JPS63259037A - Method for using material containing by-product zn as raw plating material - Google Patents

Method for using material containing by-product zn as raw plating material

Info

Publication number
JPS63259037A
JPS63259037A JP62093564A JP9356487A JPS63259037A JP S63259037 A JPS63259037 A JP S63259037A JP 62093564 A JP62093564 A JP 62093564A JP 9356487 A JP9356487 A JP 9356487A JP S63259037 A JPS63259037 A JP S63259037A
Authority
JP
Japan
Prior art keywords
tank
purification
soln
supplied
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62093564A
Other languages
Japanese (ja)
Inventor
Takao Hashimoto
孝夫 橋本
Yujo Marukawa
雄浄 丸川
Masaki Tateno
舘野 正毅
Shizuo Kishino
岸野 静夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAENAKA KOGYO KK
Nippon Steel Corp
Tanaka Kogyo Co Ltd
Original Assignee
TAENAKA KOGYO KK
Sumitomo Metal Industries Ltd
Tanaka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAENAKA KOGYO KK, Sumitomo Metal Industries Ltd, Tanaka Kogyo Co Ltd filed Critical TAENAKA KOGYO KK
Priority to JP62093564A priority Critical patent/JPS63259037A/en
Publication of JPS63259037A publication Critical patent/JPS63259037A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain a high-purity raw plating soln. from the material contg. by-product Zn in an iron works by charging the ZnO on one hand obtained by reducing and volatilizing the material in a final dissolution tank, charging the Zn on the other hand in a purification tank, and dissolving and purifying Zn. CONSTITUTION:A Zn soln. is successively transferred 22A-22C from a first dissolution tank 17A to a purification tank 18, and a slurry contg. undissolved Zn is reversely returned 23A-23C from the tank 18 to the tank 17. Consequently, the Zn soln. is brought into countercurrent contact with the Zn-contg. slurry. ZnO powder is supplied to a third dissolution tank 17C as the final dissolution tank and dissolved in the Zn soln. supplied 22B, the soln. is supplied 22 to a vessel 13, Zn powder is supplied therein, and ion exchange purification is carried out. The purified soln. is transiently stored in a buffer tank 22, then supplied to plating equipment 23, and used as the raw plating material when a plated steel sheet is obtained from a steel sheet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製鉄所で副生ずるZn含有物、たとえば電気
炉ダスト、ダストペレットダスト、キルンダスト、メッ
キドロス粉等の副生Zn含有物をメッキ原料化する処理
方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention uses Zn-containing substances produced as by-products in steel mills, such as electric furnace dust, dust pellet dust, kiln dust, and plating dross powder, as a plating raw material. related to processing methods for

〔発明の背景〕[Background of the invention]

この種の副生Zn含有物中には、Znとしてたとえば電
気炉ダストの場合、約25%、ダストペレットダストの
場合約50%などかなりZnを含有しているにもかかわ
らず、有効なZ’n回収処理法が見出し得なかったので
、製鉄所では、そのまま非鉄メーカーに外販しているの
が実情である。
Although this type of by-product Zn-containing material contains a considerable amount of Zn, for example, about 25% in the case of electric furnace dust and about 50% in the case of dust pellet dust, it is not effective for Z' Since no method has been found to recover and process the metal, steel mills sell it directly to non-ferrous metal manufacturers.

もし、Znを酸化亜鉛や金属亜鉛として回収できれば、
製鉄所内でメッキ用などに利用できる。
If Zn can be recovered as zinc oxide or metal zinc,
It can be used for plating purposes in steel works.

そこで、本発明は、副生Zn含有物をメッキ原料として
有効利用を図ることを目的としている。
Therefore, an object of the present invention is to effectively utilize the by-product Zn-containing material as a plating raw material.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するための本発明は、製鉄所で副生ず
るZn含有物を、還元雰囲気および900〜1100℃
の温度に保持した揮化炉に投入し、還元揮化し、そのZ
n蒸気からそれぞれ純度90%以上の金属ZnおよびZ
nOを得る一方で;第1の溶解槽から最終の溶解槽まで
順次溶解液が移行する複数の溶解槽と、最終溶解液を受
ける少くとも一つの精製槽とを備え、未溶解のZn含有
スラリーは前方の槽へ移行させる向流式溶解精製設備を
設け;前記最終溶解槽にZnOを投入し、精製槽の少く
とも一つに金属Znを投入し、Zn溶解精製を行い、得
られた溶解精製液をZn系メッキ原料とすることを特徴
とするものである。
The present invention aims to solve the above-mentioned problems by removing Zn-containing materials produced as by-products in steel works in a reducing atmosphere and at a temperature of 900 to 1100°C.
The Z
Metallic Zn and Z with a purity of 90% or higher, respectively, from n vapor
While obtaining nO; comprising a plurality of dissolution tanks in which the solution is sequentially transferred from a first dissolution tank to a final dissolution tank, and at least one purification tank that receives the final solution, an undissolved Zn-containing slurry; A counter-current melting and refining equipment is installed to transfer ZnO to the front tank; ZnO is charged into the final melting tank, metallic Zn is charged into at least one of the refining tanks, Zn melting and refining is carried out, and the resulting melt is This method is characterized in that the purified liquid is used as a Zn-based plating raw material.

〔作 用〕[For production]

本発明に従って、900〜1100℃の温度で還元揮化
すると、揮化ガス中にpbおよびFe分の少いかなり高
い純度のZn蒸気となり、これを酸化冷却させればZn
Oとなり、N2ガス等の還元ガスにて冷却させれば金属
Znとなる。しかし、これらZnOおよび金属Znの純
度は高いもののメッキ原料とするには未だ不十分な純度
であるので、メッキ性状を悪化させる主にFe分および
pb分を除去するために溶解精製を行う。この場合、向
流式溶解精製設備にて、溶解液と未溶解Zn含有スラリ
ーとを向流接触させると、精製効果が高く、メッキ原料
として十分に使用可能なものとなる。
According to the present invention, when reductive and volatilized at a temperature of 900 to 1100°C, Zn vapor of considerably high purity with a small amount of PB and Fe is produced in the volatilized gas, and when this is oxidized and cooled, Zn
When it is cooled with a reducing gas such as N2 gas, it becomes metal Zn. However, although the purity of these ZnO and metal Zn is high, it is still insufficient in purity to be used as a plating raw material, so melting and refining is performed to mainly remove Fe and PB components that deteriorate the plating properties. In this case, if the solution and the undissolved Zn-containing slurry are brought into countercurrent contact with each other in a countercurrent dissolution and purification facility, the purification effect is high and the product can be sufficiently used as a plating raw material.

ところで、Zn系メッキ、たとえば純Zn、 Zn−N
i。
By the way, Zn-based plating, such as pure Zn, Zn-N
i.

Zn −Fe等のメッキに当り、Zn原料としてZnC
0,やZnOを用いることができるが、この場合の純度
はきわめて高<、Feおよびpb分が低いものでなくて
はならないため、予め精製された高価なものを使用しな
くてはならなかった。これに対して、本発明では、揮化
により回収したZnOおよび金属Zn中にFeおよびp
b分が少し含まれるものの、ZnOについてはZnイオ
ンの供給源とするが、金属Znにてイオン交換精製する
ので、向流接触溶解精製過程で、Feおよびpb分をメ
ッキ原料とするに十分な含有率まで確実に除去できるの
で、揮化処理によって回収したZnOおよび金属Znを
そのまま使用でき、高価なZn原料を使用しなくて足り
、プロセスとしてきわめて経済的なものとなる。
When plating Zn-Fe, etc., ZnC is used as a Zn raw material.
0, or ZnO can be used, but in this case the purity must be extremely high and the Fe and PB content must be low, so expensive pre-purified materials had to be used. . In contrast, in the present invention, Fe and p are present in ZnO and metal Zn recovered by volatilization.
ZnO is used as a source of Zn ions, although it contains a small amount of b content, but since it is purified by ion exchange using metallic Zn, in the countercurrent catalytic melting and refining process, enough Fe and pb content can be used as a plating raw material. Since the content can be reliably removed, the ZnO and metal Zn recovered by the volatilization treatment can be used as they are, and there is no need to use expensive Zn raw materials, making the process extremely economical.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

第1図は本発明法を実施するための設備全体図で、出口
を共通にした2つの揮化炉IA、IBが設けられており
、第1揮化炉IAに対しては、電気炉ダスト、ダストベ
レット(ダスペレ)ダストおよび皮材としてCDQコー
クス粉など粒径の細いものを混合槽2にて混合したもの
をペレタイザー3などのペレット化機によりペレット化
したものが投入される。また、第2揮化炉IBに対して
は、亜鉛系メッキ設備でのメンキドロス塊が投入され、
それぞれ900〜1100″Cに炉内が外部がらの熱に
より保持される。
Figure 1 is an overall diagram of the equipment for carrying out the method of the present invention, in which two volatilization furnaces IA and IB with a common outlet are provided. , a mixture of dust pellets (Daspere) dust and thin particles such as CDQ coke powder as skin material in a mixing tank 2 is pelletized by a pelletizing machine such as a pelletizer 3, and the resulting mixture is fed into the tank. In addition, to the second volatilization furnace IB, the Menchidros lump from the zinc-based plating equipment is charged,
The inside of the furnace is maintained at 900-1100''C by heat from the outside.

これによって、副生Zn含有物中のZn分が揮化し、ま
たP分の一部がガスに同伴して出口から出るようになる
。出口部分には、セラミックフィルター4等の耐熱性フ
ィルターが設けられ、ガス分のみを透過するようになっ
ている。フィルター4を出たガスは、第1導路5Aおよ
び第2導路4Bの両方に移行可能となっており、処理に
際してはダンパー6A、6Bの開閉操作が行なわれる。
As a result, the Zn content in the by-product Zn-containing material is volatilized, and a part of the P content comes to be accompanied by the gas and exit from the outlet. A heat-resistant filter such as a ceramic filter 4 is provided at the outlet portion to allow only gas to pass through. The gas exiting the filter 4 can be transferred to both the first guide path 5A and the second guide path 4B, and the dampers 6A and 6B are opened and closed during processing.

いまダンパー6Bが閉、ダンパー6Aが開とされると、
第1導路5Aには、冷却剤吹込ロアがら空気またはN2
等の還元ガスが吹込まれる。空気が吹込まれると、Zn
蒸気は、酸化され、乾式ハゲフィルター等の集塵機8A
、8BによりZnOとして捕捉され、それぞれ亜鉛粉体
として回収される。
If damper 6B is now closed and damper 6A is open, then
The first conduit 5A has air or N2 from the lower coolant blower.
A reducing gas such as When air is blown in, Zn
The steam is oxidized and passed through a dust collector such as a dry bald filter.
, 8B as ZnO and recovered as zinc powder.

ダンパー6Aが閉、ダンパー6Bが開とされると、Zn
蒸気は第2導路5Bを通って凝縮ピット13へと移行す
る。この途中には、液体鉛のシャワリング手段9が設け
られ、ここから液体貯蔵槽10からポンプ11により循
環路12を通った約1800℃の液体鉛が散布され、こ
れによってZn蒸気が凝縮し、液体となって凝縮ピット
13内に滴下される。このピット13の底部にはスキン
マー14が設けられ、Znと鉛とに分離され、鉛は貯槽
10に導かれ、液体亜鉛は液体Zn貯槽15に貯えられ
る。
When the damper 6A is closed and the damper 6B is opened, Zn
The steam passes through the second conduit 5B to the condensation pit 13. On the way, a liquid lead showering means 9 is provided, from which liquid lead at about 1800° C. which has passed through a circulation path 12 is sprayed from a liquid storage tank 10 by a pump 11, thereby condensing the Zn vapor. It becomes a liquid and drips into the condensation pit 13. A skimmer 14 is provided at the bottom of this pit 13 to separate Zn and lead, the lead being led to a storage tank 10 and the liquid zinc being stored in a liquid Zn storage tank 15.

この液体亜鉛はそのまま成形し金属亜鉛粒またはペレッ
トとするか、あるいは造塊し、再蒸留工程を経てメッキ
原料などに利用される。
This liquid zinc is either directly shaped into metallic zinc particles or pellets, or it is made into agglomerates, undergoes a redistillation process, and is used as a raw material for plating.

一方、揮化炉IA、IBの炉底からの鉄およびカーボン
リッチの残渣は、製鉄原料として高炉や焼結機に製鉄原
料として供給される。
On the other hand, iron and carbon-rich residues from the bottoms of the volatilization furnaces IA and IB are supplied as raw materials for iron manufacturing to a blast furnace and a sintering machine.

一方、前述の空気またはN2ガスを冷却剤吹込ロアから
吹き込む場合、空気吹込にあっては、ダンパー16Aが
開、ダンパー16Bが閉とされることにより集塵機8A
にはZnO粉が捕集され、逆のダンパー16Δ、16B
の開閉操作後、今度はN2ガスを吹込むと、金属Zn粉
が集塵機8Bに捕集される。これらのZnO粉および金
属Zn粉は、次述する溶解精製設備に供給される。
On the other hand, when the above-mentioned air or N2 gas is blown from the coolant blowing lower, the damper 16A is opened and the damper 16B is closed, so that the dust collector 8A
The ZnO powder is collected, and the opposite dampers 16Δ and 16B
After the opening/closing operation, when N2 gas is blown in, metal Zn powder is collected in the dust collector 8B. These ZnO powder and metal Zn powder are supplied to the melting and refining equipment described below.

同設備は、第1〜第3溶解槽17A、17B。The equipment includes first to third dissolution tanks 17A and 17B.

17Cおよびイオン交換精製槽18、シックナー19、
濾過機20.21を備えている。また、22はパフファ
タンク、23は電気メツキ設備である。
17C and ion exchange purification tank 18, thickener 19,
It is equipped with a filter 20.21. Further, 22 is a puffer tank, and 23 is electroplating equipment.

かかる設備の下では、Zn溶解液が供給路22A〜22
Cを介して第1溶解槽17Aから精製槽18へと順に移
行するとともに、未溶解のZn含有スラリーは、返送路
23A〜23Cを介して、逆に精製槽18から第1溶解
槽17Aへと返送され、これによってZn溶解液と未溶
解のZn含有スラーとが向流接触するようになっている
Under such equipment, the Zn solution is supplied to the supply channels 22A to 22.
C, the undissolved Zn-containing slurry sequentially moves from the first dissolution tank 17A to the purification tank 18 via the return channels 23A to 23C, and conversely from the purification tank 18 to the first dissolution tank 17A. The Zn solution and the undissolved Zn-containing slurry come into countercurrent contact with each other.

前記最終の溶解槽、実施例では第3溶解槽17CにZn
O粉が供給され、供給路22Bから供給されるZn溶解
液によって溶解が図られた後、供給路22Cを経て精製
槽18に導かれ、ここで前述の金属Zn粉が供給され、
イオン交換精製(ZnとFeおよびpbとのイオン化傾
向の差を利用した精製)が図られた後、シックナー19
および濾過機20に導かれ不純物や残渣との分離が図ら
れた後、電気メツキ設備23との間で、メッキ使用量と
溶解精製量とのバランスをバッファするバッファタンク
22に一旦貯留された後、メッキ設備、たとえば電気メ
ツキ設備23に供給され、鋼板からメッキ鋼板を得る場
合のメッキ原料とされる。ここで消費されなかったZn
を含むたとえば硫酸浴メッキ液は、第1溶解槽17Aに
新溶解液として専かれ、Znの溶解液として使用される
Zn was added to the final dissolving tank, in the example, the third dissolving tank 17C.
After the O powder is supplied and dissolved by the Zn solution supplied from the supply path 22B, it is led to the purification tank 18 via the supply path 22C, where the above-mentioned metal Zn powder is supplied,
After ion exchange purification (purification using the difference in ionization tendency between Zn, Fe, and PB), thickener 19
After being led to a filter 20 and separated from impurities and residues, it is once stored in a buffer tank 22 that buffers the balance between the amount of plating used and the amount of melting and purification between it and the electroplating equipment 23. , is supplied to plating equipment, for example, electroplating equipment 23, and is used as a plating raw material when obtaining a plated steel plate from a steel plate. Zn not consumed here
For example, a sulfuric acid bath plating solution containing Zn is exclusively used as a new solution in the first dissolution tank 17A, and is used as a solution for Zn.

上記向流接触溶解精製によって、Feまたはpb等の不
純物は順次前槽へ導かれ、最終的に第1溶解槽17A底
から導出され、濾過機21によって残渣として系外へ排
出される。また、この不純物への順次前槽への移行によ
って、不純物含量が少くなった溶解液が順次後槽へ移行
されることによって精製が図られ純化が達成される。
By the countercurrent catalytic melting and refining described above, impurities such as Fe or PB are sequentially introduced into the front tank, finally drawn out from the bottom of the first dissolving tank 17A, and discharged as a residue by the filter 21 to the outside of the system. Moreover, by sequentially transferring the impurities to the front tank, the dissolved solution having a reduced impurity content is sequentially transferred to the rear tank, thereby achieving purification.

なお、上記溶解精製設備において、精製槽を複数設けて
もよい。また、検量に沈降分離槽を設けてもよい。ただ
し、向流接触方式を採る必要はある。
In addition, in the above-mentioned melting and purification equipment, a plurality of purification tanks may be provided. Further, a sedimentation separation tank may be provided for calibration. However, it is necessary to use a countercurrent contact method.

次いで実験例を示しながら、本発明法の揮化操作条件に
ついて説明する。
Next, the volatilization operation conditions of the method of the present invention will be explained while showing experimental examples.

第2図に示すタンマン炉30にて揮化実験を行った。炉
20内にはグラファイトルツボ31を収納し、この中に
Zn含有物を投入し、ヒータ32により加熱するととも
に、炉内にN2ガスを吹込んだ。
A volatilization experiment was conducted in a Tammann furnace 30 shown in FIG. A graphite crucible 31 was housed in the furnace 20, and a Zn-containing material was charged into the crucible and heated by the heater 32, while N2 gas was blown into the furnace.

450龍角に開口した炉頂上部には、500龍角のフー
ド23を設け、揮化ガスをバグフィルタ−34により捕
集するようにした。また、炉頂開口部には、150鰭φ
の開口の排出板35を取付けた。炉高は700■lであ
る。
A hood 23 with a diameter of 500 degrees was provided at the top of the furnace having an opening of 450 degrees, and the volatilized gas was collected by a bag filter 34. In addition, there is a 150 fin diameter at the top opening.
A discharge plate 35 was attached to the opening. The furnace height is 700μl.

かかる実験設備にて、まずZn含有物として電気炉ダス
トを用いるとともに、還元揮(気)化温度を変えてみた
ところ、第3図のように、回収ZnO中には、温度の上
昇とともに、Feおよびpb分が多(含まれることが判
った。したがって、揮化温度は1100℃以下、より好
ましくは980℃、特には950℃以下がよいことが判
った。なお、900℃未満では、揮化が生じないことも
判った。
Using this experimental equipment, we first used electric furnace dust as the Zn-containing material and varied the reduction volatilization temperature. As shown in Figure 3, as the temperature rose, Fe was added to the recovered ZnO. It was found that the volatilization temperature is 1100°C or less, more preferably 980°C, especially 950°C or less. It was also found that this does not occur.

〔実施例〕〔Example〕

第1図の設備にて、Zn : 56.98%、 Fe 
: 16.43%、Pb:4.80%のダストベレット
ダストを揮化炉にてZnの揮化を行い、99.1%のZ
nO粉および金属Zn粉を得た。このとき、ZnO粉に
はFeが0.31%、pbが0.73%、金属Zn粉に
はFeが0.14%、pbが0.68%含まれており、
これらを用い向流接触溶解精製したところ、最終のメッ
キ原料液中には、Feが0.36PPM 、Pbが0.
11 PPM含まれているのみで、きわめて高いZn純
度のメッキ原料液が得られた。
In the equipment shown in Figure 1, Zn: 56.98%, Fe
: 16.43%, Pb: 4.80% dust pellet dust was subjected to Zn volatilization in a volatilization furnace, resulting in 99.1% Zn.
nO powder and metal Zn powder were obtained. At this time, the ZnO powder contains 0.31% Fe and 0.73% PB, and the metal Zn powder contains 0.14% Fe and 0.68% PB.
When these were subjected to countercurrent contact melting and purification, the final plating raw material solution contained 0.36 PPM of Fe and 0.36 PPM of Pb.
A plating raw material solution containing only 11 PPM and having extremely high Zn purity was obtained.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、製鉄所での副生Zn含有
物からきわめて純度の高いメッキ原料液を得ることがで
きる。
As described above, according to the present invention, a plating raw material solution with extremely high purity can be obtained from Zn-containing by-products produced in steel works.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明性実施のための設備の全体概要図、第2
図は揮化実験炉の概要図、第3図は気(揮)化温度の相
異による得られるZnO中のFe。 pb含有率の変化図である。 IA、IB・・・揮化炉、7・・・冷却剤吹込口、8A
。 8B・・・集塵機、17A〜17C・・・溶解槽、18
・・・精製槽、23・・・電気メツキ設備。 第2図 第3図 1五短7’lJ、 (℃)
Figure 1 is an overall schematic diagram of the equipment for carrying out the invention;
The figure is a schematic diagram of an experimental volatilization furnace, and Figure 3 shows Fe in ZnO obtained by different volatilization temperatures. It is a change diagram of pb content rate. IA, IB...Volatilization furnace, 7...Coolant inlet, 8A
. 8B...Dust collector, 17A-17C...Dissolution tank, 18
...Purification tank, 23...Electroplating equipment. Figure 2 Figure 3 15 short 7'lJ, (℃)

Claims (1)

【特許請求の範囲】[Claims] (1)製鉄所で副生するZn含有物を、還元雰囲気およ
び900〜1100℃の温度に保持した揮化炉に投入し
、還元揮化し、そのZn蒸気からそれぞれ純度90%以
上の金属ZnおよびZnOを得る一方で;第1の溶解槽
から最終の溶解槽まで順次溶解液が移行する複数の溶解
槽と、最終溶解液を受ける少くとも一つの精製槽とを備
え、未溶解のZn含有スラリーは前方の槽へ移行させる
向流式溶解精製設備を設け;前記最終溶解槽にZnOを
投入し、精製槽の少くとも一つに金属Znを投入し、Z
n溶解精製を行い、得られた溶解精製液をZn系メッキ
液とすることを特徴とする副生Zn含有物のメッキ原料
化処理方法。
(1) Zn-containing materials produced as by-products in steel mills are put into a reducing atmosphere and a volatilization furnace maintained at a temperature of 900 to 1100°C, where they are reduced and volatilized, and from the Zn vapor, metal Zn and While obtaining ZnO; comprising a plurality of dissolution tanks in which the solution is sequentially transferred from a first dissolution tank to a final dissolution tank, and at least one purification tank that receives the final solution, an undissolved Zn-containing slurry is produced; A counter-current melting and refining equipment is provided to transfer the ZnO to the front tank;
1. A method for processing a by-product Zn-containing material into a plating raw material, which comprises performing n-dissolution and purification and using the obtained dissolution and purification solution as a Zn-based plating solution.
JP62093564A 1987-04-16 1987-04-16 Method for using material containing by-product zn as raw plating material Pending JPS63259037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62093564A JPS63259037A (en) 1987-04-16 1987-04-16 Method for using material containing by-product zn as raw plating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62093564A JPS63259037A (en) 1987-04-16 1987-04-16 Method for using material containing by-product zn as raw plating material

Publications (1)

Publication Number Publication Date
JPS63259037A true JPS63259037A (en) 1988-10-26

Family

ID=14085745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62093564A Pending JPS63259037A (en) 1987-04-16 1987-04-16 Method for using material containing by-product zn as raw plating material

Country Status (1)

Country Link
JP (1) JPS63259037A (en)

Similar Documents

Publication Publication Date Title
TWI402356B (en) A method for recycling residues having an elevated content of zinc and sulfates
PL213990B1 (en) Method for refining copper concentrate
JPS63262428A (en) Treatment of dust
GB2099457A (en) Blister copper production by converting particulate matter
AU710302B2 (en) Method for recovering metal and chemical values
US3663207A (en) Direct process for smelting of lead sulphide concentrates to lead
CN205556750U (en) Direct smelting system of while output metallic lead, zinc
US4519836A (en) Method of processing lead sulphide or lead-zinc sulphide ores, or sulphide concentrates, or mixtures thereof
US3847595A (en) Lead smelting process
CN111663052A (en) Crude tin smelting system and process
JPS63259036A (en) Method for recovering zn from material containing by-product zn
GB2196649A (en) Smelting complex sulphidic materials containing lead, zinc and optionally copper
JPS63259037A (en) Method for using material containing by-product zn as raw plating material
US4292283A (en) Method for the recovery of zinc
US4478394A (en) Apparatus for the separation of lead from a sulfidic concentrate
CA1314149C (en) Methods of recovering arsenic values from waste
JPS63259035A (en) Treatment of material containing by-product zn
CN211057202U (en) Air-blast type extraction system of antimony metal
WO1987003010A1 (en) Top submerged lancing reactor and direct smelting of zinc sulphide materials therein
CN112176202A (en) Antimony smelting method adopting oxygen-enriched side-blown column smelting
GB2181746A (en) Recovery of metal values from slag
US2681855A (en) Process for chlorinating ores
US1940912A (en) Treatment of ores
CN115637331B (en) Method and apparatus for reducing slag
CN212451581U (en) Crude tin smelting system