JPS63261674A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS63261674A
JPS63261674A JP62095685A JP9568587A JPS63261674A JP S63261674 A JPS63261674 A JP S63261674A JP 62095685 A JP62095685 A JP 62095685A JP 9568587 A JP9568587 A JP 9568587A JP S63261674 A JPS63261674 A JP S63261674A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
aluminum layer
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62095685A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
浩志 渡辺
Ikurou Nakane
育朗 中根
Toshihiko Saito
俊彦 齋藤
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62095685A priority Critical patent/JPS63261674A/en
Publication of JPS63261674A publication Critical patent/JPS63261674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a sufficient current collecting effect of a negative electrode by providing aluminum layer at a side in contact with a collector of the negative electrode. CONSTITUTION:In a nonaqueous electrolyte secondary battery providing a positive electrode 1, nonaqueous electrolyte, a negative electrode 2 made of Li and Al, and collectors 5, 7, which are connected to the positive electrode 1 and the negative electrode 2, respectively, an aluminum layer is provided at a side in contact with the collector 7 of the nagative electrode 2. Thus, high adhesion of the collector 7 enhance current collecting performance of the negative electrode 2 and fulfills a buffer function against deformation and distortion of the negative electrode caused by discharging and charging cycles, resulting in long-term stable retention of the adhesion between the negative electrode 2 and collector 7 and a low contact resistance. By the arrangement, the discharging and charging cycles are extended remarkable echieving a broad extension of the life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウムを活物質とする負電極を備えた非水電
解液二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-aqueous electrolyte secondary battery equipped with a negative electrode containing lithium as an active material.

〔従来技術〕[Prior art]

一般にこの種の二次電池では負極活物質である、リチウ
ムが放電過程でイオン化し、溶出して負電極表面が凹凸
状となり、その後の充電の際リチウムが凸部に集中的に
電析して樹枝杖に成長し、正極と接触して内部短絡を引
起こしたり、またモッシー伏に析出してリチウムが脱落
するため、放充電サイクル回数が極めて小さいという難
点があった。
Generally, in this type of secondary battery, lithium, which is the negative electrode active material, is ionized and eluted during the discharge process, making the negative electrode surface uneven, and during subsequent charging, lithium is deposited intensively on the convex parts. Lithium grows into branches and comes into contact with the positive electrode, causing an internal short circuit, and lithium deposits in a mossy formation, causing lithium to fall off, resulting in a very small number of discharge and charge cycles.

この対策として負電極をリチウム−アルミニウム合金で
構成する技術が提案されている(特開昭52−5423
号公報)、これはリチウム−アルミニウム合金の場合に
は放電時にイオン化したリチウムが充電時に負極の基体
であるアルミニウムと合金を形成するように復元する結
果、リチウムの樹枝状成長が抑制されることを狙いとし
た技術である。
As a countermeasure to this problem, a technique has been proposed in which the negative electrode is made of a lithium-aluminum alloy (Japanese Patent Laid-Open No. 52-5423
In the case of a lithium-aluminum alloy, the lithium ionized during discharging restores itself to form an alloy with aluminum, which is the base of the negative electrode, during charging, and as a result, dendritic growth of lithium is suppressed. This is the targeted technology.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがリチウム−アルミニウム合金を負電極として用
いた場合、内部短絡等の問題は解消される反面、リチウ
ム−アルミニウム合金はリチウム。
However, when a lithium-aluminum alloy is used as a negative electrode, problems such as internal short circuits are resolved; however, the lithium-aluminum alloy is lithium.

アルミニウムの各単体に比較して延性が劣り、また電気
抵抗も大きく、負電極と負極集電体との密着性、接触抵
抗等の点で問題があり、十分な負極の集電効果が得られ
ず、更に放充電サイクルの繰り返しによる負電極の微細
化、崩壊により集電能力が一層低下し、放充電のサイク
ル回数の低下を避けられないなどの問題があった。
Compared to aluminum alone, it has inferior ductility and high electrical resistance, and there are problems with the adhesion between the negative electrode and the negative electrode current collector, contact resistance, etc., and it is difficult to obtain a sufficient negative electrode current collection effect. Furthermore, the current collection ability is further reduced due to the miniaturization and collapse of the negative electrode due to repeated discharge and charge cycles, resulting in an unavoidable decrease in the number of discharge and charge cycles.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にあっては、正電極と、非水電解液と、リチウム
、アルミニウム製の負電極と、前記正電極、負電極夫々
に接合する各集電体とを備えた非水電解液二次電池にお
いて、前記負電極は集電体と接する側にはアルミニウム
層を有する。
In the present invention, a nonaqueous electrolyte secondary comprising a positive electrode, a nonaqueous electrolyte, a negative electrode made of lithium or aluminum, and each current collector connected to the positive electrode and the negative electrode, respectively. In the battery, the negative electrode has an aluminum layer on the side in contact with the current collector.

〔作用〕 負極集電体と対向する側にアルミニウム層を存在せしめ
であるから、負電極と集電体との接合性がよく集電能が
高、また接触抵抗は低くなる。
[Function] Since the aluminum layer is present on the side facing the negative electrode current collector, the bonding between the negative electrode and the current collector is good, the current collecting ability is high, and the contact resistance is low.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る非水電解液二次電池(以下本発明
品という)を偏平形二次電池に適用した構成を示す半裁
側面図であり、1は正電極、2は負電極、3はセパレー
タを示している。
FIG. 1 is a half-cut side view showing a configuration in which a non-aqueous electrolyte secondary battery according to the present invention (hereinafter referred to as the product of the present invention) is applied to a flat secondary battery, in which 1 is a positive electrode, 2 is a negative electrode, 3 indicates a separator.

正電極1は缶4の内底に固定した正極集電体5に、また
負電極2は缶6の内底に固定した負極集電体7に夫々圧
着固定されており、正電極lと負電極2とはその間に電
解液としてポリプロピレン多孔性膜にプロピレンカーボ
ネートと、1.2−ジメトキシエタンとの混合溶媒に過
塩素酸リチウムを1モル/l溶解した電解液を含浸させ
たセパレータ3を介在させた状態で突き合わされ、この
状態で缶4,6を周縁部間に絶縁性パツキン8を介在さ
せた状態で一体的に嵌合固定しである。
The positive electrode 1 is crimped and fixed to a positive electrode current collector 5 fixed to the inner bottom of a can 4, and the negative electrode 2 is fixed to a negative electrode current collector 7 fixed to the inner bottom of a can 6. Between the electrode 2 and the separator 3, a porous polypropylene membrane is impregnated with an electrolytic solution prepared by dissolving 1 mol/l of lithium perchlorate in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane. In this state, the cans 4 and 6 are integrally fitted and fixed with an insulating packing 8 interposed between the peripheral edges.

正電極1は例えば活物質である二酸化マンガン80重量
部に導電剤としてアセチレンブラックを10重量部及び
結着剤としてフッ素樹脂を10重量部の割合で混合し、
成型して形成されている。
The positive electrode 1 is made by mixing, for example, 80 parts by weight of manganese dioxide as an active material, 10 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of a fluororesin as a binder.
It is formed by molding.

一方負電極2はリチウム−アルミニウム合金製であり、
例えばアルミニウム板を基体とし、金属リチウムを対極
として、プロピレンカーボネートと1,2−ジメトキシ
エタンとの混合溶媒に過塩素酸リチウムを1モル/l溶
解した電解液中に電流密度を1+wA/cjとして20
0+sA /時の電気−化学的合金化処理を施して形成
しである。
On the other hand, the negative electrode 2 is made of lithium-aluminum alloy,
For example, an aluminum plate is used as a base, metal lithium is used as a counter electrode, and a current density of 1+wA/cj is set at 20
It is formed by electro-chemical alloying treatment at 0+sA/hour.

これによって負電極2はその厚さ方向において片面側か
ら他面側に向かうに従ってリチウム分布量が減少し、他
面側から所定深さの位置でリチウム分布量が零となり、
ここから前記他端面までは未合金化状態のアルミニウム
層が存在する状態となっており、このアルミニウム層を
前記負極集電体7に圧着接合せしめである。
As a result, the amount of lithium distributed in the negative electrode 2 decreases from one side toward the other side in the thickness direction, and the amount of lithium distribution becomes zero at a predetermined depth from the other side.
An unalloyed aluminum layer exists from this point to the other end surface, and this aluminum layer is bonded to the negative electrode current collector 7 by pressure bonding.

負電極2におけるリチウム分布量、並びに未合金化状態
のアルミニウム層の厚さは電気化学的合金化に際しての
電流密度と密接な関係にあり、必要に応じて電流密度の
調節により適宜に設定すればよい。
The amount of lithium distributed in the negative electrode 2 and the thickness of the unalloyed aluminum layer are closely related to the current density during electrochemical alloying, and can be set appropriately by adjusting the current density as necessary. good.

第2図は電流密度を変えて電気化学的合金化を施′した
ときのアルミニウム基体中におけるリチウム分布量を示
すグラフであり、横軸に負電極2の表面側、即ち正電極
1と対向する側からの深さを、また縦軸にリチウム分布
!t (atmX)をとって示しである。グラフ中実線
Aは電流密度を1m^/ ctA、一点鎖線Bは5mA
/cd、また破線Cは電流密度を0.2mA/cgiに
設定したときの各結果を示している。
Figure 2 is a graph showing the amount of lithium distributed in the aluminum substrate when electrochemical alloying is performed by changing the current density. Depth from the side and lithium distribution along the vertical axis! It is shown by taking t (atmX). The solid line A in the graph represents the current density of 1 m^/ctA, and the dashed line B represents the current density of 5 mA.
/cd, and the broken line C shows the results when the current density was set to 0.2 mA/cgi.

このグラフから明らかな如く電流密度が一定以下のとき
はリチウムは負電極2の表面から裏面にわたって分布す
ることとなるが、それ以上の電流密度になると負電極2
の表面から裏面に向けてのリチウム分布量は急激に低下
し、負電極2の裏面側には所定幅iA+Llにわたる未
合金化状態のアルミニウム層が形成せしめられることが
解る。
As is clear from this graph, when the current density is below a certain level, lithium is distributed from the front surface to the back surface of the negative electrode 2, but when the current density is higher than that, the lithium is distributed across the negative electrode 2.
It can be seen that the lithium distribution amount from the front surface to the back surface rapidly decreases, and an unalloyed aluminum layer having a predetermined width iA+Ll is formed on the back surface side of the negative electrode 2.

第3図は放充電のサイクル回数と放電終止電圧(V)と
p関係を示すグラフであり、横軸にサイクル数(回)を
、また縦軸に放電終止電圧(V)をとって示しである。
Figure 3 is a graph showing the relationship between the number of discharging and charging cycles, the end-of-discharge voltage (V), and p, with the number of cycles (times) on the horizontal axis and the end-of-discharge voltage (V) on the vertical axis. be.

グラフ中実線A及び一点鎖線B及び破vACはいずれも
前記試験において作製した負電極を用いた二次電池につ
いての結果を示している。
The solid line A, the dashed-dotted line B, and the broken vAC in the graph all show the results for the secondary battery using the negative electrode produced in the above test.

このグラフから明らかな如く実線A、一点鎖線Bで示す
本発明品では放充電サイクル回数が200回を越えるこ
とが可能であるのに対し、破線Cで示す従来品では15
0回前後に過ぎないことが解る。
As is clear from this graph, the product of the present invention shown by the solid line A and the dashed-dotted line B can be discharged and charged more than 200 times, while the conventional product shown by the broken line C can perform 15 cycles.
It turns out that it is only around 0 times.

これは未合金化状態のアルミニウム層が存在することに
よって放充電サイクルによる負電極の変形に伴う歪に対
し緩衝機能を果たす結果、負電極と集電体との密着性が
良好に維持され、集電能が高められることによると考え
られる。
This is due to the presence of the unalloyed aluminum layer, which acts as a buffer against the strain caused by deformation of the negative electrode during discharging and charging cycles, and as a result, good adhesion between the negative electrode and the current collector is maintained. This is thought to be due to the increase in electric power.

本発明品のうち、電気化学的合金時における電流密度を
1IIIA/cdとした実線Aで示す供試材が一点鎖v
ABで示す場合よりも放充電サイクル回数において優れ
た特性を示すのは合金化電流密度が余り大きくなると未
合金化アルミニウム層の厚さは増大する反面、リチウム
−アルミニウム合金領域が狭くなり、相対的にリチウム
の含有比率が上昇する結果、リチウム−アルミニウム合
金粒子間の結着性が弱化し、放充電サイクルに伴う微細
化。
Among the products of the present invention, the test material shown by the solid line A with a current density of 1IIIA/cd during electrochemical alloying is a single-dot chain v
The reason why it shows better characteristics in terms of the number of discharge and charge cycles than the case shown by AB is that when the alloying current density becomes too large, the thickness of the unalloyed aluminum layer increases, but on the other hand, the lithium-aluminum alloy region becomes narrower, and the relative As a result of the increase in the lithium content ratio, the binding between lithium-aluminum alloy particles weakens, resulting in finer particles due to discharge and charge cycles.

崩壊が生じ易いことによると考えられる。This is thought to be due to the fact that it is easy to collapse.

なお上述の実施例では負電極を構成するリチウム−アル
ミニウム合金を電気化学的方法にて製造した場合につき
説明したが、その方法1条件等については特にこれに限
定するものではなく、例えば電解液としてはリチウムイ
オンに対する導電性を有する非水電解液であれば同様の
効果が得られる。また合金組成についてもリチウム/ア
ルミニウム比率が10/40〜50150の範囲内で同
様の効果が得られることが確認されている。
In addition, in the above-mentioned example, the case where the lithium-aluminum alloy constituting the negative electrode was manufactured by an electrochemical method was explained, but the method 1 conditions etc. are not particularly limited to this, and for example, as an electrolyte Similar effects can be obtained if the electrolyte is a non-aqueous electrolyte having conductivity to lithium ions. It has also been confirmed that similar effects can be obtained with respect to the alloy composition when the lithium/aluminum ratio is within the range of 10/40 to 50,150.

更に上述した実施例では負電極2は正電極1と対向する
片面側から負極集電体7と接合する他面側に向かうに従
ってリチウム分布量が低下し、他面側に所要幅にわたっ
て未合金化状態のアルミニウム層が形成されている場合
を示したが、リチウム分布量が均一なリチウム−アルミ
ニウム合金の片面にアルミニウム層を接合せしめ、この
アルミニウム層を負極集電体に圧着接合せしめる構成と
してもよいことは勿論である。
Furthermore, in the above embodiment, the amount of lithium distributed in the negative electrode 2 decreases as it goes from one side facing the positive electrode 1 to the other side joined to the negative electrode current collector 7, and the other side is unalloyed over a required width. Although the case where an aluminum layer is formed is shown, it is also possible to have a configuration in which an aluminum layer is bonded to one side of a lithium-aluminum alloy with a uniform lithium distribution amount, and this aluminum layer is bonded to the negative electrode current collector by pressure bonding. Of course.

〔効果〕〔effect〕

以上の如く本発明品にあっては、集電体との接合部側に
未合金のアルミニウム層が形成されているため、集電体
との密着性が高くそれだけ負電極の集電能が高まり、ま
た放充電サイクルによる負電極の変形、歪に対する緩衝
作用を果たし、負電極と集電体との接合性が長期にわた
って安定維持され、接触抵抗も低く維持し得ることとな
り、放充電サイクルが大幅に延長され寿命の大幅な延長
が図れるなど本発明は優れた効果を奏するものである。
As described above, in the product of the present invention, since the unalloyed aluminum layer is formed on the joint side with the current collector, the adhesiveness with the current collector is high, and the current collecting ability of the negative electrode is increased accordingly. It also acts as a buffer against the deformation and strain of the negative electrode caused by the discharge and charge cycles, ensuring stable bonding between the negative electrode and the current collector over a long period of time, and keeping contact resistance low, which significantly reduces the discharge and charge cycles. The present invention has excellent effects, such as being able to significantly extend the service life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明品の半裁側面図、第2図は電気化学的合
金化の際の電流密度と負電極中のリチウム分布との関係
を示すグラフ、第3図は放電終止電圧と放充電サイクル
回数との関係を示すグラフである。 ■・・・正電極 2・・・負電極 3・・・セパレータ
4・・・缶 5・・・正極集電体 6・・・缶 7・・
・負極集電体 8・・・絶縁性パツキン 特 許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 ′41 (2] サイクル&(目) 第 3 閉 手続補正書(自発) 昭和63年3月29日 事件との関係 特許出願人 所在地 守口型京阪本通2エ目18番地名 称 (18
B)三洋電機株式会社 代表者 井 植   敏 4、代理人 住 所 ■543大阪市天王寺区四天王寺1丁目14番
22号 日進ビル207号 河野特許事務所(電話06−779−3088)!−7
−3− し゛ 、( 明細書の「特許請求の範囲」及び「発明の詳細な説明」
の欄 6、補正の内容 6−1明細書の「特許請求の範囲」の種別紙のとおり 6−2明細書の「発明の詳細な説明」の欄(1)  明
細書の第3頁11行目に「リチウム、アルミニウム製の
」とあるを、「リチウム−アルミニウム合金を主体とす
る」と訂正する。 (2)明細書の第3頁18行目に「集電能が高、」とあ
るを、「集電能が高く、」と訂正する。 (3)  明細書の第5頁5行目に’ 200mA7時
」とあるを、’ 200wAH」と訂正する。 7、添付書類の目録 (1)  補正後の特許請求の範囲の全文を記載した書
面      1通 補正後の特許請求の範囲の全文を記載した書面λ 特許
請求の範囲 1、 正電極と、非水電解液と、工±立ムユニ土ミニウ
ム人  −゛ と る負電極と、前記正電極、負電極夫
々に接合する各集電体とを備えた非水電解液二次電池に
おいて、前記負電極は集電体と接する側にはアルミニウ
ム層を有することを特徴とする非水電解液二次電池。 2.1チウム−アルミニウム人  −と るm皿11指
見その厚み方向に対しリチウム分布量が不均一であって
リチウム分布量の少ない側に未合金化アルミニウム層を
有する特許請求の範囲第1項記載の非水電解液二次電池
。 3、 前記アルミニウム層の面は負電極集電体に圧着成
形せしめられている特許請求の範囲第1項又M3=u記
載の非水電解液二次電池。
Figure 1 is a half-cut side view of the product of the present invention, Figure 2 is a graph showing the relationship between current density during electrochemical alloying and lithium distribution in the negative electrode, and Figure 3 is the end-of-discharge voltage and discharge/charge. It is a graph showing the relationship with the number of cycles. ■... Positive electrode 2... Negative electrode 3... Separator 4... Can 5... Positive electrode current collector 6... Can 7...
・Negative electrode current collector 8...Insulating packing patent Applicant Sanyo Electric Co., Ltd. Agent Patent attorney Noboru Kono '41 (2) Cycle & (item) 3rd closed procedure amendment (voluntary) 1988 Relationship to the March 29 Incident Patent Applicant Location Moriguchi Type Keihan Hondori 2nd Floor 18 Name (18
B) Sanyo Electric Co., Ltd. Representative: Satoshi Iue 4, Agent address: Kono Patent Office, No. 207, Nisshin Building, 1-14-22 Shitennoji, Tennoji-ku, Osaka 543 (Telephone: 06-779-3088)! -7
-3- (“Claims” and “Detailed Description of the Invention” in the specification)
Column 6, Contents of amendment 6-1 As per the type sheet of "Claims" in the specification 6-2 Column "Detailed description of the invention" in the specification (1) Page 3, line 11 of the specification The text "Made of lithium and aluminum" should be corrected to "Mainly made of lithium-aluminum alloy." (2) On page 3, line 18 of the specification, the phrase "current collecting ability is high" is corrected to "current collecting ability is high." (3) On page 5, line 5 of the specification, the statement '200mA 7 o'clock' should be corrected to '200wAH'. 7. List of attached documents (1) Document stating the entire text of the amended scope of claims 1 document λ stating the entire text of the amended scope of claims Claim 1: Positive electrode and non-aqueous In a nonaqueous electrolyte secondary battery comprising an electrolyte, a negative electrode, and current collectors connected to the positive electrode and the negative electrode, respectively, the negative electrode is A non-aqueous electrolyte secondary battery characterized by having an aluminum layer on the side in contact with a current collector. 2.1 Lithium-Aluminum Plate 11 The amount of lithium distribution is uneven in the thickness direction of the plate 11, and the unalloyed aluminum layer is present on the side where the amount of lithium distribution is less.Claim 1 The non-aqueous electrolyte secondary battery described above. 3. The non-aqueous electrolyte secondary battery according to claim 1 or M3=u, wherein the surface of the aluminum layer is pressure-molded onto the negative electrode current collector.

Claims (1)

【特許請求の範囲】 1、正電極と、非水電解液と、リチウム、アルミニウム
製の負電極と、前記正電極、負電極夫々に接合する各集
電体とを備えた非水電解液二次電池において、前記負電
極は集電体と接する側にはアルミニウム層を有すること
を特徴とする非水電解液二次電池。 2、前記負電極はリチウム−アルミニウム合金製であっ
て、その厚み方向に対しリチウム分布量が不均一であっ
てリチウム分布量の少ない側に未合金化アルミニウム層
を有する特許請求の範囲第1項記載の非水電界液二次電
池。 3、前記アルミニウム層の面は負電極集電体に圧着成形
せしめられている特許請求の範囲第1項記載の非水電解
液二次電池。
[Scope of Claims] 1. A non-aqueous electrolyte comprising a positive electrode, a non-aqueous electrolyte, a negative electrode made of lithium or aluminum, and each current collector connected to the positive electrode and the negative electrode, respectively. A non-aqueous electrolyte secondary battery, wherein the negative electrode has an aluminum layer on the side in contact with the current collector. 2. The negative electrode is made of a lithium-aluminum alloy, and has a non-uniform lithium distribution in its thickness direction, and has an unalloyed aluminum layer on the side with less lithium distribution. The described non-aqueous electrolyte secondary battery. 3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the surface of the aluminum layer is pressure-molded onto a negative electrode current collector.
JP62095685A 1987-04-17 1987-04-17 Nonaqueous electrolyte secondary battery Pending JPS63261674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62095685A JPS63261674A (en) 1987-04-17 1987-04-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095685A JPS63261674A (en) 1987-04-17 1987-04-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS63261674A true JPS63261674A (en) 1988-10-28

Family

ID=14144344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095685A Pending JPS63261674A (en) 1987-04-17 1987-04-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS63261674A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220026A (en) * 1988-12-16 1990-09-03 Philips Gloeilampenfab:Nv Magneto-optic waveguide and manufacture thereof
JPH02220352A (en) * 1989-02-20 1990-09-03 Sanyo Electric Co Ltd Secondary battery
JPH02234365A (en) * 1989-03-08 1990-09-17 Japan Storage Battery Co Ltd Lithium battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123651A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Lithium secondary battery
JPS62150657A (en) * 1985-12-25 1987-07-04 Showa Denko Kk Secondary cell
JPS62226562A (en) * 1986-03-27 1987-10-05 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123651A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Lithium secondary battery
JPS62150657A (en) * 1985-12-25 1987-07-04 Showa Denko Kk Secondary cell
JPS62226562A (en) * 1986-03-27 1987-10-05 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220026A (en) * 1988-12-16 1990-09-03 Philips Gloeilampenfab:Nv Magneto-optic waveguide and manufacture thereof
JPH02220352A (en) * 1989-02-20 1990-09-03 Sanyo Electric Co Ltd Secondary battery
JPH02234365A (en) * 1989-03-08 1990-09-17 Japan Storage Battery Co Ltd Lithium battery

Similar Documents

Publication Publication Date Title
US4820599A (en) Non-aqueous electrolyte type secondary cell
EP1566855A4 (en) Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
JPS63261674A (en) Nonaqueous electrolyte secondary battery
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
US9728786B2 (en) Electrode having active material encased in conductive net
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPH04259764A (en) Lithium secondary battery
JPH0547385A (en) Secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JP2865386B2 (en) Non-aqueous electrolyte secondary battery
JP3349364B2 (en) Battery current collector, battery and non-aqueous electrolyte battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JP3025692B2 (en) Rechargeable battery
JP2562651B2 (en) Non-aqueous electrolyte secondary battery
JP2801934B2 (en) Non-aqueous electrolyte secondary battery
JP3102000B2 (en) Lead storage battery
JPS5832362A (en) Alkaline zinc secondary battery
JPH04160766A (en) Nonaqueous electrolyte secondary battery
JPH0539580Y2 (en)
JPH067493B2 (en) Flat battery
JPH05275118A (en) Lithium secondary battery
JPH0434844A (en) Nonaqueous system secondary battery
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JP2744061B2 (en) Non-aqueous electrolyte secondary battery
JPH0265056A (en) Nonaqueous secondary battery