JPS63256136A - Methanol reforming catalyst - Google Patents

Methanol reforming catalyst

Info

Publication number
JPS63256136A
JPS63256136A JP9227987A JP9227987A JPS63256136A JP S63256136 A JPS63256136 A JP S63256136A JP 9227987 A JP9227987 A JP 9227987A JP 9227987 A JP9227987 A JP 9227987A JP S63256136 A JPS63256136 A JP S63256136A
Authority
JP
Japan
Prior art keywords
catalyst
alloy
copper
nickel
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9227987A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayasaka
俊明 早坂
Yuki Yanagino
友樹 柳野
Noboru Kawada
川田 襄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP9227987A priority Critical patent/JPS63256136A/en
Publication of JPS63256136A publication Critical patent/JPS63256136A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title methanol reforming catalyst having excellent low-temp. activity and which is not deteriorated for a long period by incorporating a Raney-type catalyst consisting of the copper, nickel, and zinc obtained by immersing a copper-nickel-zinc alloy with an alkaline soln. CONSTITUTION:A copper-nickel-zinc alloy is gradually added to an aq. soln. of sodium hydroxide, and the soln. is then agitated to reform the alloy. The alloy is filtered, and then washed with water until the pH is controlled to about 7 to obtain a reformed alloy. Graphite is added to the reformed alloy to obtain a catalyst precursor, and the precursor is reduced to prepare the catalyst. By this method, the methanol reforming catalyst exhibiting high activity in a wide temp. range, which is not deteriorated for a long period, and having excellent selectivity to carbon monoxide and hydrogen can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、メタノール改質用触媒に関し、さらに詳し
く言うと、メタノールを改質して水素と一酸化炭素とを
選択的に製造するのに好適に利用することができるメタ
ノール改質用触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a methanol reforming catalyst, and more specifically, to a catalyst for selectively producing hydrogen and carbon monoxide by reforming methanol. The present invention relates to a methanol reforming catalyst that can be suitably used.

[従来の技術およびその問題点] 従来、発電用ボイラー、内燃機関などの燃料や還元ガス
製造用原料には、原油あるいは原油から精製された石油
類が使用されてきた。
[Prior Art and its Problems] Conventionally, crude oil or petroleum products refined from crude oil have been used as fuel for power generation boilers, internal combustion engines, etc., and as raw materials for producing reducing gas.

ところが、近年の原油価格の変動に起因して燃料の多様
化の要請が高まり、特にメタノールは、石炭や天然ガス
から合成することができるばかりではなく、ナフサより
もはるかに低い温度で水素および一酸化炭素を含むガス
に改質できるので。
However, due to fluctuations in crude oil prices in recent years, there has been an increasing demand for diversification of fuels, and methanol in particular can not only be synthesized from coal and natural gas, but also synthesized with hydrogen and hydrogen at a much lower temperature than naphtha. Because it can be reformed into a gas containing carbon oxide.

熱源として廃熱の利用が可能であり、また、ナフサのよ
うに硫黄化合物を含有していないので、高純度の還元ガ
スを製造することができる等の優位性を有していること
から注目されている。
It is attracting attention because it has the advantage of being able to use waste heat as a heat source, and because it does not contain sulfur compounds like naphtha, it can produce high-purity reducing gas. ing.

そして、これまでに、メタノールを改質する触媒として
、たとえばアルミナなどの担体に白金属元素を担持した
もの(特開昭80−82138号公報、特開昭59−1
99043号公報、特開昭58−174237号公報等
参照)、銅、ニッケル、クロム、亜鉛などの卑金属元素
あるいはそれらの酸化物からなるもの(特開昭58−2
18742号公報、特開昭57−174138号公報、
特開昭57−174139号公報等参照)などが提案さ
れているが、これらの触媒はいずれも、■低温活性に乏
しい、■水素または一酸化炭素の選択性が低い、■熱的
劣化を起し易い、■調製法が複雑である、等の欠点を有
していた。
Up to now, as a catalyst for reforming methanol, catalysts in which a platinum metal element is supported on a carrier such as alumina (Japanese Patent Application Laid-open No. 80-82138, Japanese Patent Application Laid-open No. 59-1
99043, JP-A-58-174237, etc.), base metal elements such as copper, nickel, chromium, zinc, etc. or their oxides (JP-A-58-2
No. 18742, Japanese Patent Application Laid-open No. 174138/1983,
(Refer to Japanese Patent Application Laid-open No. 57-174139, etc.), but all of these catalysts have the following properties: - poor low-temperature activity, - low selectivity for hydrogen or carbon monoxide, and - thermal deterioration. It has disadvantages such as easy preparation and complicated preparation method.

[発明の目的] この発明の目的は前記問題を解消し、優れた低温活性を
有するとともに長期間にわたって劣化することがなく、
しかも水素または一酸化炭素の選択性に優れたメタノー
ル改質用触媒を提供することである。
[Object of the Invention] The object of the present invention is to solve the above-mentioned problems, to have excellent low-temperature activity and not to deteriorate over a long period of time.
Moreover, it is an object of the present invention to provide a methanol reforming catalyst that has excellent selectivity for hydrogen or carbon monoxide.

[前記目的を達成するための手段] 前記目的を達成するために、この発明者が鋭意検討を重
ねた結果、特定のラネー型触媒を含有する触媒は、酸化
物を用いた従来の触媒に比較して高活性であるとともに
、長期間にわたって劣化することがなく、しかも水素ま
たは一酸化炭素の選択性に優れていることを見い出して
この発明に到達した。
[Means for achieving the above object] In order to achieve the above object, as a result of extensive studies by this inventor, a catalyst containing a specific Raney type catalyst has a higher performance than a conventional catalyst using an oxide. This invention was achieved by discovering that it has high activity, does not deteriorate over a long period of time, and has excellent selectivity to hydrogen or carbon monoxide.

すなわち、この発明の概要は、銅−二ツケル−亜鉛合金
をアルカリ溶液で展開した銅、ニッケル、亜鉛からなる
ラネー型触媒を含有することを特徴とするメタノール改
質用触媒である。
That is, the summary of the present invention is a methanol reforming catalyst characterized by containing a Raney type catalyst made of copper, nickel, and zinc, which is prepared by developing a copper-nickel-zinc alloy with an alkaline solution.

前記合金中の、銅、ニッケルおよび亜鉛の含有割合は、
銅5〜30重量%、ニッケル5〜50重量%および亜鉛
30〜90重量%である。
The content ratio of copper, nickel and zinc in the alloy is:
5-30% by weight of copper, 5-50% by weight of nickel and 30-90% by weight of zinc.

この発明においては、この合金を展開することにより、
触媒として不活性な亜鉛をアルカリで溶出して使用する
。亜鉛の溶出量は、通常、前記合金中の亜鉛の含有量の
10〜90重量%である。
In this invention, by developing this alloy,
Inactive zinc is eluted with alkali and used as a catalyst. The amount of zinc eluted is usually 10 to 90% by weight of the zinc content in the alloy.

前記展開は、通常、20〜100℃の温度下に、前記合
金を、たとえば力性ソーダ水溶液、力性カリ水溶液、炭
酸カリウム水溶液などのアルカリ溶液で処理する通常の
展開法に従って行なうことができる。
The development can be carried out according to a conventional development method in which the alloy is treated with an alkaline solution such as aqueous sodium hydroxide solution, aqueous potassium carbonate solution, or potassium carbonate solution, usually at a temperature of 20 to 100°C.

この展開により得られる展開合金中の、銅、ニッケルお
よび亜鉛の含有割合は、銅10〜50重量%、ニー2ケ
ル20〜80重量%および亜鉛10〜60重量%である
。銅およびニッケルの含有量は上記範囲より少ない場合
には、得られる触媒の活性が低下することがある。一方
、上記範囲よりも多い場合には、副生成物のメタンの生
成が顕著になり、水素または一酸化炭素の選択性が低下
することがある。また、亜鉛含有量が10重量%よりも
少ない場合には、亜鉛成分の効果がうすれ、水素または
一酸化炭素の選択性が低下し、一方60重量%よりも多
い場合には、表面上が小さくなり、得られる触媒の活性
が低下することがある。
The contents of copper, nickel and zinc in the developed alloy obtained by this development are 10 to 50% by weight of copper, 20 to 80% by weight of Nikel, and 10 to 60% by weight of zinc. If the content of copper and nickel is less than the above range, the activity of the resulting catalyst may decrease. On the other hand, if the amount exceeds the above range, the production of methane as a by-product becomes significant, and the selectivity of hydrogen or carbon monoxide may decrease. In addition, if the zinc content is less than 10% by weight, the effect of the zinc component is weakened and the selectivity for hydrogen or carbon monoxide is reduced, while if it is more than 60% by weight, the surface As a result, the activity of the resulting catalyst may decrease.

この発明の触媒は、前記展開合金を、たとえば分離→水
洗→乾燥→成形→還元の順に処理することにより調製す
ることができる。
The catalyst of the present invention can be prepared by treating the developed alloy in the following order, for example, separation→washing→drying→molding→reduction.

前記分離は、ろ過、遠心分離、デカンテーション等の通
常の固液分離方法を用いることができる。
For the separation, ordinary solid-liquid separation methods such as filtration, centrifugation, and decantation can be used.

前記水洗は、前記アルカリ溶液の除去を目的とし、たと
えば蒸留水またはイオン交換水を用いた傾斜法により、
pH7付近になるまで充分に行なうのが良い。
The purpose of the water washing is to remove the alkaline solution, for example, by a decanting method using distilled water or ion-exchanged water.
It is best to do this until the pH is around 7.

前記乾燥は、3〜12時間かけて故こするいわゆる風乾
で充分である。
For the drying, so-called air drying in which the material is rubbed for 3 to 12 hours is sufficient.

前記成形にあたっては、たとえば、プレス成形法、打錠
成形法などにより、前記展開合金に滑剤としてグラファ
イトを加えた後、錠剤状、ペレット状1粒状、細片状、
板状などの種々の形状にすることができる。
In the molding, graphite is added as a lubricant to the developed alloy by, for example, a press molding method or a tablet molding method.
It can be made into various shapes such as a plate shape.

前記還元は、通常、 200〜500 ”Cの温度下に
、水素および/または一酸化炭素の雰囲気下に行なうこ
とができる。また、このとき、不活性ガスで希釈しても
よい。
The reduction can usually be carried out at a temperature of 200 to 500''C in an atmosphere of hydrogen and/or carbon monoxide.Also, at this time, it may be diluted with an inert gas.

前記不活性ガスとしては、たとえばヘリウムガス、ネオ
ンガス、アルゴンガス、窒素ガスなどが挙げられる。
Examples of the inert gas include helium gas, neon gas, argon gas, and nitrogen gas.

この発明の触媒を用いて、メタノールを改質するにあた
っては、以下の条件下に反応が進行する。
When modifying methanol using the catalyst of the present invention, the reaction proceeds under the following conditions.

すなわち、反応温度は、通常、200〜800℃、好ま
しくは、300〜400℃であり、反応圧力は、通常0
〜20 kg/cm2G、好ましくは、0〜10kg/
cm2Gである0反応温度が200℃よりも低い場合に
は、触媒の活性が充分に得られない、一方、 800℃
よりも高い場合には、触媒の活性が低下して改質性ス克
が劣化することがある。
That is, the reaction temperature is usually 200 to 800°C, preferably 300 to 400°C, and the reaction pressure is usually 0.
~20 kg/cm2G, preferably 0-10 kg/
If the 0 reaction temperature in cm2G is lower than 200°C, sufficient activity of the catalyst cannot be obtained;
If it is higher than , the activity of the catalyst may decrease and the reforming efficiency may deteriorate.

メタノールの供給速度は液空間速度(LH3V)で、通
常、 0.1〜20hr−1、好ましくは1〜10hr
−1−rある。LH3Vが0.1hr−1よりも低い場
合には、反応が充分に進行しないことがある。一方、2
0br弓よりも高くしても、それに相酋する効果は奏さ
れない。
The feed rate of methanol is liquid hourly space velocity (LH3V), usually 0.1 to 20 hr, preferably 1 to 10 hr.
-1-r exists. If LH3V is lower than 0.1 hr-1, the reaction may not proceed sufficiently. On the other hand, 2
Even if it is higher than a 0br bow, it will not have a mutually beneficial effect.

この発明の触媒は、メタノールを改質して、たとえば内
燃機関、発電用ボイラーの燃料に用いる一酸化炭素また
は燃料電池や半導体の製造の際の還元ガスに使用する水
素ガスを得るのに好適に利用することができる。
The catalyst of the present invention is suitable for reforming methanol to obtain, for example, carbon monoxide used as fuel for internal combustion engines and power generation boilers, or hydrogen gas used as reducing gas in the production of fuel cells and semiconductors. can be used.

[発明の効果] この発明の触媒は、従来のメタノール改質用触媒と異な
り、触媒成分を酸化物の形で用いるものではない。
[Effects of the Invention] Unlike conventional methanol reforming catalysts, the catalyst of the present invention does not use catalyst components in the form of oxides.

したがって、この発明によると、 (1)幅広い温度範囲において高い活性を示し、かつ長
期間にわたって劣化することがなく、(2)シかも、−
酸化炭素および水素の選択性に優れ、 (3)  メタノールの改質を効率よく行なうことがで
きるばかりではなく、 (4)反応に廃熱を利用することができるとともに、高
純度の還元ガスを製造することができる、等の種々の効
果を有する工業的に有利なメタノール改質用触媒を提供
することができる。
Therefore, according to the present invention, (1) it exhibits high activity over a wide temperature range and does not deteriorate over a long period of time; (2) it exhibits high activity over a wide temperature range;
It has excellent selectivity for carbon oxide and hydrogen, and (3) not only can methanol be reformed efficiently, but also (4) waste heat can be used for reaction, and high-purity reducing gas can be produced. It is possible to provide an industrially advantageous methanol reforming catalyst having various effects such as:

[実施例] 次に、この発明の実施例および比較例を示し、この発明
について、さらに具体的に説明する。
[Example] Next, Examples and Comparative Examples of the present invention will be shown to further specifically explain the present invention.

(実施例1) 20重量%力性ソーダ水溶液200m1を調製した後、
これを80℃に昇温した。
(Example 1) After preparing 200 ml of a 20% by weight aqueous sodium hydroxide solution,
This was heated to 80°C.

次いで、この水溶液に、銅−ニッケルー亜鉛基合金(銅
5重量%、ニッケル15重量%、亜鉛80重量%)  
100gを、水素の発生量に留意しながら徐々に加え、
その後、5時間攪拌して合金を展開した。
Next, a copper-nickel-zinc based alloy (5% by weight of copper, 15% by weight of nickel, 80% by weight of zinc) was added to this aqueous solution.
Gradually add 100g while paying attention to the amount of hydrogen generated.
Thereafter, the alloy was developed by stirring for 5 hours.

展開した合金を濾過し、pH7付近になるまで水洗を行
なった後、−晩風乾して展開合金32gを得た。
The developed alloy was filtered, washed with water until the pH reached around 7, and then air-dried overnight to obtain 32 g of developed alloy.

ここで、得られた展開合金の組成はCulB重量%、N
 i 48重量%、Zn5B重量%であった。
Here, the composition of the obtained expanded alloy is CulB weight %, N
i was 48% by weight, and Zn5B was 48% by weight.

この展開合金に、グラフアイ)0.8gを加え、打錠成
形を行なって触媒前駆体を得た。
0.8 g of Graphai) was added to this developed alloy, and tableting was performed to obtain a catalyst precursor.

続いて、この触媒前駆体10m1を、石英ガラス製反応
管に充填するとともに、還元ガスとして水素:窒素=1
:9(モル比)のガスをガス空間速度(GHSV)  
1000hr−’で導入し、徐々に昇温して400℃の
温度下に5時間量元を行なってこの発明に係る触媒を調
製した。
Next, 10 ml of this catalyst precursor was filled into a quartz glass reaction tube, and hydrogen:nitrogen = 1 was added as a reducing gas.
:9 (molar ratio) of gas at gas hourly velocity (GHSV)
The catalyst according to the present invention was prepared by introducing the reactor at a rate of 1000 hr-' and gradually increasing the temperature to 400° C. for 5 hours.

次に、この反応管内に、メタノール(試薬特級)を液空
間速度(LHSV)6hr”で導入して、各反応温度に
おけるメタノール転化率および生成物分布を測定するこ
とにより触媒性能を評価した。
Next, methanol (special grade reagent) was introduced into the reaction tube at a liquid hourly space velocity (LHSV) of 6 hr'', and the catalyst performance was evaluated by measuring the methanol conversion rate and product distribution at each reaction temperature.

結果をm1表に示す。The results are shown in table m1.

(比較例1) 硝酸銅(3水塩) 108.7 g、硝酸ニッケル(6
水塩) 174.5 gおよび硝酸亜鉛(6水塩) 1
33−9gを含む水溶液1.51を調製するとともに、
炭酸ナトリウム(無水塩) 2[i5 gを含む水溶液
1.52を21製し、それぞれの水溶液を80℃に加温
した。
(Comparative Example 1) Copper nitrate (trihydrate) 108.7 g, nickel nitrate (6
174.5 g and zinc nitrate (hexahydrate) 1
Prepare 1.51 of an aqueous solution containing 33-9 g,
21 aqueous solutions containing 2[i5 g] of sodium carbonate (anhydrous salt) were prepared, and each aqueous solution was heated to 80°C.

次いで、これらの水溶液を素早く混合し、沈殿を完全に
終了させた後、熟成させた。
Next, these aqueous solutions were quickly mixed to complete precipitation, and then aged.

その後、濾過および水洗を行なって沈殿物202gを得
た。
Thereafter, filtration and water washing were performed to obtain 202 g of precipitate.

得られた沈殿物を120℃の温度下に約12時間乾燥し
た後、450℃の温度下に2時間焼成して生成物135
gを得た。
The obtained precipitate was dried at 120°C for about 12 hours and then calcined at 450°C for 2 hours to obtain product 135.
I got g.

これに、グラフアイ)  2.7gを加え、打錠成形し
て触媒前駆体を得た。
To this, 2.7 g of Graphai) was added and tablet-molded to obtain a catalyst precursor.

ここで、得られた触媒前駆体の組成は、原子比テcu:
Xi:Zn=3 : 4 : 3であった。
Here, the composition of the obtained catalyst precursor is as follows:
Xi:Zn=3:4:3.

続いて、この触媒前駆体10m文を、石英ガラス製1、
:管に充填するとともに、還元ガスとして水素:窒素=
1:9(モル比)のガスをガス空間速度(GHSV) 
1000hr ’ テ導入し、徐々ニ昇温し−1: 4
00℃の温度下に5時間量元を行なってこの発明に係る
触媒を調製した。
Next, 10 m of this catalyst precursor was placed in a quartz glass plate.
: Fill the tube and use hydrogen as a reducing gas: Nitrogen =
Gas hourly space velocity (GHSV) of 1:9 (molar ratio) gas
1,000hr' was introduced, and the temperature was gradually increased to -1:4.
A catalyst according to the present invention was prepared by carrying out a quantitative test at a temperature of 00°C for 5 hours.

次に、この反応管内に、メタノール(試薬特級)を液空
間速度(LHSV)6hr−1で導入して、各反応温度
におけるメタノール転化率および生成物分布を測定する
ことにより触媒性f七を評価した。
Next, methanol (special grade reagent) was introduced into this reaction tube at a liquid hourly space velocity (LHSV) of 6 hr-1, and the catalytic property f7 was evaluated by measuring the methanol conversion rate and product distribution at each reaction temperature. did.

結果を第1表に示す。The results are shown in Table 1.

(以下、余白) 第1表から明らかなように、この比較例においては、メ
タノールの転化率が低く、さらに副生物として、前記実
施例1で確認した二酸化炭素およびメタンのほかに、ジ
メチルエーテルおよびギ酸メチルが確認された。
(Hereinafter, blank space) As is clear from Table 1, in this comparative example, the conversion rate of methanol was low, and in addition to the carbon dioxide and methane confirmed in Example 1, dimethyl ether and formic acid were produced as by-products. Methyl was confirmed.

特許出願人  出光興産株式会社 代 理 人  弁理士 福村直樹 手続補正書ω発) 昭和62年6月30日Patent applicant: Idemitsu Kosan Co., Ltd. Representative Patent Attorney Naoki Fukumura Procedural amendment written by ω) June 30, 1986

Claims (1)

【特許請求の範囲】[Claims] (1)銅−ニッケル−亜鉛合金をアルカリ溶液で展開し
た銅とニッケルと亜鉛とからなるラネー型触媒を含有す
ることを特徴とするメタノール改質用触媒。
(1) A methanol reforming catalyst characterized by containing a Raney type catalyst made of copper, nickel, and zinc prepared by developing a copper-nickel-zinc alloy with an alkaline solution.
JP9227987A 1987-04-14 1987-04-14 Methanol reforming catalyst Pending JPS63256136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9227987A JPS63256136A (en) 1987-04-14 1987-04-14 Methanol reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9227987A JPS63256136A (en) 1987-04-14 1987-04-14 Methanol reforming catalyst

Publications (1)

Publication Number Publication Date
JPS63256136A true JPS63256136A (en) 1988-10-24

Family

ID=14049963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9227987A Pending JPS63256136A (en) 1987-04-14 1987-04-14 Methanol reforming catalyst

Country Status (1)

Country Link
JP (1) JPS63256136A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349793C (en) * 2002-10-18 2007-11-21 孟山都技术公司 Use of metal supported copper catalysts for reforming alcohols
US7682724B2 (en) 2002-10-18 2010-03-23 Monsanto Technology Llc Use of metal supported copper catalysts for reforming alcohols
WO2010032508A1 (en) * 2008-09-22 2010-03-25 独立行政法人物質・材料研究機構 Porous object of raney metal, process for producing the same, and catalyst
US7770545B2 (en) 2006-06-13 2010-08-10 Monsanto Technology Llc Reformed alcohol power systems
US8298985B2 (en) * 2000-04-11 2012-10-30 Monsanto Technology Llc Catalyst for dehydrogenating primary alcohols
JP2020004527A (en) * 2018-06-26 2020-01-09 株式会社グラヴィトン Solid polymer electrolyte fuel cell and electrode manufacturing method
JP2020013722A (en) * 2018-07-19 2020-01-23 株式会社グラヴィトン Solid polymer fuel cell and electrode manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298985B2 (en) * 2000-04-11 2012-10-30 Monsanto Technology Llc Catalyst for dehydrogenating primary alcohols
CN100349793C (en) * 2002-10-18 2007-11-21 孟山都技术公司 Use of metal supported copper catalysts for reforming alcohols
US7682724B2 (en) 2002-10-18 2010-03-23 Monsanto Technology Llc Use of metal supported copper catalysts for reforming alcohols
US7770545B2 (en) 2006-06-13 2010-08-10 Monsanto Technology Llc Reformed alcohol power systems
US8100093B2 (en) 2006-06-13 2012-01-24 Monsanto Technology Llc Reformed alcohol power systems
WO2010032508A1 (en) * 2008-09-22 2010-03-25 独立行政法人物質・材料研究機構 Porous object of raney metal, process for producing the same, and catalyst
JP2020004527A (en) * 2018-06-26 2020-01-09 株式会社グラヴィトン Solid polymer electrolyte fuel cell and electrode manufacturing method
JP2020013722A (en) * 2018-07-19 2020-01-23 株式会社グラヴィトン Solid polymer fuel cell and electrode manufacturing method

Similar Documents

Publication Publication Date Title
NO124160B (en)
JPH0336571B2 (en)
US2767202A (en) Catalytic hydrogenation of carbon monoxides
JPS61501827A (en) Catalyst for methanol conversion and method of using the same
JPS63256136A (en) Methanol reforming catalyst
JP2000104078A (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide
JP3632071B2 (en) Carbon monoxide hydrogenation using sulfide catalyst
JPS61502948A (en) Production of synthesis gas conversion catalyst and its use
CN104230641A (en) Production method of isopropyl benzene
JPH0977501A (en) Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials
JPS621783A (en) Production of hydrocarbon
CN111036284A (en) Catalyst, preparation method thereof and method for preparing low-carbon olefin from synthesis gas
JPH0576341B2 (en)
US4369131A (en) Enhanced catalyst stability for cyclic co methanation operations
JPH0311813B2 (en)
JPS6235814B2 (en)
JPH0425064B2 (en)
JP2634247B2 (en) Preparation method of methanol steam reforming catalyst
JPS6236001A (en) Reforming method for methanol
JPS6096504A (en) Steam reforming of methanol
JPH01224046A (en) Catalyst for reforming methanol
JPH0450060B2 (en)
JPS61232201A (en) Method for decomposing methanol
JPS6246482B2 (en)
JPH05261288A (en) Catalyst for reforming methanol