JPS6325983A - Manufacture of infrared-ray detecting element - Google Patents

Manufacture of infrared-ray detecting element

Info

Publication number
JPS6325983A
JPS6325983A JP61169261A JP16926186A JPS6325983A JP S6325983 A JPS6325983 A JP S6325983A JP 61169261 A JP61169261 A JP 61169261A JP 16926186 A JP16926186 A JP 16926186A JP S6325983 A JPS6325983 A JP S6325983A
Authority
JP
Japan
Prior art keywords
crystal
band
point
mum
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61169261A
Other languages
Japanese (ja)
Inventor
Kosaku Yamamoto
山本 功作
Michiharu Ito
伊藤 道春
Koji Hirota
廣田 耕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61169261A priority Critical patent/JPS6325983A/en
Publication of JPS6325983A publication Critical patent/JPS6325983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE: To make it possible to form infrared-ray detecting elements having sensitivities in a plurality of wavelength bands from one sheet of an epitaxial crystal with a narrow interval being provided, by using an Hg1-xCdxTe epitaxial crystal, whose composition-variation gradient in the thickness direction of a growing layer is made large, as an element forming raw material, polishing the crystal obliquely, and forming the elements at specified composition parts. CONSTITUTION:An epitaxially grown Hg1-xCdxTe layer 1 is polished in the slant direction along a line connected between a point A (a point where a composition value x = 0.2 is obtained for a crystal for a 10 mum band and a thickness is 40 mum) and a point B (a point where a composition value x = 0.3 is obtained for a crystal for a 3-5 mum band and a thickness is 10 mum). Then an epitaxial crystal, which has sensitivities in a plurality of wavelength regions, is obtained even if it is a single crystal. The obtained epitaxial crystal is attached on a sapphire plate 10. The composite type infrared-ray detecting elements are manufactured through specified element manufacturing processes such as photoetching. Two elements of a 10-mum band layer 1a and a 3-5-mum band layer 1b are formed on the sapphire plate 10.

Description

【発明の詳細な説明】 〔概要〕 本発明は、素子形成用素材に組成変動勾配の大きいエピ
タキシャル結晶を用いるとともに、これを斜めに研磨し
て複数の波長域に感度を有する結晶を作り、所望の波長
域に素子形成を行うことによって、複数の波長域に感度
を有する赤外線検知素子を製作するようにした赤外線検
知素子の製造方法である。
Detailed Description of the Invention [Summary] The present invention uses an epitaxial crystal with a large compositional variation gradient as a material for forming an element, and also polishes the epitaxial crystal diagonally to produce a crystal sensitive to multiple wavelength ranges. This is a method of manufacturing an infrared sensing element in which an infrared sensing element having sensitivity in a plurality of wavelength ranges is manufactured by forming an element in a wavelength range of .

〔産業上の利用分野〕[Industrial application field]

本発明はHg+−x Cdx Teエピタキシャル結晶
を用いた赤外線検知素子の製造方法に係り、特に一つの
結晶を用いて複数の波長1例えば3〜5μm帯および1
0μm帯の二つの波長域に感度を有する赤外線検知素子
の製造方法に関する。
The present invention relates to a method for manufacturing an infrared sensing element using a Hg+-x Cdx Te epitaxial crystal, and particularly relates to a method for manufacturing an infrared sensing element using a Hg+-x Cdx Te epitaxial crystal.
The present invention relates to a method for manufacturing an infrared sensing element that is sensitive to two wavelength regions in the 0 μm band.

現在製造されている赤外線検知素子は、主として3μm
〜5μm帯に感度を有するもの(組成X= 0.3)と
、10μm帯に感度を有するもの(組成x=0.2)と
に大別されるが、最近は10μm帯と3〜5μm帯の二
つの波長域に感度を有する赤外線検知素子の需要が高ま
っている。
Currently manufactured infrared sensing elements are mainly 3 μm thick.
It is roughly divided into those sensitive in the ~5 μm band (composition X = 0.3) and those sensitive in the 10 μm band (composition x = 0.2), but recently they have been There is an increasing demand for infrared sensing elements that are sensitive to two wavelength ranges.

C従来の技術〕 第3図(al、 (blは10μm帯と3〜5μm帯の
両波長域に感度を有する赤外線検知素子の構成例を示す
要部平面図および側断面図である。
C. Prior Art] FIG. 3 (al, (bl) are a plan view and a side sectional view of essential parts showing an example of the configuration of an infrared detection element having sensitivity in both the 10 μm band and the 3 to 5 μm wavelength range.

従来の技術を用いて10μm帯と3〜5μm帯の両波長
域に感度を有する赤外線検知素子を製造する場合は、第
3図に示す如<、10μm帯用に作用した結晶11と3
〜5μm帯用に作成した結晶12とを所定の間隔Wを隔
てて一枚のサファイヤ板10上に配置し、接着剤5を用
いて貼付ける方法によって製造されていた。
When manufacturing an infrared sensing element sensitive to both the 10 μm band and the 3 to 5 μm wavelength range using conventional technology, as shown in FIG.
The crystal 12 prepared for the ~5 μm band was placed on a single sapphire plate 10 at a predetermined distance W, and was manufactured using an adhesive 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の方法は、サファイヤ板10上に
、10μm帯用結晶11と3〜5μm帯用結晶12とを
貼付する際、貼付用の接着材5が結晶11゜12の表面
に付着する事故が屡々発生するく素子化の段階で結晶面
に接着剤が付着すると素子の性能が著しく劣化する)。
However, in the conventional method described above, when attaching the crystal 11 for a 10 μm band and the crystal 12 for a 3 to 5 μm band on the sapphire plate 10, there is an accident that the adhesive 5 for attaching adheres to the surface of the crystals 11 and 12. If adhesive adheres to the crystal plane during the device fabrication stage, which often occurs, the performance of the device will be significantly degraded.)

そしてこの事故を防止するためには、結晶11と12と
の間隔Wを少なくとも1am = 1000μm以上開
けなければならず、このような検知器をシステム化した
場合、赤外線検知システムとしての性能低下を招く。従
って結晶11と12の間隔は極力小さくすることが望ま
れている。
In order to prevent this accident, the distance W between the crystals 11 and 12 must be at least 1 am = 1000 μm or more, and if such a detector is systemized, the performance as an infrared detection system will deteriorate. . Therefore, it is desired that the distance between the crystals 11 and 12 be as small as possible.

〔問題点を解決するための手段〕[Means for solving problems]

第1図<al、 (b)、 (C)は本発明の原理図で
、(a)は従来の結晶と本発明に用いる結晶との組成の
相違を示す図、(b)は本発明に用いるエピタキシャル
結晶の研磨方向を示す要部側断面図、(C)は本発明方
法によって製造された複合型赤外線検知素子の構成を示
す要部側断面図である。
Figure 1<al, (b) and (C) are diagrams of the principle of the present invention, (a) is a diagram showing the difference in composition between the conventional crystal and the crystal used in the present invention, and (b) is a diagram showing the difference in composition between the conventional crystal and the crystal used in the present invention. FIG. 4C is a side cross-sectional view of a main part showing the polishing direction of the epitaxial crystal used, and FIG.

第1図(alに示す如く、本発明に用いるHg1−ウC
d、 Teエピタキシャル結晶のカットオフ波長から求
めた組成カーブに2の組成変動勾配θ2は、従来の組成
カーブに+の組成変動勾配θ、に比して非常に大きくな
っている。
As shown in Figure 1 (al), Hg1-UC used in the present invention
d, The composition variation gradient θ2 of 2 in the composition curve determined from the cutoff wavelength of the Te epitaxial crystal is much larger than the composition variation gradient θ of + in the conventional composition curve.

従って、該エピタキシャル結晶は、厚さく単位μm)の
変化に対する組成値(単位X)の変化が従来のそれに比
して急峻で、例えば厚さ40μmのA点では組成値0.
2 (10μm帯用)作用晶が、厚さ10μmのB点で
は組成値0.3(3〜5μm帯用)の結晶が得られるよ
うになっている。
Therefore, in the epitaxial crystal, the change in composition value (unit X) with respect to change in thickness (unit: μm) is steeper than that of the conventional crystal; for example, at point A with a thickness of 40 μm, the composition value is 0.
2 (For 10 μm band) A crystal with a composition value of 0.3 (for 3 to 5 μm band) can be obtained at point B with a thickness of 10 μm.

このため、第1図(blに示す如く、エピタキシャル成
長層1を、A点(10μm帯用の作用組成値X=0.2
が得られる厚さ40μmの点)とB点(3〜5μm帯用
の結晶組成値x=0.3が得られる厚さ10μmの点)
とを結ぶ線で斜め方向に研磨すると、一つの結晶であり
ながら複数の波長域に感度を有するエピタキシャル結晶
を得ることができる。図中、1はエピタキシャル層、2
はエピタキシャル成長層を形成するCdTe基板である
For this reason, as shown in FIG. 1 (bl), the epitaxial growth layer 1 is
Point B (point with a thickness of 40 μm where the crystal composition value x = 0.3 for the 3-5 μm band is obtained)
By polishing diagonally along a line connecting the two, it is possible to obtain an epitaxial crystal that is a single crystal but is sensitive to a plurality of wavelength ranges. In the figure, 1 is an epitaxial layer, 2
is a CdTe substrate on which an epitaxial growth layer is formed.

第1図(C1は上記の方法によって得られたエピタキシ
ャル結晶をサファイヤ板10上に貼付し、フォトエツチ
ング等所定の素子製造プロセスを経て製作された複合型
赤外線検知素子の側断面図であって、同図の場合は10
μm帯層1aと3〜5μm帯層1bの二つの素子がサフ
ァイヤ板10上に形成されている。
FIG. 1 (C1 is a side sectional view of a composite infrared sensing element manufactured by pasting the epitaxial crystal obtained by the above method on a sapphire plate 10 and performing a predetermined element manufacturing process such as photoetching, In the case of the same figure, 10
Two elements, a μm band layer 1a and a 3-5 μm band layer 1b, are formed on a sapphire plate 10.

〔作用〕[Effect]

このような方法で複合型赤外線検知素子の製造を行うと
、 ■、勾配θの大きさにもよるが、10μm帯層1aと3
〜5μm帯層1bとの間隔Wを従来よりも小さくできる
(従来は少なくとも1000μmを必要としたが、これ
を約100μmに縮小できる)。
When a composite infrared sensing element is manufactured using this method, (1) depending on the size of the gradient θ, 10 μm band layers 1a and 3 are formed.
~5 μm The distance W from the band layer 1b can be made smaller than before (conventionally, at least 1000 μm was required, but this can be reduced to about 100 μm).

■、感度波長域の異なる二つの素子が一枚の結晶から形
成できるので素子製造プロセスが簡略化され、特に従来
のように二枚の結晶を別々に貼付する方法に比べて技術
面が著しく安定する。
■Since two elements with different sensitivity wavelength ranges can be formed from a single crystal, the element manufacturing process is simplified, and the technology is particularly stable compared to the conventional method of attaching two crystals separately. do.

〔実施例〕〔Example〕

以下実施例図および前記原理図を用いて本発明の詳細な
説明する。
The present invention will be described in detail below using embodiment figures and the above-mentioned principle diagrams.

第2図(a)、 (b)、 (C1,(dlは本発明に
よる赤外線検知素子の製造方法の一実施例を示す側断面
図であるが、前記第1図、第3図と同一部分には同一符
号を付している。
FIGS. 2(a), (b), (C1, (dl is a side sectional view showing an embodiment of the method for manufacturing an infrared sensing element according to the present invention, and the same parts as FIGS. 1 and 3 above) are given the same reference numerals.

以下本発明を工程順序に従って説明する。The present invention will be explained below in accordance with the order of the steps.

■、結晶の製造〔第1図fa)の原理図参照〕エピタキ
シャル結晶1を成長させた後、温度を高温、且つ長時間
保持して相互拡散による組成の急激な変動を生じさせ、
組成変動勾配θ2が従来のθ1よりも這かに大きいエピ
タキシャル結晶を作る。これにより、厚さ40μmの成
長層(A点)からは10μm帯用の結晶が得られ、厚さ
10μmの成長層(B点)からは3〜5μm帯用の結晶
が得られる。
(2) Production of crystals (see principle diagram in Figure 1 fa) After growing the epitaxial crystal 1, the temperature is maintained at a high temperature for a long period of time to cause a rapid change in composition due to interdiffusion.
An epitaxial crystal is produced in which the compositional variation gradient θ2 is much larger than the conventional θ1. As a result, a crystal for a 10 μm band is obtained from the 40 μm thick growth layer (point A), and a crystal for a 3 to 5 μm band is obtained from the 10 μm thick growth layer (point B).

■、結晶の斜め研磨〔第2図(a)参照〕A点とB点と
を結ぶ線上でエピタキシャル結品層1を斜めに研磨する
。A点はエピタキシャル成長N1の厚さT、が40μm
となる点であり、B点は厚さT2が10μmとなる点で
あって、A点は10μm帯に、またB点は3〜5μm帯
に感度を有する素子が形成される点である。
(2) Diagonal polishing of crystal [See FIG. 2(a)] The epitaxial crystal layer 1 is polished diagonally on a line connecting points A and B. At point A, the thickness T of epitaxial growth N1 is 40 μm.
The point B is the point where the thickness T2 is 10 μm, the point A is the point where an element having sensitivity in the 10 μm band, and the point B is the point where an element having sensitivity in the 3 to 5 μm band is formed.

■、基板の斜め研磨〔第2図(b)参照〕次にCd T
e基板2を、A点とB点を結ぶ線と平行な直線、つまり
A゛点とB”点とを結ぶ線上で研磨してエピタキシャル
成長層1の上面とCdTe基板2の下面とが互いに平行
状態となるように仕上げる。
■ Oblique polishing of the substrate [see Figure 2 (b)] Next, Cd T
The e-substrate 2 is polished on a straight line parallel to the line connecting points A and B, that is, on the line connecting points A'' and B'', so that the upper surface of the epitaxial growth layer 1 and the lower surface of the CdTe substrate 2 are parallel to each other. Finish it so that it becomes.

■、結晶の貼付〔第2図(C)参照〕 接着材5を用いて、斜め研磨されたCdTe基板2をサ
ファイヤ板10に貼付する。
(2) Attaching the crystal [see FIG. 2(C)] Using the adhesive 5, the obliquely polished CdTe substrate 2 is attached to the sapphire plate 10.

■、素子形成〔第1図(d)〕 第2図(a)、 (blに示すA点とB点の周辺部分に
それぞれ素子形成を行い、サファイヤ!7i 10上に
10μm帯層1aと3〜5μm帯層1bとを形成させる
② Element formation [Figure 1(d)] Figure 2(a), Elements were formed around the points A and B shown in (bl), and 10 μm band layers 1a and 3 were formed on the sapphire!7i 10. ~5 μm band layer 1b is formed.

以上の操作によって二つの波長域(10μm帯。The above operations create two wavelength ranges (10 μm band).

3〜5μm帯)に感度を有し、且つ素子間隔Wが大幅に
縮小された(W=約100μm)複合型赤外線検知素子
が得られる。
A composite infrared sensing element having sensitivity in the 3-5 μm band) and with a significantly reduced element spacing W (W=approximately 100 μm) can be obtained.

なお、第2図(d)に示した工程では、素子間隔となる
部分(W)のCdTa基板2も完全にエツチング等で除
去したが、少なくともエピタキシャル成長層をエツチン
グすることで素子分離の効果はある。
Note that in the step shown in FIG. 2(d), the CdTa substrate 2 in the part (W) that becomes the element spacing was also completely removed by etching, etc., but the effect of element isolation can be obtained by etching at least the epitaxial growth layer. .

また、上記の説明は単素子を対象に行ってきたが、本発
明は多素子の場合にも同様に適用し得る方法であること
はいうまでもない。
Furthermore, although the above explanation has been made for a single element, it goes without saying that the present invention is a method that can be similarly applied to multiple elements.

さらに、上記実施例では、10μm帯と3〜5/1m帯
の二つの波長域にのみ感度を有する赤外線検知素子につ
いて述べたが、本発明はこれに限らずさらに多くの波長
域を備えた赤外線検知素子にも適用が可能である。
Further, in the above embodiment, an infrared detection element that is sensitive only to two wavelength ranges, the 10 μm band and the 3-5/1 m band, is not limited to this. It can also be applied to sensing elements.

〔発明の効果〕〔Effect of the invention〕

本発明は一枚のエピタキシャル結晶から複数の波長帯に
感度を有する赤外線検知素子を、その間隔を狭小に形成
することが可能なため、赤外線検知素子の製造効率と信
頼性とが大幅に改善される。
The present invention makes it possible to form infrared sensing elements sensitive to multiple wavelength bands with narrow spacing from a single epitaxial crystal, which greatly improves the manufacturing efficiency and reliability of infrared sensing elements. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)、 (C1は本発明の原理図、
第2図fan、 (b)、 (C1,fdlは本発明に
よる赤外線検知素子の製造方法の一実施例を示す側断面
図、 第3図(a)、 (b)は従来の赤外線検知素子の構成
例を示す要部側断面図である。 図中、1はエピタキシャル成長層、 1aは10μm帯層、 1bは3〜5μm帯層、 2はCdTe基手反1. 5は接着剤、 10はサファイヤ板、 K、は従来の結晶の組成カーブ、 K2は本発明に用いる結晶の組成カーブ、Wは素子間隔
、 をそれぞれ示す。 滓発明11図 第1図 斗溌g訃−だ砲例m 第 2 図
Figure 1 (a), (b), (C1 is a diagram of the principle of the present invention,
Fig. 2 fan, (b), (C1, fdl is a side sectional view showing an embodiment of the method for manufacturing an infrared sensing element according to the present invention, Fig. 3 (a), (b) is a side sectional view of a conventional infrared sensing element. It is a side cross-sectional view of main parts showing an example of the structure. In the figure, 1 is an epitaxial growth layer, 1a is a 10 μm band layer, 1b is a 3 to 5 μm band layer, 2 is a CdTe substrate 1.5 is an adhesive, and 10 is a sapphire layer. In the plate, K is the composition curve of the conventional crystal, K2 is the composition curve of the crystal used in the present invention, and W is the element spacing. figure

Claims (1)

【特許請求の範囲】  Hg_1_−_XCd_XTeのエピタキシャル結晶
を用いて複数の波長域に感度を有する赤外線検知素子を
製造する方法において、 素子形成用素材として成長層の厚さ方向の組成変動勾配
(θ)を大きくしたエピタキシャル結晶(1)を用いる
と共に、該結晶(1)を斜めに研磨し、所定の組成部分
に素子形成を行うことによって、少なくとも二つ以上の
波長域に感度を有する赤外線検知素子を形成することを
特徴とした赤外線検知素子の製造方法。
[Claims] In a method for manufacturing an infrared sensing element having sensitivity in a plurality of wavelength ranges using an epitaxial crystal of Hg_1_-_XCd_XTe, the compositional variation gradient (θ) in the thickness direction of a grown layer as a material for forming the element is provided. By using an epitaxial crystal (1) with a large diameter, polishing the crystal (1) diagonally, and forming an element in a predetermined composition area, an infrared sensing element sensitive to at least two or more wavelength ranges can be created. 1. A method for manufacturing an infrared sensing element, characterized by forming an infrared sensing element.
JP61169261A 1986-07-17 1986-07-17 Manufacture of infrared-ray detecting element Pending JPS6325983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61169261A JPS6325983A (en) 1986-07-17 1986-07-17 Manufacture of infrared-ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61169261A JPS6325983A (en) 1986-07-17 1986-07-17 Manufacture of infrared-ray detecting element

Publications (1)

Publication Number Publication Date
JPS6325983A true JPS6325983A (en) 1988-02-03

Family

ID=15883228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61169261A Pending JPS6325983A (en) 1986-07-17 1986-07-17 Manufacture of infrared-ray detecting element

Country Status (1)

Country Link
JP (1) JPS6325983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480344A (en) * 2010-01-22 2011-11-16 Secr Defence An epitaxial layer configured to detect at least two frequency ranges of incident photons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115375A (en) * 1979-02-26 1980-09-05 Matsushita Electric Ind Co Ltd Light detector element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115375A (en) * 1979-02-26 1980-09-05 Matsushita Electric Ind Co Ltd Light detector element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2480344A (en) * 2010-01-22 2011-11-16 Secr Defence An epitaxial layer configured to detect at least two frequency ranges of incident photons

Similar Documents

Publication Publication Date Title
EP0444942B1 (en) A bonded wafer and a method of manufacturing it
US5308980A (en) Thermal mismatch accommodated infrared detector hybrid array
JPS61121433A (en) Semiconductor substrate
JPS6325983A (en) Manufacture of infrared-ray detecting element
KR970007397B1 (en) Silicon wafer
CN100444393C (en) Silicon base tellurium-cadmium-mercury gazing infrared focus plane device chip capable of releasing heat mismatch stress
JPS62273782A (en) Josephson junction device and manufacture thereof
JPS6412543A (en) Manufacture of semiconductor device
JPS61225816A (en) Manufacture of compound semiconductor device
JPH03191549A (en) Manufacture of compound semiconductor device on si substrate
JPS59225516A (en) Manufacture of semiconductor device
JPH04204128A (en) Stress sensor and manufacture thereof
JPH02143465A (en) Semiconductor sensor and manufacture thereof
JPS63108717A (en) Manufacture of semiconductor device
GB2165089A (en) I.R. photodetector incorporating epitaxial C.M.T.
JPS62136884A (en) Manufacture of infrared detector
JP2791900B2 (en) Semiconductor substrate and method of manufacturing the same
JPH05167089A (en) Fabrication of semiconductor crystal
JPH0370182A (en) Manufacture of infrared detection element
JPH05109592A (en) Wafer for compound semiconductor device and manufacture thereof
US6664124B1 (en) Fabrication of thin-film optical devices
JP2006523960A (en) Method for processing a device structure having an attached wafer structure on a composite substrate having a matched coefficient of thermal expansion
JPS5917290A (en) Magnetic sensor
JPH02101777A (en) Manufacture of infrared ray detector
JPS63213932A (en) Manufacture of complementary dielectric isolation substrate