JPS6325723B2 - - Google Patents

Info

Publication number
JPS6325723B2
JPS6325723B2 JP57049309A JP4930982A JPS6325723B2 JP S6325723 B2 JPS6325723 B2 JP S6325723B2 JP 57049309 A JP57049309 A JP 57049309A JP 4930982 A JP4930982 A JP 4930982A JP S6325723 B2 JPS6325723 B2 JP S6325723B2
Authority
JP
Japan
Prior art keywords
copper
dielectric
electrode
heat treatment
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57049309A
Other languages
Japanese (ja)
Other versions
JPS58166806A (en
Inventor
Osamu Kano
Atsuo Senda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP57049309A priority Critical patent/JPS58166806A/en
Priority to FR8304842A priority patent/FR2523952B1/en
Priority to DE19833311046 priority patent/DE3311046A1/en
Publication of JPS58166806A publication Critical patent/JPS58166806A/en
Publication of JPS6325723B2 publication Critical patent/JPS6325723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】 この発明は、高周波用誘電体セラミツク上に電
極を形成する方法に関し、特に、誘電体共振器、
高周波用回路基板、マイクロ波集積回路用素子な
どのような高周波機器に備える電極を銅の無電解
めつきにより形成する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming electrodes on dielectric ceramic for high frequency, and in particular, to a method for forming electrodes on dielectric ceramic for high frequency.
The present invention relates to an improvement in a method for forming electrodes for high-frequency devices such as high-frequency circuit boards and microwave integrated circuit elements by electroless plating of copper.

マイクロ波回路のフイルタとして、従来は、空
胴共振器を使用してきたが、その大きさは、原理
的に、共振周波数の波長によつて決定されるの
で、小形化は困難であつた。そこで、この小形化
の要求を満たすものとして、誘電体共振器が提案
されている。この誘電体共振器は、GHz帯の高
い周波数を用いる装置のフイルタとして注目され
ており、従来の空胴共振器に比べて、1/2〜1/3に
小形化され、さらに、高性能で安定性が高いとい
う特徴をもつている。その用途としては、自動車
電話、通信衛星などに及んでいる。
Conventionally, cavity resonators have been used as filters in microwave circuits, but their size is determined in principle by the wavelength of the resonant frequency, so it has been difficult to miniaturize them. Therefore, a dielectric resonator has been proposed as a device that satisfies this demand for miniaturization. This dielectric resonator is attracting attention as a filter for devices that use high frequencies in the GHz band, and is 1/2 to 1/3 smaller than conventional cavity resonators, and also has high performance. It is characterized by high stability. Its applications include car phones and communication satellites.

第1図はこの発明が適用される高周波機器の一
例としての誘電体共振器の代表的な形状を示す斜
視図である。誘電体共振器の形状としては、その
他に、直方体状、円柱状のものがあるが、第1図
に示すような円筒状のものが、スプリアス特性が
優れているという理由からよく使われている。第
1図を参照して、円筒状の誘電体1の内周面、外
周面、および一端面にそれぞれ電極2,3および
4が連続して形成されることによつて、誘電体共
振器が得られる。なお、他端面5には電極は形成
されていない。
FIG. 1 is a perspective view showing a typical shape of a dielectric resonator as an example of a high frequency device to which the present invention is applied. Other dielectric resonator shapes include rectangular parallelepiped and cylindrical shapes, but the cylindrical shape shown in Figure 1 is often used because it has excellent spurious characteristics. . Referring to FIG. 1, a dielectric resonator is formed by forming electrodes 2, 3, and 4 continuously on the inner peripheral surface, outer peripheral surface, and one end surface of a cylindrical dielectric 1, respectively. can get. Note that no electrode is formed on the other end surface 5.

このような誘電体共振器において、Qは、誘電
体1自身のQと電極2,3および4自身のQによ
つて決定されるものであつて、次の式のように表
わすことができる。
In such a dielectric resonator, Q is determined by the Q of the dielectric 1 itself and the Q of the electrodes 2, 3, and 4, and can be expressed as the following equation.

1/Qo=1/Qd+1/Qe ここに、Qoは誘電体共振器のQ、Qdは誘電体
1のQ、Qeは電極2,3および4のQである。
1/Qo=1/Qd+1/Qe Here, Qo is the Q of the dielectric resonator, Qd is the Q of the dielectric 1, and Qe is the Q of the electrodes 2, 3, and 4.

上の式において、通常、Qdは、20000のオーダ
であり、Qeは1000のオーダである。このことか
ら、電極のQeが無視できないほど大きくQoの値
に影響することがわかる。この電極のQeは、電
極自身を構成する金属の導電率が大きく作用する
ことがわかつている。
In the above equation, Qd is typically on the order of 20,000 and Qe is on the order of 1,000. This shows that the Qe of the electrode has a non-negligible influence on the Qo value. It is known that the Qe of this electrode is largely influenced by the conductivity of the metal that makes up the electrode itself.

従来、電極としては、銀が一般的に用いられて
いた。銀を用いる場合、銀の焼付けが適用されて
いた。そのため、銀粉末にガラスフリツト、有機
バインダ、および溶剤を混入し、ペースト状とす
る。このペーストを筆塗り等の手段で付着し、熱
処理によりガラスフリツトを溶融させて誘電体の
表面に銀が焼付けされる。しかしながら、このよ
うな方法では塗りむらが起こる。またガラスフリ
ツトの混入は、導電率を低下させ、本来、6.06×
105[1/Ω・cm]の導電率を有している銀であつ
ても、約80%のオーダで導電率が低下する。銅の
場合には、5.81×105[1/Ω・cm]の導電率を有
しているが、上述のようにガラスフリツトを含ん
だ銀の電極の導電率は、結局、高価な銀を使用し
ているにもかかわらず、銅より低くなつてしま
う。したがつて、上記式で表わされたQoを低下
させる。また、銀電極の場合、密着強度を得る目
的でガラスフリツトを用いているにもかかわら
ず、0.38Kg/mm2程度と低く、導電率の向上を狙つ
てガラスフリツトの量を少なくすることはできな
いのが現状である。
Conventionally, silver has generally been used as an electrode. When silver was used, silver burning was applied. Therefore, silver powder is mixed with glass frit, an organic binder, and a solvent to form a paste. This paste is applied by brush painting or other means, and the glass frit is melted by heat treatment, so that silver is baked onto the surface of the dielectric. However, such a method causes uneven coating. In addition, the inclusion of glass frit reduces the electrical conductivity, which is originally 6.06×
Even if silver has a conductivity of 10 5 [1/Ω·cm], the conductivity decreases by about 80%. In the case of copper, it has a conductivity of 5.81×10 5 [1/Ω・cm], but as mentioned above, the conductivity of a silver electrode containing glass frit is lower than that of expensive silver. Despite this, it is still lower than copper. Therefore, Qo expressed by the above formula is reduced. In addition, in the case of silver electrodes, although glass frit is used to obtain adhesion strength, it is as low as 0.38 Kg/mm 2 , and it is not possible to reduce the amount of glass frit with the aim of improving conductivity. This is the current situation.

高価な銀に対して、銅を電極として用いる試み
もなされている。銅電極を形成する場合、通常、
無電解めつきが用いられる。しかしながら、この
無電解めつきによる銅電極は、このままでは導電
率が小さく、Qも低いという欠点があつた。ま
た、高温に放置したり、温中に放置したりすると
特性が劣化するため、耐候性に難点がある。さら
に密着強度も悪く、これに起因して、ヒートサイ
クル試験を行なつた後の共振周波数が大きく変化
するという欠点があつた。このヒートサイクル試
験の一例を挙げれば、−40℃に2時間保持し、そ
の後+80℃に温度を上げ、2時間保持することを
1サイクルとして、10サイクル繰返して行なう試
験である。このようなヒートサイクル試験で共振
周波数が大きく変化する原因としては、銅電極が
ヒートサイクル試験で誘電体との密着性が低下す
ることが考えられる。
Attempts have also been made to use copper as an electrode instead of expensive silver. When forming copper electrodes, usually
Electroless plating is used. However, the copper electrode produced by electroless plating has the drawbacks of low conductivity and low Q. Furthermore, if left at high temperatures or exposed to heat, the properties deteriorate, so there is a problem with weather resistance. Further, the adhesion strength was poor, and due to this, there was a drawback that the resonant frequency changed greatly after a heat cycle test was performed. An example of this heat cycle test is a test in which the temperature is held at -40°C for 2 hours, then the temperature is raised to +80°C, and held for 2 hours, each cycle being repeated 10 times. A possible reason for the large change in resonance frequency during such a heat cycle test is that the adhesion of the copper electrode to the dielectric material decreases during the heat cycle test.

さらに、ニツケルの無電解めつきによる電極も
考えられるが、ニツケルは、本来、導電率が低い
ため、この電極のQeが低く、誘電体共振器とし
てのQoも、銀電極のものに比べて1/2程度と低
く、実用上評価に値しない。
Furthermore, an electrode made of electroless plating of nickel is also considered, but since nickel has inherently low conductivity, the Qe of this electrode is low, and the Qo as a dielectric resonator is also 1 compared to that of a silver electrode. It is as low as /2 and is not worth evaluating in practical terms.

それゆえに、この発明の主たる目的は、銅が安
価でありかつ導電率も比較的優れていることに着
目し、この銅を用いて、前述したような欠点を解
消しつつ、高周波用誘電体セラミツク上に電極を
形成する方法を提供することである。
Therefore, the main purpose of this invention is to focus on the fact that copper is inexpensive and has relatively good electrical conductivity, and to use this copper to solve the above-mentioned drawbacks while producing high-frequency dielectric ceramics. An object of the present invention is to provide a method for forming an electrode on a substrate.

この発明は、要約すれば、高周波用誘電体セラ
ミツク上に無電解銅めつきによる銅皮膜を形成す
ることは従来と同様であるが、さらに、この銅皮
膜を窒素、アルゴンなどの不活性雰囲気中で、
300゜〜900℃で熱処理することを特徴とするもの
である。このような熱処理によつて、無電解めつ
きによる銅皮膜は、純銅に近い状態に変化する。
したがつて、銅皮膜の誘電体に対する密着強度が
高くなり、かつ電極のQeが改善され、ひいては、
たとえば誘電体共振器のQoも改善されることに
なる。さらに、このようなQeのばらつきも小さ
くなることも確認されている。なお、熱処理を行
なう時間については、通常、約30分間程度に選ば
れる。そして、熱処理温度としては、500゜〜700
℃の範囲でより優れた結果をもたらす。
In summary, this invention involves forming a copper film by electroless copper plating on a high-frequency dielectric ceramic in the same way as conventional methods, but furthermore, this copper film is formed in an inert atmosphere such as nitrogen or argon. in,
It is characterized by heat treatment at 300° to 900°C. Through such heat treatment, the copper film formed by electroless plating changes to a state close to that of pure copper.
Therefore, the adhesion strength of the copper film to the dielectric material is increased, the Qe of the electrode is improved, and as a result,
For example, the Qo of dielectric resonators will also be improved. Furthermore, it has been confirmed that such variations in Qe are also reduced. Note that the time for heat treatment is usually selected to be about 30 minutes. The heat treatment temperature is 500° to 700°.
Gives better results in the °C range.

以下、この発明を実施したより具体的な実施例
について説明する。
More specific embodiments of the present invention will be described below.

まず、誘電体セラミツクとして、MgTiO3
CaTiO3系(MgTiO3…96モル%、CaTiO3…4モ
ル%)の誘電率20〜30(この誘電率の温度係数は
零)のものを用いた。この誘電体セラミツクを、
第1図に示すような形状のものとして、電極2,
3および4を形成するために、無電解銅めつきを
行なつた。この無電解銅めつきを行なう行程を、
より詳しく言えば、まず、脱脂を行ない、次に、
ホウフツ酸などでエツチングを行ない表面を荒
し、次に、塩化第1錫などで感受性化し、次に、
塩化パラジウムなどで活性化を行ない、そして、
硫酸銅―EDTA―ホルマリン、NaOHを含むめ
つき浴中で、無電解めつきを行なう。次に、洗
浄、乾燥を行ない、この発明の特徴となる熱処理
を、窒素雰囲気中で約30分間行なつた。熱処理温
度については、この発明の範囲を決定するため
に、第2図に示すような各条件について実施し
た。熱処理後、第1図に示すように、他端面5を
研磨してチユーニングを行ない、フイルタとなる
ように誘電体共振器を組立てた。
First, MgTiO 3 -
CaTiO 3 -based materials (MgTiO 3 . . . 96 mol %, CaTiO 3 . . . 4 mol %) with a dielectric constant of 20 to 30 (the temperature coefficient of this dielectric constant is zero) were used. This dielectric ceramic
As shown in FIG. 1, the electrode 2,
3 and 4, electroless copper plating was performed. The process of performing this electroless copper plating is
To be more specific, first, we degrease, then,
The surface is roughened by etching with boronic acid, etc., then sensitized with stannous chloride, etc., and then
Activate with palladium chloride etc., and
Electroless plating is performed in a plating bath containing copper sulfate, EDTA, formalin, and NaOH. Next, washing and drying were performed, and heat treatment, which is a feature of the present invention, was performed for about 30 minutes in a nitrogen atmosphere. Regarding the heat treatment temperature, the heat treatment was carried out under various conditions as shown in FIG. 2 in order to determine the scope of the present invention. After the heat treatment, as shown in FIG. 1, the other end surface 5 was polished and tuned, and a dielectric resonator was assembled to form a filter.

第2図はこの発明による熱処理の温度と共振器
のQoとの関係を示すグラフである。熱処理の施
されていない試料(25℃)については、Qoは761
であり、この発明の範囲内である300゜〜900℃で
は、それぞれ第2図中にかつこ書きで示したよう
に、それぞれQoが高められている。このデータ
から推測されることは、熱処理温度が300℃より
低い場合には、無電解めつきにより析出した銅の
付着が不充分で、900℃より高い場合には、銅が
誘電体セラミツク中に拡散して酸化されてしまう
ということである。また、熱処理温度が500゜〜
700℃である場合、より高いQoを示すことがわか
る。
FIG. 2 is a graph showing the relationship between the heat treatment temperature and the Qo of the resonator according to the present invention. For samples without heat treatment (25°C), Qo is 761
In the range of 300° to 900° C., which is within the range of the present invention, the Qo is increased, as indicated by the squares in FIG. 2. It can be inferred from this data that if the heat treatment temperature is lower than 300°C, the copper deposited by electroless plating will be insufficiently adhered, and if the heat treatment temperature is higher than 900°C, copper will be deposited in the dielectric ceramic. This means that it will diffuse and become oxidized. In addition, the heat treatment temperature is 500°~
It can be seen that a higher Qo is exhibited when the temperature is 700°C.

この発明によつて得られた銅電極の密着強度を
測定すれば、1.25Kg/mm2と向上されていることが
わかつた。なお、熱処理を行なわないと密着強度
は0.5Kg/mm2であつた。また、Qoのばらつきを標
準偏差で示すと、この発明の場合2.1%であり、
従来の銀電極の10.0%に比べて小さくなつている
ことがわかつた。また、電極の膜厚は、1〜
10μm(化学分析法に基づく値であつて、純粋な銅
を分析するとする場合)が適当である。すなわ
ち、1μm未満であると、電極の抵抗値が高くな
り、逆に、10μmを越えると、厚みを厚くするの
みで経済的でなく、またQの低下が認められるよ
うになる。さらに、無電解めつきによると、必要
な面にむらなく銅皮膜を形成することができ、し
たがつて、第1図の誘電体1の内周面にある電極
2も問題なく形成することができるとともに、電
極形成のための工程において大量にめつき処理を
同時に行なうことができる。そして、この発明で
は、安価な銅を用いることができるので、材料コ
ストを下げ、しかも従来の銀の焼付けによる電極
に比べて、Qが向上される。
When the adhesion strength of the copper electrode obtained according to the present invention was measured, it was found that the adhesion strength was improved to 1.25 Kg/mm 2 . Note that the adhesion strength was 0.5 Kg/mm 2 without heat treatment. In addition, the standard deviation of Qo variation is 2.1% in the case of this invention,
It was found that this is smaller than the 10.0% of conventional silver electrodes. In addition, the film thickness of the electrode is 1~
10 μm (value based on chemical analysis method, when analyzing pure copper) is appropriate. That is, if it is less than 1 μm, the resistance value of the electrode becomes high, and if it exceeds 10 μm, it is not economical to simply increase the thickness, and a decrease in Q is observed. Furthermore, electroless plating allows the formation of a copper film evenly on the required surface, and therefore the electrode 2 on the inner circumferential surface of the dielectric 1 shown in FIG. 1 can also be formed without any problem. In addition, a large amount of plating can be performed at the same time in the process for forming electrodes. In this invention, since inexpensive copper can be used, the material cost is reduced, and Q is improved compared to the conventional electrode made of baked silver.

また、得られた共振器を相対温度95%、温度60
℃の条件で1000時間の高温耐湿試験を行なつた。
第2図はその試験結果を示したものであり、Qo
の変化はわずかである。一方、熱処理を行なわな
かつた従来例のものはQoが10%前後も変化して
おり、このことから、この発明の方法によつて耐
候性に優れた誘電体共振器が得られるといえる。
In addition, the obtained resonator was heated at a relative temperature of 95% and a temperature of 60%.
A high temperature and humidity test was conducted for 1000 hours at ℃.
Figure 2 shows the test results, and Qo
The change in is slight. On the other hand, the Qo of the conventional example which was not subjected to heat treatment changed by around 10%, and from this it can be said that the method of the present invention makes it possible to obtain a dielectric resonator with excellent weather resistance.

なお、この発明は、誘電体共振器に限らず、高
周波用回路基板、マイクロ波集積回路用素子など
にも等しく適用することができる。
Note that the present invention is equally applicable not only to dielectric resonators but also to high frequency circuit boards, microwave integrated circuit elements, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が適用される高周波機器の一
例としての誘電体共振器の代表的な形状を示す斜
視図である。第2図はこの発明による熱処理の温
度と共振器のQoとの関係を示すグラフである。
第3図は高温耐湿試験時間とQoとの関係を示す
グラフである。 図において、1は誘電体、2,3,4は電極で
ある。
FIG. 1 is a perspective view showing a typical shape of a dielectric resonator as an example of a high frequency device to which the present invention is applied. FIG. 2 is a graph showing the relationship between the heat treatment temperature and the Qo of the resonator according to the present invention.
FIG. 3 is a graph showing the relationship between high temperature humidity test time and Qo. In the figure, 1 is a dielectric, and 2, 3, and 4 are electrodes.

Claims (1)

【特許請求の範囲】 1 高周波用誘電体セラミツク上に無電解銅めつ
きによる銅皮膜を形成し、 この銅皮膜を不活性雰囲気中において300゜〜
900℃で熱処理して電極とする、高周波用誘電体
セラミツク上に電極を形成する方法。 2 前記熱処理は、500゜〜700℃で行なわれる特
許請求の範囲第1項記載の方法。
[Claims] 1. A copper film is formed by electroless copper plating on a high frequency dielectric ceramic, and this copper film is heated at a temperature of 300° to 300° in an inert atmosphere.
A method of forming electrodes on high-frequency dielectric ceramic, which is heat-treated at 900℃. 2. The method according to claim 1, wherein the heat treatment is performed at 500° to 700°C.
JP57049309A 1982-03-26 1982-03-26 Method for forming electrode on dielectric ceramic for high frequency Granted JPS58166806A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57049309A JPS58166806A (en) 1982-03-26 1982-03-26 Method for forming electrode on dielectric ceramic for high frequency
FR8304842A FR2523952B1 (en) 1982-03-26 1983-03-24 METHOD FOR FORMING AN ELECTRODE ON A DIELECTRIC CERAMIC PART FOR HIGH FREQUENCY APPLICATIONS
DE19833311046 DE3311046A1 (en) 1982-03-26 1983-03-25 Method for the manufacture of an electrode on a dielectric ceramic material for high-frequency applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049309A JPS58166806A (en) 1982-03-26 1982-03-26 Method for forming electrode on dielectric ceramic for high frequency

Publications (2)

Publication Number Publication Date
JPS58166806A JPS58166806A (en) 1983-10-03
JPS6325723B2 true JPS6325723B2 (en) 1988-05-26

Family

ID=12827343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049309A Granted JPS58166806A (en) 1982-03-26 1982-03-26 Method for forming electrode on dielectric ceramic for high frequency

Country Status (3)

Country Link
JP (1) JPS58166806A (en)
DE (1) DE3311046A1 (en)
FR (1) FR2523952B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362929U (en) * 1989-10-25 1991-06-19

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68920994T2 (en) * 1988-11-07 1995-07-06 Matsushita Electric Ind Co Ltd Plating arrangement for dielectric resonators.
JP2705152B2 (en) * 1988-11-07 1998-01-26 松下電器産業株式会社 Manufacturing method of dielectric resonator
JP2776023B2 (en) * 1990-10-25 1998-07-16 松下電器産業株式会社 Manufacturing method of dielectric resonator
JP2633387B2 (en) * 1990-11-20 1997-07-23 松下電器産業株式会社 Manufacturing method of dielectric resonator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117961A (en) * 1973-03-16 1974-11-11
JPS50149541A (en) * 1974-05-24 1975-11-29
JPS54108554A (en) * 1978-02-13 1979-08-25 Murata Manufacturing Co Dielectric resonator
JPS5635782A (en) * 1979-08-29 1981-04-08 Murata Mfg Co Ltd Preventing method for oxidation of heat-treated copper film
JPS5635497A (en) * 1979-08-30 1981-04-08 Murata Manufacturing Co Method of improving adherence of copper film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448148A1 (en) * 1974-09-16 1976-04-29 Inst Metallurg Im 50 Letija Ss Metallising non-metallic substrates - using pretreatment with vienna white and nitric acid, and post-heat treatment
DE2533524C3 (en) * 1975-07-26 1978-05-18 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Process for the production of a covering made of copper or a copper alloy on a carrier body
JPS607026B2 (en) * 1979-05-12 1985-02-21 株式会社村田製作所 Heat treatment method for copper coating
JPS5646086A (en) * 1979-09-25 1981-04-27 Tokuyama Soda Kk Adiabatic window material
JPS56115486A (en) * 1980-02-15 1981-09-10 Matsushita Electric Works Ltd Heat insulating structure for glass door
DE3038976C2 (en) * 1980-10-15 1986-05-22 Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto Method and device for improving the properties of a copper film applied to a ceramic body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117961A (en) * 1973-03-16 1974-11-11
JPS50149541A (en) * 1974-05-24 1975-11-29
JPS54108554A (en) * 1978-02-13 1979-08-25 Murata Manufacturing Co Dielectric resonator
JPS5635782A (en) * 1979-08-29 1981-04-08 Murata Mfg Co Ltd Preventing method for oxidation of heat-treated copper film
JPS5635497A (en) * 1979-08-30 1981-04-08 Murata Manufacturing Co Method of improving adherence of copper film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362929U (en) * 1989-10-25 1991-06-19

Also Published As

Publication number Publication date
DE3311046C2 (en) 1993-05-13
DE3311046A1 (en) 1983-10-20
FR2523952B1 (en) 1986-05-02
JPS58166806A (en) 1983-10-03
FR2523952A1 (en) 1983-09-30

Similar Documents

Publication Publication Date Title
JPS61121501A (en) Dielectric resonator and its production
JPS6325723B2 (en)
JP2633387B2 (en) Manufacturing method of dielectric resonator
US5220482A (en) Thin film capacitor
JP2778432B2 (en) Dielectric filter
JP3453853B2 (en) Method of manufacturing dielectric and coaxial dielectric resonator manufactured by the method
JPS634332B2 (en)
JPH04264801A (en) Coaxial dielectric resonator
JP2620672B2 (en) Manufacturing method of coaxial dielectric resonator
JPH0884009A (en) Production of coaxial dielectric resonator
JPH1155007A (en) Dielectric filter and production thereof
JP2001028474A (en) Electronic part and manufacture thereof
JPH0223034B2 (en)
Lu et al. Dielectric properties of titanate based ceramic capacitors using electroless Ni as contact electrodes
JPH0377306A (en) Formation of electrode
JPH0818328A (en) Production of small-sized antenna
JPH04344701A (en) Manufacture of coaxial dielectric resonator
CN112531306A (en) Dielectric ceramic assembly, dielectric ceramic communication electronic component and manufacturing method thereof
JP2776023B2 (en) Manufacturing method of dielectric resonator
JPH03292005A (en) Manufacture of dielectric resonator
KR100278540B1 (en) High frequency dielectric ceramics resonator surface treatment method of mobile communication device
JPH0548313A (en) Formation of electrode for dielectric ceramic element
JP3207114B2 (en) Dielectric resonator
JPH08130157A (en) Method of forming electrode of ceramic capacitor
JPH02123801A (en) Microwave resonator