ウム(Ba) 、酸素(0)であってもよい。かかる不
純物は超電導を呈する化学量論比を狂わせる程度に多量
に添加する必要がある。具体的には5X10′9〜5X
 10”cm−’のオーダである。
This impurity may be an element constituting the oxide superconducting material, such as Y (yttrium), F4 (Cu), barium (Ba), or oxygen (0). Such impurities must be added in a large amount to disturb the stoichiometric ratio that exhibits superconductivity. Specifically 5X10'9~5X
It is on the order of 10"cm-'.

また、他の不純物として鉄(Fe) 、ニッケル(Ni
)。
In addition, other impurities include iron (Fe) and nickel (Ni).
).

コバルト(Co) 、珪素(Si)、ゲルマニウム(G
e) 、ホウ素(B)、アルミニウム(Al)、ガリウ
ム(Ga) 、  リン(P)、チタン(Ti)、タン
タル(Ta)より選ばれた1種類または複数種類がある
。かかる場合、その不純物の濃度は5X10”〜6 X
 10”cm−”とした。
Cobalt (Co), silicon (Si), germanium (G
e) One or more types selected from boron (B), aluminum (Al), gallium (Ga), phosphorus (P), titanium (Ti), and tantalum (Ta). In such a case, the concentration of the impurity is between 5X10'' and 6X
It was set to 10"cm-".

本発明の超電導素子においては、第1の酸化物超電導性
材料とするため、第2の酸化物超電導性材料に不純物を
イオン注入法により第2の超電導性材料を横切って(上
下および図面の前後方向のすべてに対し)添加する。そ
してその厚さく図面の左右方向)を可能なかぎり薄くし
、ジョセフソン接合効果を有すべくせしめた。
In the superconducting element of the present invention, in order to make the first oxide superconducting material, impurities are implanted into the second oxide superconducting material by ion implantation across the second superconducting material (top and bottom and front and back of the drawing). (in all directions). The thickness (in the left-right direction of the drawing) was made as thin as possible to provide a Josephson bonding effect.

本発明は、一対の出力用の酸化物超電導性材料間に連結
した電極の間に、十分大きい電気抵抗、好ましくは第1
の超電導材料の電気抵抗よりも10倍以上の電気抵抗を
有する被膜をその上面、下面または両面に設けたもので
ある。
The present invention provides a sufficiently large electric resistance, preferably a first
A coating having an electrical resistance 10 times or more higher than that of the superconducting material is provided on the upper surface, lower surface, or both surfaces of the superconducting material.

・本発明においては、この制御用電極と超電導被膜との
間に、酸化物超電導性材料の電気抵抗より十分大きい電
気抵抗を有する被膜、好ましくは絶縁膜を設け、入力端
子である制御用電極から電圧を印加させ、その下側の酸
化物超電導性材料に電圧を印加する。この材料は、完全
に超電導を有する状態とまったく超電導を有さない状態
の中間状B(一部が超電導性を有し、一部が非超電導性
の状態、即ちTcオンセットとTcoとの間の温度領域
の状B)また半導体または絶縁体特性を有するため、自
らのポテンシャルを入力の制御用電極に加えられた電圧
に従って変化、制御させることができる。
- In the present invention, a coating, preferably an insulating film, having an electrical resistance sufficiently higher than the electrical resistance of the oxide superconducting material is provided between the control electrode and the superconducting coating, so that the control electrode, which is the input terminal, A voltage is applied to the oxide superconducting material underneath. This material has an intermediate state B between completely superconducting and completely non-superconducting (partly superconducting and partially non-superconducting state, i.e. between Tc onset and Tco). B) Also, since it has semiconductor or insulator characteristics, its own potential can be changed and controlled in accordance with the voltage applied to the input control electrode.

本発明に用いられる制御用電極と材料との中間に介在す
る被膜の絶縁性は、もし入力信号を与える時の電流をも
機能上において無視させ得るならば、除去してしまって
も、またその間に介在させる被膜の抵抗を10倍以下と
したものでも可である。
The insulating properties of the coating interposed between the control electrode and the material used in the present invention can be removed even if the current applied to the input signal can be ignored in terms of function. It is also possible to use a coating whose resistance is 10 times or less.

第2図(B) 、 (C)は制御用電極を設けたもので
ある。
FIGS. 2(B) and 2(C) are those in which control electrodes are provided.

第2図(A) 、 (B) 、 (C)は本発明の固体
素子の縦断面図を示す。
FIGS. 2(A), 2(B), and 2(C) show longitudinal cross-sectional views of the solid-state device of the present invention.

本発明では第2の酸化物超電導性材料を全体に形成し、
所望の形状にフォトエツチングする。この後この第1の
酸化物超電導性材料を作るため、この領域のみに選択的
に不純物を添加した。
In the present invention, a second oxide superconducting material is formed entirely,
Photoetch into desired shape. Thereafter, impurities were selectively added only to this region in order to produce the first oxide superconducting material.

この不純物の添加の巾(図面での左右方向)は10〜1
000人好ましくは50人と、チャネルの長さをフォト
リソグラフィ技術を用いて可能な限り短くした。イオン
注入による不純物は5X10”〜3×IQ!2c「3と
し、この深さ方向においてこの膜を横切って注入する。
The width of this impurity addition (in the horizontal direction in the drawing) is 10 to 1
000 people, preferably 50 people, and the length of the channel was made as short as possible using photolithographic techniques. The impurity by ion implantation is 5×10'' to 3×IQ!2c''3, and is implanted across this film in the depth direction.

さらにこれら全体を400〜1000℃、0.5〜50
時間、例えば600℃で3時間酸素中でアニールを行い
、この不純物を酸化せしめるとともに、結晶構造を整え
た。
Furthermore, the whole of these is heated to 400 to 1000℃ and
Annealing is performed in oxygen at 600° C. for 3 hours, for example, to oxidize the impurities and adjust the crystal structure.

第2図(A)において、非超電導性を有する絶縁表面を
有する基体(1)上の第1の酸化物超電導性材料(4)
および第2の酸化物超電導性材料(3)および(5)よ
りなる材料(2)を構成せしめる。その出力用の一対の
電極(8) 、 (9) (図面では省略)を図面にお
ける左右の端部に設ければよい。
In FIG. 2(A), a first oxide superconducting material (4) on a substrate (1) having an insulating surface having non-superconducting properties is shown.
and second oxide superconducting materials (3) and (5) to constitute material (2). A pair of output electrodes (8) and (9) (not shown in the drawing) may be provided at the left and right ends in the drawing.

かくしてジョセフソン素子を構成せしめ第3図の特性を
得た。
In this way, a Josephson element was constructed and the characteristics shown in FIG. 3 were obtained.

第2図(B)は制御用電極(10)が第1の酸化物超電
導性材料(4)の上側に設けられ、第1図(B)では下
側に設けられている。第2図(C)では被膜は酸化物超
電導性材料(4)の上下両面に設けられ、さらに制御用
電極がそれぞれ(10)、 (10’)として設けられ
ている。
In FIG. 2(B), the control electrode (10) is provided on the upper side of the first oxide superconducting material (4), and in FIG. 1(B), it is provided on the lower side. In FIG. 2(C), coatings are provided on both upper and lower surfaces of the oxide superconducting material (4), and control electrodes (10) and (10') are provided, respectively.

「作用」 かかる構造とすることにより、入力信号と出力信号とを
独立関数として制御でき、かつこの素子をスイッチング
用素子、増幅機能を有する素子として用いることができ
る。
"Operation" With such a structure, the input signal and the output signal can be controlled as independent functions, and this element can be used as a switching element or an element having an amplification function.

本発明は、同一基板上に複数個の固体素子を作ることが
でき、かかる素子を設計論理に基づき連結することによ
り、超電導集積回路を作らんとした時、その相互配線を
抵抗零で作ることができる。
The present invention makes it possible to create a plurality of solid-state devices on the same substrate, and when trying to create a superconducting integrated circuit by connecting such devices based on design logic, the mutual wiring can be created with zero resistance. Can be done.

以下に図面に従って実施例を説明する。Examples will be described below according to the drawings.

「実施例1j この実施例は第1図(A)の構造を示す。“Example 1j This embodiment shows the structure of FIG. 1(A).

基板としてYSZ (インドリニーム・スタビライズド
・ジルコン)を用いた。これはその上にスクリーン印刷
法、スパッタ法、MBE(モレキュラ・ビーム・エピタ
キシャル)法、CVD (気相反応)法等を用いて超電
導材料を形成させる。この超電導材料の1例として、(
A+−x Bx)ycuzow、x = O〜1+ 1
 =2.0〜4.0好ましくは2.5〜3.5. z 
= 1 =4好ましくは1.5〜3,5.W=4〜10
好ましくは6〜8を有する。Aは、Y(イツトリウム)
、Gd(ガドリニウム)、Yb(イブテルビウム)、E
u(ユーロピウム)、Tb(テルビ°ウム)、Dy(ジ
スプロシウム)、Ho(ホルミウム)、Er(エルビウ
ム)、Tm(ツリウム)、Lu(ルテチウム)、Sc(
スカンジウム)またはその他の元素周期表ma族の1つ
または複数種類より選ばれる。
YSZ (indoline stabilized zircon) was used as the substrate. A superconducting material is formed thereon using a screen printing method, a sputtering method, an MBE (molecular beam epitaxial) method, a CVD (vapor phase reaction) method, or the like. As an example of this superconducting material, (
A+-x Bx)ycuzow, x=O~1+1
=2.0-4.0 preferably 2.5-3.5. z
= 1 = 4 preferably 1.5 to 3,5. W=4~10
Preferably it has 6-8. A is Y (yztrium)
, Gd (gadolinium), Yb (buterbium), E
u (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium), Sc (
Scandium) or one or more other elements of group MA of the periodic table.

BはRa(ラジウム)、Ba(バリウム)、Sr(スト
ロンチウム)、Ca(カルシウム) 、 Mg (マグ
ネシウム)。
B is Ra (radium), Ba (barium), Sr (strontium), Ca (calcium), Mg (magnesium).

Be(ベリリウム)の元素周期表Ua族より選ばれる。Be (beryllium) is selected from group Ua of the periodic table of elements.

特にその具体例として(YBag)Cu:+06〜gを
用いた。またAとして元素周期表における前記した元素
以外のランタニド元素またはアクチニド元素を用い得る
In particular, (YBag)Cu:+06~g was used as a specific example. Further, as A, a lanthanide element or an actinide element other than the above-mentioned elements in the periodic table of elements can be used.

この形成と同時またはその後に、600〜1200℃の
温度で熱アニールを5〜20時間処理して作製した。か
くして第2の酸化物超電導性材料として第3図特性(3
) 、 (5)を得ることができた。
Simultaneously with or after this formation, thermal annealing was performed at a temperature of 600 to 1200° C. for 5 to 20 hours. Thus, as a second oxide superconducting material, the characteristics shown in Figure 3 (3
), we were able to obtain (5).

次に公知のフォトリソグラフィを用いる。即ち第1図(
A)において領域(5) 、 (6)上にフォトレジス
トを設け、このレジストのない領域(4)のみに選択的
に、イオン注入法により不純物が添加されるようにした
。不純物であるアルミニウム、珪素または鉄を5X10
1S〜3 XIO”cm−”、例えば5×1019cm
−3の濃度に添加した。この後フォトレジストを除去し
、さらにこれら全体にアルミニウムを50〜500人、
例えば100 人の厚さに真空蒸着または光CVD法に
より形成した。この後これら全体を酸化性雰囲気で約4
00〜1000℃例えば700℃の温度にて全面アルミ
ニウムを酸化し、酸化アルミニウム絶縁膜(11)を構
成せしめるとともに、イオン注入法により添加された不
純物を酸化し、絶縁物に変成した。
Next, known photolithography is used. That is, Figure 1 (
In A), a photoresist was provided on regions (5) and (6), and impurities were selectively added to only the region (4) without this resist by ion implantation. Impurity aluminum, silicon or iron in 5x10
1S~3XIO"cm-", e.g. 5x1019cm
-3 concentration. After this, the photoresist is removed, and aluminum is applied to the entire area by 50 to 500 coats.
For example, it is formed to a thickness of 100 mm by vacuum evaporation or photo-CVD. After this, the whole was heated in an oxidizing atmosphere for about 4 hours.
Aluminum was oxidized on the entire surface at a temperature of 00 to 1000° C., for example, 700° C., to form an aluminum oxide insulating film (11), and impurities added by ion implantation were oxidized to transform it into an insulator.

この不純物の添加は、第2の酸化物超電導性材料を構成
させる元素を用い、X + V + Z + Hの値を
変化させ、同じ処理を行って第1の酸化物超電導性材料
とすることは有効である。
The addition of this impurity involves using the elements constituting the second oxide superconducting material, changing the value of X + V + Z + H, and performing the same treatment to make the first oxide superconducting material. is valid.

次に制御用電極(10)を他の第2の酸化物超電導性材
料と同じ酸化物超電導性材料により同様の方法で作製し
た。出力用の電極はセラミック薄膜に密接し、オーム接
、触がなされるべ(した。
Next, a control electrode (10) was fabricated using the same oxide superconducting material as the other second oxide superconducting material and using the same method. The output electrode should be in close contact with the ceramic thin film, making ohmic contact.

「効果」 本発明はこれまで2端子素子であった超電導素子を4端
子素子としたことにある。この制御用電極下に、この電
極によりポテンシャルの変化するTcオンセットとTc
oとの中間の状態を広い温度範囲で有する第1の酸化物
超電導性材料を設け、さらに°その電極・リードを構成
させるため、かかる温度領域では抵抗が零または零に十
分近い第2の酸化物超電導性材料で相互配線したもので
ある。
"Effects" The present invention consists in making the superconducting element, which has been a two-terminal element, into a four-terminal element. Under this control electrode, there is a Tc onset and a Tc whose potential changes due to this electrode.
In order to provide a first oxide superconducting material that has an intermediate state between 0 and 0 over a wide temperature range, and further configure the electrode/lead, a second oxide superconductor whose resistance is zero or sufficiently close to zero in such a temperature range is provided. They are interconnected using superconducting materials.

かくして、制御用電極の電圧に従って出力電流を増幅し
、かつ制御させることが可能となった。
In this way, it has become possible to amplify and control the output current according to the voltage of the control electrode.

このため、この超電導固体素子を同一基板に多数個設け
、集積化させることが可能となった。
Therefore, it has become possible to provide a large number of these superconducting solid-state devices on the same substrate and integrate them.

本発明においては制御用電極を1ケ示したが、これを2
ケまたはそれ以上を直列または並列に設けてもよい。
In the present invention, one control electrode is shown, but two control electrodes are shown.
or more may be provided in series or in parallel.

本発明において、超電導材料としてセラミック材料を用
いた。しかし本発明の技術思想より明らかな如り、Tc
とTcoとの間の温度範囲が広い材料好ましくは10 
@に以上ある材料であれば、酸化物セラミックスである
必要はなく、任意に選ぶことができることはいうまでも
ない。
In the present invention, a ceramic material was used as the superconducting material. However, as is clear from the technical idea of the present invention, Tc
and Tco, preferably 10
It goes without saying that any material listed above does not need to be an oxide ceramic and can be selected arbitrarily.

本発明において、酸化物超電導性材料という表題を用い
た。しかしこれは超電導材料が酸化物であることによる
。その結晶構造は多結晶であっても、また単結晶であっ
てもよいことは、本発明の技術思想において明らかであ
る。特に単結晶構造の場合には、超電導材料を用いるに
際し、基板上にエピタキシアル成長をさせればよい。
In the present invention, the title oxide superconducting material is used. However, this is due to the fact that the superconducting material is an oxide. It is clear from the technical concept of the present invention that the crystal structure may be polycrystalline or single crystalline. In particular, in the case of a single crystal structure, when using a superconducting material, epitaxial growth may be performed on the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導固体素子の縦断面図を示す。 第2図は本発明の超電導固体素子の縦断面図を示す。 第3図は本発明で作られた超電導固体素子の特性を示す
FIG. 1 shows a longitudinal cross-sectional view of a conventional superconducting solid-state device. FIG. 2 shows a longitudinal cross-sectional view of the superconducting solid-state device of the present invention. FIG. 3 shows the characteristics of the superconducting solid-state device made according to the present invention.

Claims (1)

【特許請求の範囲】 1、非超電導性表面を有する基体上に、所望の温度にて
抵抗が零となる酸化物超電導性材料を選択的に形成する
工程と、前記材料の一部領域を横切って不純物を添加す
る工程と、熱処理を施し前記不純物の酸化物絶縁物を構
成せしめる工程とを有し、前記領域により仕切られた前
記超電導性材料の一方より他方に電流が流れるべく前記
添加される不純物の量および厚さを制御したことを特徴
とする超電導素子の作製方法。 2、特許請求の範囲第1項において、不純物は鉄(Fe
)、ニッケル(Ni)、コバルト(Co)、珪素(Si
)、ゲルマニウム(Ge)、ホウ素(B)、アルミニウ
ム(Al)、ガリウム(Ga)、リン(P)、チタン(
Ti)、タンタル(Ta)より選ばれたことを特徴とす
る超電導素子の作製方法。 3、特許請求の範囲第1項において、不純物はイオン注
入法により超電導性材料を横切って添加されたことを特
徴とする超電導素子の作製方法。 4、特許請求の範囲第1項において、熱処理は酸化性雰
囲気で400〜1000℃の温度でなされたことを特徴
とする超電導素子の作製方法。
[Claims] 1. A step of selectively forming an oxide superconducting material whose resistance becomes zero at a desired temperature on a substrate having a non-superconducting surface, and traversing a partial region of the material. and a step of performing heat treatment to form an oxide insulator of the impurity, and the superconducting material is added so that a current flows from one side of the superconducting material partitioned by the region to the other. A method for producing a superconducting element, characterized in that the amount and thickness of impurities are controlled. 2. In claim 1, the impurity is iron (Fe
), nickel (Ni), cobalt (Co), silicon (Si
), germanium (Ge), boron (B), aluminum (Al), gallium (Ga), phosphorus (P), titanium (
A method for producing a superconducting element, characterized in that the material is selected from Ti) and tantalum (Ta). 3. The method of manufacturing a superconducting element according to claim 1, wherein the impurity is added across the superconducting material by ion implantation. 4. The method of manufacturing a superconducting element according to claim 1, wherein the heat treatment is performed in an oxidizing atmosphere at a temperature of 400 to 1000°C.
JP62097974A 1987-04-20 1987-04-20 Manufacture of superconducting element Granted JPS63262878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097974A JPS63262878A (en) 1987-04-20 1987-04-20 Manufacture of superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097974A JPS63262878A (en) 1987-04-20 1987-04-20 Manufacture of superconducting element

Publications (2)

Publication Number Publication Date
JPS63262878A true JPS63262878A (en) 1988-10-31
JPH0577349B2 JPH0577349B2 (en) 1993-10-26

Family

ID=14206638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097974A Granted JPS63262878A (en) 1987-04-20 1987-04-20 Manufacture of superconducting element

Country Status (1)

Country Link
JP (1) JPS63262878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877122A (en) * 1995-05-19 1999-03-02 Fujitsu Ltd. Josephson element having a NdBa2 Cu3 O7-y superconductor thin-film wiring pattern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564290A (en) * 1979-06-25 1981-01-17 Nippon Telegr & Teleph Corp <Ntt> Superconductive element
JPS5873172A (en) * 1981-10-27 1983-05-02 Nippon Telegr & Teleph Corp <Ntt> Superconductive integrated circuit device
JPS60160675A (en) * 1984-02-01 1985-08-22 Hitachi Ltd Quasi-particle injection type superconducting element
JPS60223175A (en) * 1984-04-19 1985-11-07 Hitachi Ltd Superconductive switching device
JPS61206279A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Superconductive element
JPS62238674A (en) * 1986-04-09 1987-10-19 Rikagaku Kenkyusho Manufacture of superconductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564290A (en) * 1979-06-25 1981-01-17 Nippon Telegr & Teleph Corp <Ntt> Superconductive element
JPS5873172A (en) * 1981-10-27 1983-05-02 Nippon Telegr & Teleph Corp <Ntt> Superconductive integrated circuit device
JPS60160675A (en) * 1984-02-01 1985-08-22 Hitachi Ltd Quasi-particle injection type superconducting element
JPS60223175A (en) * 1984-04-19 1985-11-07 Hitachi Ltd Superconductive switching device
JPS61206279A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Superconductive element
JPS62238674A (en) * 1986-04-09 1987-10-19 Rikagaku Kenkyusho Manufacture of superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877122A (en) * 1995-05-19 1999-03-02 Fujitsu Ltd. Josephson element having a NdBa2 Cu3 O7-y superconductor thin-film wiring pattern

Also Published As

Publication number Publication date
JPH0577349B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JPS63262877A (en) Superconducting element
JPH0634418B2 (en) Method for manufacturing superconducting element
US5401716A (en) Method for manufacturing superconducting patterns
JPS63262878A (en) Manufacture of superconducting element
JP2651480B2 (en) Superconducting element
JP2660245B2 (en) Operation method of superconducting element
JPS63258082A (en) Superconductive material
JPS63261765A (en) Superconducting element
JPS63258083A (en) Manufacture of superconductive material
JP2583922B2 (en) Superconducting switching element
JPH0577316B2 (en)
JP2654567B2 (en) Operation method of superconducting element
JPH0634419B2 (en) Superconducting device fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2583924B2 (en) Superconducting switching element
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JPS63234573A (en) Manufacture of superconducting element
JPH0634413B2 (en) Superconducting device
JPH01137682A (en) Superconducting switching element
CN1020830C (en) Method of manufacturing superconducting patterns
JP2597745B2 (en) Superconducting element and fabrication method
JPH04287981A (en) Oxide superconducting device
JPH02186681A (en) Superconductive junction device
JPH0249481A (en) Oxide josephson junction device
JPS63228769A (en) Superconducting element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees