JPS63254714A - Manufacture of laminated capacitor element - Google Patents

Manufacture of laminated capacitor element

Info

Publication number
JPS63254714A
JPS63254714A JP8940387A JP8940387A JPS63254714A JP S63254714 A JPS63254714 A JP S63254714A JP 8940387 A JP8940387 A JP 8940387A JP 8940387 A JP8940387 A JP 8940387A JP S63254714 A JPS63254714 A JP S63254714A
Authority
JP
Japan
Prior art keywords
logpo
temperature
dielectric
capacitor element
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8940387A
Other languages
Japanese (ja)
Other versions
JPH0734417B2 (en
Inventor
横谷 洋一郎
若宮 博司
洋 丹羽
純一 加藤
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8940387A priority Critical patent/JPH0734417B2/en
Publication of JPS63254714A publication Critical patent/JPS63254714A/en
Publication of JPH0734417B2 publication Critical patent/JPH0734417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は積層コンデンサ素子の製造方法に関し、特に鉛
ペロブスカイト酸化物を誘電体に用い鋼または銅を主成
分とする合金を内部電極とする積層コンデンサ素子の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a multilayer capacitor element, and in particular to a multilayer capacitor element using lead perovskite oxide as a dielectric material and steel or copper-based alloy as an internal electrode. Relating to a manufacturing method.

従来の技術 近年セラミックコンデンサは素子の小型化、大容量化へ
の要求から積層型セラミックコンデンサが急速に普及し
つつある。また回路の高周波化により従来電界コンデン
サが用いられていた領域に積層型セラミックコンデンサ
素子を用いる必要が発生している。積層型セラミックコ
ンデンサは内部電極とセラミックを一体焼成する工程に
よって通常製造される。従来より高誘電率系のセラミッ
クコンデンサ材料にはチタン酸バリウム系の材料が用い
られてきたが、焼成温度が1300℃程度と高いため、
内部電極材料としてはPi、Pdなとの高価な金属を用
いる必要があった。このため安価な卑金属を内部電極に
用いようとする試みが成されている。
BACKGROUND OF THE INVENTION In recent years, multilayer ceramic capacitors have been rapidly becoming popular due to the demand for smaller ceramic capacitor elements and larger capacitance. Furthermore, as the frequency of circuits increases, it has become necessary to use multilayer ceramic capacitor elements in areas where electrolytic capacitors were conventionally used. Multilayer ceramic capacitors are typically manufactured by a process of integrally firing internal electrodes and ceramics. Barium titanate-based materials have traditionally been used as high-permittivity ceramic capacitor materials, but because the firing temperature is as high as 1300°C,
It was necessary to use expensive metals such as Pi and Pd as internal electrode materials. For this reason, attempts have been made to use inexpensive base metals for the internal electrodes.

これに対し発明者らは鉛ペロブスカイト酸化物を誘電体
に用い銅酸化物によって電極パターンを構成し、焼成温
度より低い温度で電極を金属化した後焼成する積層コン
デンサ素子の製造方法を提案してきた。
In response, the inventors have proposed a method for manufacturing a multilayer capacitor element in which lead perovskite oxide is used as the dielectric material, the electrode pattern is composed of copper oxide, the electrodes are metallized at a temperature lower than the firing temperature, and then fired. .

また、金属鋼ペーストより電極パターンを形成し、でき
るだけ金属鋼が酸化しないような雰囲気でパーツアウト
した後焼成する製造方法については特開昭61−672
14号公報に記載の方法などが知られている。
In addition, Japanese Patent Laid-Open No. 61-672 describes a manufacturing method in which an electrode pattern is formed from a metal steel paste, and the parts are removed and fired in an atmosphere that prevents oxidation of the metal steel as much as possible.
The method described in Japanese Patent No. 14 is known.

さらに発明者らは、Pb (Mgx/3Nbg/s) 
03゜Pb (NiI/5Nbz/s ) Osを主成
分とした誘電体磁器を用い鋼を内部電極とした積層コン
デンサ素子の焼成時の雰囲気酸素分圧条件について提案
して方法においては、内部電極の出発原料に金属粉末を
用いた場合、誘電体グリーンシート、内部電極ペースト
のバインダ成分のパーツアウト時に内部電極の酸化が発
生しやすい。このためこれらのバインダにはアクリル等
の不活性ガス雰囲気中で分解蒸発飛散する樹脂をもちい
る。しかしこれらのバインダはポリヴイニルブチラール
樹脂等の通常空気中でパーツアウトして用いる樹脂に(
らべ、誘電体グリーンシートの強度が弱(積層工法上の
問題点となっていた。
Furthermore, the inventors discovered that Pb (Mgx/3Nbg/s)
03°Pb (NiI/5Nbz/s) We proposed atmospheric oxygen partial pressure conditions during firing of a multilayer capacitor element using dielectric porcelain mainly composed of Os and steel as internal electrodes. When metal powder is used as the starting material, oxidation of the internal electrodes is likely to occur when the binder component of the dielectric green sheet and internal electrode paste is removed. For this reason, these binders use resins such as acrylic which decompose, evaporate and scatter in an inert gas atmosphere. However, these binders are not compatible with resins such as polyvinyl butyral resin, which are normally used as parts in air.
However, the strength of the dielectric green sheet was weak (a problem with the lamination method).

また内部電極の酸化が発生しないような低酸素分圧雰囲
気下でパーツアウトを実施した場合バインダ成分のカー
ボナイズ現象が発生しやす(、焼成時に誘電体が残留し
ているカーボンにより還元され素子の絶縁抵抗の低下、
焼結密度の低下が発生しやすい問題点を有していた。
In addition, if parts are removed in a low oxygen partial pressure atmosphere where internal electrode oxidation does not occur, carbonization of the binder component is likely to occur (during firing, the dielectric is reduced by the remaining carbon, resulting in insulation of the element). decrease in resistance,
This had the problem that the sintered density was likely to decrease.

また内部電極の出発原料に用いるためには、粒径の小さ
い金属粉末が必要で、製造時の粉砕に要するコスト、お
よび金属粉末の防錆処理に要するコストなどのため地金
では安価な銅金属の利点を充分に生かせない問題点があ
った。
In addition, in order to use it as a starting material for internal electrodes, metal powder with a small particle size is required, and due to the costs required for pulverization during manufacturing and the cost required for rust prevention treatment of metal powder, copper metal, which is inexpensive as raw metal, is required. There was a problem in that the advantages could not be fully utilized.

これに対し、銅酸化物で電極パターンを構成し積層後夜
気中でバインダーをパーツアウトし焼成温度よりも低い
温度で電極を金属化した後焼成する工法では上記の問題
点を解決しているが、すでに発明者らによって開示され
た実施例における焼成方法では焼成の課程で雰囲気酸素
分圧を1×10−8に保持しながら焼成する工法をとっ
ており、雰囲気制御上の難点を有しており、焼成炉に投
入する試料量による特性の変化、焼成時の試料をいれる
サヤ中の試料の配置による特性の変動等の難点を有して
いた。
On the other hand, the above-mentioned problem is solved by a method in which the electrode pattern is made of copper oxide, the binder is removed in the night air after lamination, the electrode is metallized at a temperature lower than the firing temperature, and then fired. However, the firing method in the embodiments already disclosed by the inventors involves firing while maintaining the atmospheric oxygen partial pressure at 1 x 10-8 during the firing process, which has the disadvantage of controlling the atmosphere. However, this method has disadvantages such as variations in properties depending on the amount of sample put into the firing furnace and variations in properties depending on the placement of the sample in the pod during firing.

問題点を解決するための手段 銅内部電極の出発原料にCu 20 + Cu O*そ
れらの混合物、もしくは650℃以下の空気中で分解し
銅酸化物となる銅化合物のいずれかをを主成分とする原
料を用い、内部電極パターンを誘電体グリーンシートに
印刷し積層したのち、空気中でバインダ成分のパーツア
ウトを行い、その後焼成温度より低い温度で内部電極を
還元して金属化しその後焼成する積層コンデンサの製造
方法において、焼成時の昇温時、最高温度付近での保持
時の雰囲気酸素分圧Po2をl og (Po2)(P
o2)(Po2)(Po2は気圧)で表したとき、その
温度変化が650℃から1080℃の範囲で、650℃
ニー8.60≧IogPo 2≧−16,25750℃
ニー7.56≧logPo 2≧−13,60850℃
F−6.82≧logPo 2≧−11,30950℃
ニー6.20≧logPo 2≧−9,451050℃
ニー5.65≧logPo 2≧−7,851080℃
ニー5.35≧logPo z≧−7,40の条件を満
たすよう制御しながら処理を行う。
Means to solve the problem The starting material for the copper internal electrode is either a mixture of Cu 20 + Cu O* or a copper compound that decomposes in air at 650°C or below to become copper oxide. After printing internal electrode patterns on dielectric green sheets and laminating them using raw materials, the binder component is removed in the air, the internal electrodes are reduced to metallization at a temperature lower than the firing temperature, and then fired. In the manufacturing method of capacitors, the atmospheric oxygen partial pressure Po2 when raising the temperature during firing and holding near the maximum temperature is log (Po2) (P
o2) (Po2) (Po2 is atmospheric pressure), if the temperature change is in the range of 650℃ to 1080℃, 650℃
Knee 8.60≧IogPo 2≧-16,25750℃
Knee 7.56≧logPo 2≧-13,60850℃
F-6.82≧logPo2≧-11,30950℃
Knee 6.20≧logPo 2≧-9,451050℃
Knee 5.65≧logPo 2≧-7,851080℃
Processing is performed while controlling to satisfy the condition of knee 5.35≧logPoz≧−7,40.

作用 上記の様にして製造した積層コンデンサ素子は、焼成時
に電極が酸化せず、かつ誘電体が還元しないので、絶縁
抵抗値が大きく、高周波の誘電損失の小さい積層コンデ
ンサ素子が得られ、また銅金属粉末より安価な鋼酸化物
粉末を内部電極の出発原料に利用できる。
Function In the multilayer capacitor element manufactured as described above, the electrodes are not oxidized and the dielectric material is not reduced during firing, so a multilayer capacitor element with high insulation resistance and low dielectric loss at high frequencies can be obtained. Steel oxide powder, which is cheaper than metal powder, can be used as a starting material for internal electrodes.

実施例 本発明の積層コンデンサ素子は、誘電体に鉛ペロブスカ
イト系酸化物を用い、鋼または鋼を主成分とする合金を
内部電極とするため、焼成時に電極が酸化せず、かつ誘
電体が還元しないことが求められる。と(に本発明の積
層コンデンサ素子の製造方法においては、一旦電極がパ
ーツアウトを経たのち銅酸化物となり、これを焼成温度
より低い温度で還元して金属化してから焼成するため、
電極の鋼金属は焼成前には微細な粉末で表面活性が高く
特に焼成時の昇温時や最高温度付近での保持時に酸化し
やすい。このため、この課程では雰囲気酸素分圧は銅の
平衡酸素分圧をあまり大きく越える酸素過剰雰囲気では
いけない。いっぽう本発明で用いる鉛ペロブスカイト系
誘電体は、その構成成分により若干の相違はあるが、高
温時においである酸素分圧を境にそれ以下の酸素分圧で
は、誘電体の還元が始まり電気伝導度が増大する。第3
図に本発明で用いる典型的な誘電体組成物である、 (Pb  +−o+o  Ca  O8O’30)(M
g+/5Nb2/3)O,フ0Tie−25(NiI/
zW +7z)OO503−025の高温下で雰囲気酸
素分圧が変化した際の電気伝導度の変化を示す。第3図
より明らかなように、誘電体磁器の還元が始まる酸素分
圧は低温になるほど低酸素分圧側に変化している。すな
わち本発明の積層コンデンサ素子を焼成するには、この
温度による酸素分圧変化より高酸素分圧側で焼成すれば
、素子がより高抵抗となる。勿論これらの焼成雰囲気の
制御範囲は室温付近より継続するのが望ま−しいが特に
、650℃以上の温度で、電極の酸化、誘電体の還元の
反応速度が大きくなるためこの温度以上での制御が素子
の特性を制御するうえで重要となる。
Example: The multilayer capacitor element of the present invention uses lead perovskite oxide as the dielectric material and steel or steel-based alloy as the internal electrode, so that the electrodes are not oxidized during firing and the dielectric material is reduced. required not to do so. (In the method for manufacturing a multilayer capacitor element of the present invention, once the electrode has gone through part-out, it becomes a copper oxide, which is reduced to metallization at a temperature lower than the firing temperature, and then fired.
The steel metal of the electrode is a fine powder with high surface activity before firing, and is particularly susceptible to oxidation when the temperature is raised during firing or when it is held near the maximum temperature. For this reason, in this process, the oxygen partial pressure of the atmosphere must not exceed the equilibrium oxygen partial pressure of copper by too much. On the other hand, the lead perovskite dielectric used in the present invention differs slightly depending on its constituent components, but at high temperatures, the oxygen partial pressure reaches a certain level, and at lower oxygen partial pressures, the dielectric begins to reduce and its electrical conductivity decreases. increases. Third
The figure shows a typical dielectric composition used in the present invention, (Pb+-o+oCaO8O'30)(M
g+/5Nb2/3)O, F0Tie-25(NiI/
zW +7z) It shows the change in electrical conductivity when the atmospheric oxygen partial pressure changes under high temperature of OO503-025. As is clear from FIG. 3, the oxygen partial pressure at which reduction of the dielectric ceramic begins changes to a lower oxygen partial pressure side as the temperature becomes lower. That is, in order to fire the multilayer capacitor element of the present invention, if the element is fired at a higher oxygen partial pressure than the change in oxygen partial pressure due to temperature, the element will have a higher resistance. Of course, it is desirable to continue controlling the firing atmosphere from around room temperature, but in particular, the reaction rate of electrode oxidation and dielectric reduction increases at temperatures above 650°C, so control above this temperature is particularly important. is important in controlling the characteristics of the device.

実施例1 誘電体として次に示す組成式で表される材料を用いた。Example 1 A material represented by the following compositional formula was used as the dielectric.

(P b+ 、oo Cao、ogs)(Mgs/s 
Nbg/s)o、7o T io、2s(Ni+/gW
 1/2)0.050!、O+!6誘電体粉末は通常の
セラミック製造方法に従い製造した。仮焼条件は800
℃2時間とした。粉砕した仮焼粉末は仮焼粉末に対し5
 w t ’Xのポリビニルブチラール樹脂、50wt
*の溶剤と共にボールミルで混合しドクターブレードを
用い厚さ35μmにシート化した。内部電極としては平
均粒径0、8smのCu20(CuzOとして純度99
%)を出発原料に用いCu2Oに対し0.5wt*のエ
チルセルロース、25wt$の溶剤とともに三本ロール
で混練し電極ペーストとしスクリーン印刷法を用い誘電
体グリーンシート上に内部電極パターンを印刷した。こ
れを電極が左右交互に引き出されるように積層し切断し
た。
(P b+ , oo Cao, ogs) (Mgs/s
Nbg/s) o, 7o T io, 2s(Ni+/gW
1/2) 0.050! , O+! 6 dielectric powder was manufactured according to a conventional ceramic manufacturing method. Calcination conditions are 800
℃ for 2 hours. The pulverized calcined powder is 5% compared to the calcined powder.
wt'X polyvinyl butyral resin, 50wt
The mixture was mixed with the solvent marked * in a ball mill and formed into a sheet with a thickness of 35 μm using a doctor blade. As the internal electrode, Cu20 (purity 99 as CuzO) with an average particle size of 0.8 sm was used.
%) was used as a starting material, and Cu2O was kneaded with 0.5 wt* of ethyl cellulose and 25 wt of solvent using a triple roll to form an electrode paste, and an internal electrode pattern was printed on a dielectric green sheet using a screen printing method. This was laminated so that the electrodes were drawn out alternately on the left and right sides, and then cut.

電極が交互に引き出された端面に上述の電極ペーストを
塗布し外部電極とした。
The above-mentioned electrode paste was applied to the end faces from which the electrodes were alternately drawn out to form external electrodes.

このようにして作成した積層体は磁器ボート内に粗粒マ
グネシアを敷きその上に載せ空気中で450℃でバイン
ダーをパーツアウトした。
The thus-prepared laminate was placed on a porcelain boat with coarse-grained magnesia spread thereon, and the binder was removed in air at 450°C.

第4図に示すように、パーツアウトした積層体試料14
を載せた磁器ボート12を管状炉中の内径50mmの炉
心管11の内部に入れ、20℃、3−を零アンモニア水
15をバブリングした窒素ガスを毎分1リットル流し4
50℃で8時間保持し、内部電極を還元した。
As shown in FIG. 4, the part-out laminate sample 14
The porcelain boat 12 carrying the porcelain boat 12 was placed inside the core tube 11 with an inner diameter of 50 mm in a tube furnace, and 1 liter of nitrogen gas bubbled with zero ammonia water 15 was flowed per minute at 20°C.
The internal electrode was reduced by holding at 50°C for 8 hours.

第5図に焼成時の積層体を入れるマグネシア磁器容器の
断面を、第6図に焼成炉炉心管の断面とガス配管を示す
。マグネシア磁器容器21内には上述の仮焼粉22を体
積の1/3程度敷きつめた上に粗粒マグネシア粉23を
約1−敷き、そのうえにパーツアウトした積層体25を
置いた。マグネシア磁器の蓋24をし、管状電気炉の炉
心管26内に挿入し第1表実験条件A−Gの各種成分比
のN 2− H2−H20−02混合ガスを流しながら
1050℃まで200℃/ h rで昇温し2時間保持
後400℃/hrで降温した。雰囲気ガス中の水蒸気量
は絶対湿度センサー28で測定し、蒸留水をバブリング
するガス量の調節により、制御した。水素ガスは1%H
2−N2ガスとして、酸素ガスは、キャリアーガスとし
て流す窒素ガス中に含まれる酸素分を考慮して、さらに
必要な場合は1%02−N2ガスとして加えた。各種ガ
スの混合比とそのガスを流した際の1080℃までの酸
素分圧の温度変化を第1表に、本発明請求の範囲第1項
記載の酸素分圧範囲を第1図に示す。なお、N2ガスに
ついては、1.0X10−6(a tm)の酸素を不純
物として含んでいるものを用いた。
FIG. 5 shows a cross section of a magnesia porcelain container into which a laminate is placed during firing, and FIG. 6 shows a cross section of a firing furnace core tube and gas piping. In the magnesia porcelain container 21, the above-mentioned calcined powder 22 was spread about 1/3 of its volume, and then about 1 - of coarse magnesia powder 23 was spread, and the laminate 25, which had been cut out, was placed thereon. The lid 24 of magnesia porcelain was put on and inserted into the core tube 26 of a tubular electric furnace, and heated at 200°C to 1050°C while flowing N2-H2-H20-02 mixed gas with various component ratios as shown in Table 1 Experimental Conditions A-G. The temperature was raised at a rate of 400° C./hr, held for 2 hours, and then lowered at a rate of 400° C./hr. The amount of water vapor in the atmospheric gas was measured with an absolute humidity sensor 28, and was controlled by adjusting the amount of gas bubbled through the distilled water. Hydrogen gas is 1%H
As the 2-N2 gas, oxygen gas was added as a 1% 02-N2 gas if necessary, taking into consideration the oxygen content contained in the nitrogen gas flowing as a carrier gas. Table 1 shows the mixing ratio of various gases and temperature changes in oxygen partial pressure up to 1080° C. when the gases are flowed, and FIG. 1 shows the oxygen partial pressure range described in claim 1 of the present invention. Note that the N2 gas used contained 1.0 x 10-6 (atm) of oxygen as an impurity.

また炉心管内のPo2は挿入した安定化ジルコニア酸素
センサー27の大気側と炉内部側に構成した白金電極か
ら引き出した電極間の電圧E(V)より次式より求めた
Further, Po2 in the reactor core tube was determined from the following equation based on the voltage E (V) between the electrodes drawn from the platinum electrodes configured on the atmospheric side of the inserted stabilized zirconia oxygen sensor 27 and the inner side of the reactor.

Po 2 =0.2・exp(4F E / RT )
ここでFはファラデ一定数96489クーロン、Rはガ
ス定数8.3144J/deg−mol、 Tは絶対温
度である。
Po 2 =0.2・exp(4FE/RT)
Here, F is the Faraday constant of 96489 coulombs, R is the gas constant of 8.3144 J/deg-mol, and T is the absolute temperature.

(以下余白) 積層コンデンサ素子の外形は2.8X1.4X0.9+
1111で有効電極面積は一層当たり1.3125wa
2(1,75xO,75wa ) 、電極層の厚みは2
.0μ鴎、誘電体層は一層当たり25.0μ曽で有効層
は30層、上下に無効層を2層ずつ設けた。積層コンデ
ンサ素子は容量、tanδを1vの交流電圧を印加し1
00Hz〜2 MHzの周波数で測定した。また抵抗率
は50v/Wllの電圧を印加後1分値から求めた。測
定は各条件50試料について行い、容量(20℃)が1
00nF以下、抵抗値がl×10−9Ω、以下、もしく
は抵抗容量積が50OFΩ以下を不良とし、良品のみの
特性を平均した。
(Left below) The outer dimensions of the multilayer capacitor element are 2.8X1.4X0.9+
1111, the effective electrode area is 1.3125 wa per layer.
2 (1,75xO,75wa), the thickness of the electrode layer is 2
.. The dielectric layer had a thickness of 0μ, 25.0μ per layer, 30 effective layers, and 2 invalid layers above and below. The multilayer capacitor element has a capacitance, tan δ, of 1 V by applying an AC voltage of 1 V.
Measurements were made at frequencies from 00 Hz to 2 MHz. Further, the resistivity was determined from the value 1 minute after applying a voltage of 50 V/Wll. Measurements were carried out on 50 samples under each condition, with a capacity (20°C) of 1
00 nF or less, a resistance value of 1×10 −9 Ω or less, or a resistance-capacitance product of 50 OF Ω or less were considered defective, and the characteristics of only non-defective products were averaged.

第2表に容量、tanδ、抵抗値不良数を示した。Table 2 shows the capacitance, tan δ, and number of defective resistance values.

(以下余白) 第1表、第2表より明らかなように、焼成時の昇温時、
最高温度付近での保持時の雰囲気酸素分圧Po2(気圧
)が特許請求の範囲内で焼成した素子は、いずれも高い
抵抗値を有しており、容量も設計値程度まで達しており
、tanδも小さい値を示している。いっぽうPo2が
すべての温度範囲で限定範囲より大きい実験条件A、お
よび低温時に限定範囲より大きくなる実験条件Gでは、
電極の酸化が発生し、容量の低下、または抵抗値の低下
が発生し、不良数が増大する。またPo2がすべての温
度範囲で限定範囲より小さい実験条件Fでは、誘電体の
還元が発生し誘電体中より金属鉛が析出し、これが電極
金属と固溶して融点を下げるため、焼成時に電極の熔融
が発生し電極が板状に形成されず、局在化する現象が現
れ、容量の大幅な低下が発生し不良数が増大する なお、本実施例では焼成工程中冷却時も同じガスを流し
続けたので、降温時の酸素分圧変化も昇温時と同様の変
化を示す。
(Left below) As is clear from Tables 1 and 2, when the temperature is raised during firing,
All elements fired with atmospheric oxygen partial pressure Po2 (atmospheric pressure) within the claimed range when held near the maximum temperature have a high resistance value, the capacity has reached the design value, and the tan δ also shows a small value. On the other hand, in experimental condition A where Po2 is larger than the limited range in all temperature ranges and experimental condition G where Po2 is larger than the limited range at low temperatures,
Oxidation of the electrode occurs, resulting in a decrease in capacitance or resistance, and an increase in the number of defects. In addition, under experimental condition F where Po2 is smaller than the limited range in all temperature ranges, reduction of the dielectric occurs and metallic lead precipitates from within the dielectric, which dissolves in solid solution with the electrode metal and lowers the melting point. As a result, the electrode is not formed into a plate shape and is localized, resulting in a significant decrease in capacity and an increase in the number of defects.In this example, the same gas was used during cooling during the firing process. Since the flow continued, the change in oxygen partial pressure when the temperature was lowered also showed the same change as when the temperature was raised.

実施例2 誘電体材料、およびそのシート化については実施例1と
同様の方法を用いた。
Example 2 The same method as in Example 1 was used for the dielectric material and its sheet formation.

内部電極としては平均粒径1.2μmのCu0(CuO
として純度97%)を出発原料に用い、これに誘電体の
仮焼粉を10wt2;加え混合したものに0.5wt零
のエチルセルロース、25wt零の溶剤とともに三本ロ
ールで混練し電極ペーストとしスクリーン印刷法を用い
誘電体グリーンシート上に内部電極パターンを印刷した
。これを電極が左右交互に引き出されるように積層し切
断した。
The internal electrode was made of Cu0 (CuO) with an average particle size of 1.2 μm.
(purity 97%) was used as the starting material, 10wt2 of calcined dielectric powder was added to this, and the mixture was kneaded with three rolls with 0.5wt zero ethyl cellulose and 25wt zero solvent to form an electrode paste and screen printing. An internal electrode pattern was printed on a dielectric green sheet using the method. This was laminated so that the electrodes were drawn out alternately on the left and right sides, and then cut.

電極が交互に引き出された端面に上述の電極ペーストを
塗布し外部電極とした。
The above-mentioned electrode paste was applied to the end faces from which the electrodes were alternately drawn out to form external electrodes.

このようにして作成した積層体は磁器ボート内に粗粒ジ
ルコニアを敷きその上に載せ空気中で500℃でバイン
ダーをパーツアウトした。
The thus-prepared laminate was placed on a porcelain boat with coarse zirconia spread thereon, and the binder was removed in air at 500°C.

パーツアウトした積層体を載せた磁器ボートを管状炉中
の内径50+emの炉心管内部に入れ、1.5体積%の
水蒸気ガス、0.05体積%の水素ガスを含む窒素ガス
(不純物として酸素を0゜001体積%含む)を毎分1
リットル流し600℃で4時間保持した。
The porcelain boat carrying the parts-out laminate was placed inside a core tube with an inner diameter of 50+em in a tube furnace, and nitrogen gas containing 1.5% by volume of steam gas and 0.05% by volume of hydrogen gas (with oxygen as an impurity) 0°001% by volume) per minute
A liter flow was maintained at 600° C. for 4 hours.

焼成時の容器、炉心管の内部の構成は実施例1同様の方
法をとった。焼成温度は1080℃とし、焼成時に流す
雰囲気ガスは実施例1と同様のN2−H!−820−0
2混合ガスとし、昇温時、最高温度付近での保持時に流
すガスは実施例1の実験条件Cと同一の条件とし、冷却
開始時よりガスの混合条件を酸素センサーにより酸素分
圧を測定しながら調節し冷却した。第3表に各条件の酸
素分圧の温度変化を示す。第2図に各条件の酸素分圧の
温度変化と特許請求の範囲第2項で限定した酸素分圧範
囲を示す。
The internal structure of the container and furnace tube during firing was the same as in Example 1. The firing temperature was 1080°C, and the atmospheric gas flowed during firing was the same as in Example 1, N2-H! -820-0
The gas flowed during heating up and holding near the maximum temperature was the same as experimental condition C in Example 1, and from the start of cooling, the oxygen partial pressure was measured using an oxygen sensor under the gas mixing conditions. The mixture was adjusted and cooled. Table 3 shows temperature changes in oxygen partial pressure under each condition. FIG. 2 shows temperature changes in oxygen partial pressure under various conditions and the oxygen partial pressure range defined in claim 2.

(以下余白) 第3表 積層コンデンサ素子の外形は2.8x1.4xO,9閣
で有効電極面積は一層当たり1.3125園1’(1,
75xO,7S園)、電極層の厚みは2.0μm、誘電
体層は一層当たり25.0μ讃で有効層は30層、上下
に無効層を2pIJずつ設けた。積層コンデンサ素子は
容量、tanδをI■の交流電圧を印加し100Hz〜
2 MHzの周波数で測定した。また抵抗率は50V/
+n+++の電圧を印加後1分値から求めた。試料の測
定数、不良条件は実施例1と同様の条件とした。
(Left below) The outer dimensions of the third layer multilayer capacitor element are 2.8x1.4xO, 9 layers, and the effective electrode area is 1.3125mm 1' (1
75xO, 7S), the thickness of the electrode layer was 2.0 μm, the dielectric layer was 25.0 μm thick per layer, there were 30 effective layers, and 2 pIJ of invalid layers above and below. The multilayer capacitor element has a capacitance, tan δ, of 100 Hz ~ by applying an AC voltage of I■.
Measurements were made at a frequency of 2 MHz. Also, the resistivity is 50V/
The voltage of +n+++ was determined from the value 1 minute after application. The number of samples measured and the failure conditions were the same as in Example 1.

第4表に容量とその温度変化率、tanδ、抵抗値、不
良数を示した。
Table 4 shows the capacity, its temperature change rate, tan δ, resistance value, and number of defects.

(以下余白) 第4表より明らかなように、冷却時の酸素分圧変化条件
は昇温時の酸素分圧変化に比べ、高酸素分圧側の条件が
広がり、広い範囲で特性条件を満足する試料かえられた
。しかし実験条件Iより高酸素分圧条件である実験条件
Hでは銅が酸化し誘電体中に拡散するため、素子の抵抗
値が低下し、実験条件L(昇温時Eと同じ)より低酸素
分圧条件である実験条件M(昇温時Fと同じ)では素子
の還元による抵抗値低下が発生した。
(Left below) As is clear from Table 4, the conditions for oxygen partial pressure change during cooling are wider than those for oxygen partial pressure changes during temperature rise, and the characteristic conditions are satisfied over a wide range. The sample was changed. However, under experimental condition H, which is a higher oxygen partial pressure condition than experimental condition I, copper oxidizes and diffuses into the dielectric, resulting in a decrease in the resistance value of the element, and lower oxygen concentration than experimental condition L (same as E at elevated temperature). Under experimental condition M, which is a partial pressure condition (same as temperature increase F), a decrease in resistance value occurred due to reduction of the element.

実施例3 誘電体材料としては第5表に示す組成物を用いた。誘電
体の合成方法は通常のセラミック製造方法によった。そ
のシート化については実施例1と同様の方法を用いた。
Example 3 The compositions shown in Table 5 were used as dielectric materials. The dielectric was synthesized using a conventional ceramic manufacturing method. The same method as in Example 1 was used to form the sheet into a sheet.

内部電極としては実施例1に用いた平均粒径0.8μm
のCu 2090w t g 。
As for the internal electrode, the average particle size used in Example 1 was 0.8 μm.
Cu 2090wtg.

平均粒径1.5umのCu OH210wtgの混合物
を出発原料に用いこれに対し0.5wttのエチルセル
ロース、25wtgの溶剤とともに三本ロールで混練し
電極ペーストとしスクリーン印刷法を用い誘電体グリー
ンシート上に内部電極パターンを印刷した。これを電極
が左右交互に引き出されるように積層し切断した。
A mixture of 210 wtg of Cu OH with an average particle size of 1.5 um was used as a starting material, and the mixture was kneaded with 0.5 wtt of ethyl cellulose and 25 wtg of solvent using a triple roll to form an electrode paste, which was printed internally on a dielectric green sheet using a screen printing method. An electrode pattern was printed. This was laminated so that the electrodes were drawn out alternately on the left and right sides, and then cut.

電極が交互に引き出された端面に上述の電極ペーストを
塗布し外部電極とした。
The above-mentioned electrode paste was applied to the end faces from which the electrodes were alternately drawn out to form external electrodes.

このようにして作成した積層体は磁器ボート内に粗粒ジ
ルコニアを敷きその上に載せ空気中で500℃でバイン
ダーをパーツアウトした。
The thus-prepared laminate was placed on a porcelain boat with coarse zirconia spread thereon, and the binder was removed in air at 500°C.

パーツアウトした積層体を載せた磁器ボートを図1に示
す管状炉中の内径50IIlllの炉心管内部に入れ、
3 w t ’Xアンモニア水をバブリングした窒素ガ
スを毎分1リットル流し650℃で1時間保持した。
The porcelain boat carrying the part-out laminate was placed inside the tube furnace tube with an inner diameter of 50IIll in the tube furnace shown in Fig. 1.
Nitrogen gas bubbled with 3wt'X ammonia water was flowed at 1 liter per minute and maintained at 650°C for 1 hour.

これを実施例1の実験条件A−Gの各成分ガスを流して
同様の方法で焼成した。焼成温度は1050℃とした。
This was fired in the same manner as in Example 1 by flowing each component gas under experimental conditions A to G. The firing temperature was 1050°C.

積層コンデンサ素子の外形、有効電極面積、電極層の厚
み、誘電体層は一層当たり厚み、有効層数、等は実施例
1と同様とした。また特性測定条件も実施例1と同様と
した。試料の測定数、不良条件は実施例1と同様とした
が容量不良については試料組成の誘電率より計算した容
量の50%以下となるものとした。
The outer shape of the multilayer capacitor element, the effective electrode area, the thickness of the electrode layer, the thickness of each dielectric layer, the number of effective layers, etc. were the same as in Example 1. Further, the characteristics measurement conditions were also the same as in Example 1. The number of samples measured and the failure conditions were the same as in Example 1, but the capacity failure was 50% or less of the capacity calculated from the dielectric constant of the sample composition.

第6表に各組成各焼成条件での不良数を示した。Table 6 shows the number of defects for each composition and under each firing condition.

(以下余白) 第6表より明らかなように、誘電体が特許請求の範囲第
1項記載の鉛ペロブスカイトからなる組成物をもちいた
セラミック積層コンデンサはいずれの組成物を用いた場
合も、特許請求の範囲第一項記載の酸素分圧の温度変化
範囲で焼成した場合高い抵抗値を示し、請求の範囲より
高酸素分圧雰囲気で焼成した場合は電極の酸化により発
生した酸化鋼の誘電体中への拡散による素子抵抗値の減
少、および容量の低下が発生し、低酸素分圧雰囲気で焼
成した場合は、誘電体の還元により発生した金属鉛の電
極への固溶による電極の局在化の原因による容量の低下
、誘電体の還元による素子抵抗値の減少が現れる。
(Leaving space below) As is clear from Table 6, the ceramic multilayer capacitor whose dielectric uses the composition of lead perovskite described in claim 1 does not claim When fired in the temperature change range of oxygen partial pressure described in the first item, a high resistance value is exhibited, and when fired in an atmosphere with a higher oxygen partial pressure than the claimed range, oxidation occurs in the dielectric of the steel due to oxidation of the electrode. When fired in a low oxygen partial pressure atmosphere, the element resistance value decreases due to diffusion into the electrode, and the capacitance decreases.If fired in a low oxygen partial pressure atmosphere, the electrode becomes localized due to the solid solution of metallic lead generated by the reduction of the dielectric material into the electrode. There is a decrease in capacitance due to this cause, and a decrease in element resistance due to reduction of the dielectric.

発明の効果 本発明の積層コンデンサ素子の製造方法によると、鉛へ
ロブスカイトを誘電体に用い銅を内部電極とする積層コ
ンデンサ素子において、絶縁抵抗値が大きく、高周波の
誘電損失の小さい積層コンデンサ素子かえられ、かつま
た鋼金属粉末より安価な銅酸化物粉末を内部電極の出発
原料に利用でき電極コストを削減できる。
Effects of the Invention According to the method of manufacturing a multilayer capacitor element of the present invention, it is possible to replace a multilayer capacitor element with a large insulation resistance value and low dielectric loss at high frequencies in a multilayer capacitor element using lead helobskite as a dielectric and copper as an internal electrode. Furthermore, copper oxide powder, which is cheaper than steel metal powder, can be used as the starting material for the internal electrodes, reducing electrode costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の実施例における焼成時
の酸素分圧の温度変化を示すグラフ、第3図は、本発明
の一実施例における誘電体組成物の、高温度下で雰囲気
酸素分圧が変化した際の電気伝導度の変化を示すグラフ
、第4図は、本発明の一実施例における電極金属化処理
の際の炉心管内部の配置とガス配管の状態を示す断面図
、第5図は、焼成時の積層体を入れるマグネシア磁器容
器の断面図、第6図は、焼成時の炉心管内部の配置を示
す断面図、第7図は、本発明の他の実施例における電極
金属化処理の際の炉心管内部の配置とガス配管の状態を
示す断面図である。 11・・・・炉心管、12・・・・磁器ボート、13・
・・・粗粒マグネシア、14・・・・積層体試料、15
・・・・アンモニア水、21・・・・マグネシア磁器容
器、22・・・・仮焼粉、23・・・・粗粒マグネシア
粉、24・・・・マグネシア磁器蓋、25・・・・電極
を金属化処理した積層体、26・・・・炉心管、27・
・・・安定化ジルコニア酸素センサー、28・・・・絶
対湿度センサー。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 温度(’C) 第2図 温度(℃) 第3図 一1og  Po2(ate) 第4図 第5図 第6図 第7図
FIGS. 1 and 2 are graphs showing temperature changes in oxygen partial pressure during firing in an example of the present invention, and FIG. 3 is a graph showing changes in oxygen partial pressure under high temperature in an example of the present invention. A graph showing changes in electrical conductivity when atmospheric oxygen partial pressure changes, and FIG. 4 is a cross section showing the arrangement inside the furnace tube and the state of gas piping during electrode metallization treatment in one embodiment of the present invention. 5 is a cross-sectional view of a magnesia porcelain container containing a laminate during firing, FIG. 6 is a cross-sectional view showing the arrangement inside the furnace tube during firing, and FIG. 7 is another embodiment of the present invention. FIG. 3 is a cross-sectional view showing the arrangement inside the furnace tube and the state of gas piping during electrode metallization treatment in an example. 11... Furnace tube, 12... Porcelain boat, 13...
... Coarse grain magnesia, 14 ... Laminate sample, 15
... Ammonia water, 21 ... Magnesia porcelain container, 22 ... Calcined powder, 23 ... Coarse grain magnesia powder, 24 ... Magnesia porcelain lid, 25 ... Electrode 26. Furnace core tube, 27.
...Stabilized zirconia oxygen sensor, 28...Absolute humidity sensor. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Temperature ('C) Figure 2 Temperature (℃) Figure 3 -11og Po2 (ate) Figure 4 Figure 5 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)鉛ペロブスカイト系酸化物を誘電体に用い、導ま
たは銅を主成分とする合金を内部電極とする積層コンデ
ンサ素子を製造する際、銅内部電極の出発原料にCu_
2O、CuO、それらの混合物、もしくは650℃以下
の空気中で分解し銅酸化物となる銅化合物のいずれかを
を主成分とする原料を用い、内部電極パターンを誘電体
グリーンシートに印刷し積層したのち、空気中でバイン
ダ成分のパーツアウトを行い、その後焼成温度より低い
温度で内部電極を還元して金属化し、その後焼成する積
層コンデンサの製造方法において、焼成時の昇温時、最
高温度付近での保持時の雰囲気酸素分圧Po_2をlo
g(Po_2)(Po_2は気圧)で表したとき、その
温度変化が650℃から1080℃の範囲で、 650℃:−8.60≧logpo_2≧−16.25
750℃:−7.56≧logpo_2≧−13.60
850℃:−6.82≧logpo_2≧−11.30
950℃:−6.20≧logpo_2≧−9.451
050℃:−5.65≧logpo_2≧−7.851
080℃:−5.35≧logpo_2≧−7.40の
条件を満たすことを特徴とする、積層コンデンサ素子の
製造方法。
(1) When producing a multilayer capacitor element that uses lead perovskite oxide as a dielectric and conductive or copper-based alloy as an internal electrode, the starting material for the copper internal electrode is Cu_
An internal electrode pattern is printed on a dielectric green sheet and laminated using a raw material whose main component is 2O, CuO, a mixture thereof, or a copper compound that decomposes in air below 650°C to form copper oxide. In the manufacturing method for multilayer capacitors, in which the binder component is then removed in the air, the internal electrodes are reduced and metallized at a temperature lower than the firing temperature, and then fired, the temperature is near the maximum temperature when the temperature is raised during firing. The atmospheric oxygen partial pressure Po_2 when held at lo
When expressed in g(Po_2) (Po_2 is atmospheric pressure), when the temperature change is in the range of 650°C to 1080°C, 650°C: -8.60≧logpo_2≧-16.25
750℃: -7.56≧logpo_2≧-13.60
850℃: -6.82≧logpo_2≧-11.30
950℃: -6.20≧logpo_2≧-9.451
050℃: -5.65≧logpo_2≧-7.851
080°C: A method for manufacturing a multilayer capacitor element, characterized by satisfying the following condition: -5.35≧logpo_2≧-7.40.
(2)焼成時の降温時の雰囲気酸素分圧Po_2をlo
g(Po_2)(Po_2は気圧)で表したとき、その
温度変化が650℃から1080℃の範囲で、 650℃:−5.00≧logpo_2≧−16.25
750℃:−5.00≧logpo_2≧−13.60
850℃:−5.00≧logpo_2≧−11.30
950℃:−5.50≧logpo_2≧−9.451
050℃:−5.65≧logpo_2≧−7.851
080℃:−5.35≧logpo_2≧−7.40の
条件を満たすことを特徴とする特許請求の範囲第1項記
載の積層コンデンサ素子の製造方法。
(2) Atmospheric oxygen partial pressure Po_2 when lowering the temperature during firing is lo
When expressed in g(Po_2) (Po_2 is atmospheric pressure), when the temperature change is in the range of 650°C to 1080°C, 650°C: -5.00≧logpo_2≧-16.25
750℃: -5.00≧logpo_2≧-13.60
850℃: -5.00≧logpo_2≧-11.30
950℃: -5.50≧logpo_2≧-9.451
050℃: -5.65≧logpo_2≧-7.851
The method for manufacturing a multilayer capacitor element according to claim 1, characterized in that the following condition is satisfied: 080°C: -5.35≧logpo_2≧-7.40.
(3)誘電体が、Pb、Ca、Sr、Baからなる群A
から選ばれた成分Aと、Mg、Ni、Zn、Ti、Nb
、およびWからなる群Bより選ばれた成分Bの両者の成
分を含み、AはPbとそれ以外の成分の少なくとも一つ
を含み、Bは群Bの成分の少なくとも二つを含み、かつ
Aの成分のモル数の合計をa、Bの成分の合計をbとし
た時、a/b>1.00であるような組成物である鉛ペ
ロブスカイト系酸化物からなることを特徴とする特許請
求の範囲第1項記載の積層コンデンサ素子の製造方法。
(3) Group A in which the dielectric consists of Pb, Ca, Sr, and Ba
Component A selected from Mg, Ni, Zn, Ti, Nb
, and component B selected from group B consisting of W, A contains at least one of Pb and other components, B contains at least two of the components of group B, and A A patent claim characterized in that the lead perovskite oxide has a composition such that a/b>1.00, where a is the sum of the moles of the components B and b is the sum of the moles of the components B. A method for manufacturing a multilayer capacitor element according to item 1.
JP8940387A 1987-04-10 1987-04-10 Method for manufacturing multilayer capacitor element Expired - Lifetime JPH0734417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8940387A JPH0734417B2 (en) 1987-04-10 1987-04-10 Method for manufacturing multilayer capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8940387A JPH0734417B2 (en) 1987-04-10 1987-04-10 Method for manufacturing multilayer capacitor element

Publications (2)

Publication Number Publication Date
JPS63254714A true JPS63254714A (en) 1988-10-21
JPH0734417B2 JPH0734417B2 (en) 1995-04-12

Family

ID=13969673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8940387A Expired - Lifetime JPH0734417B2 (en) 1987-04-10 1987-04-10 Method for manufacturing multilayer capacitor element

Country Status (1)

Country Link
JP (1) JPH0734417B2 (en)

Also Published As

Publication number Publication date
JPH0734417B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
EP1800773B1 (en) Nickel powder, conductive paste, and multilayer electronic component using same
JPH11317322A (en) Laminated ceramic capacitor
JPH02303107A (en) Laminate capacitor element and manufacture thereof
KR100917080B1 (en) Copper Alloy Powder for Electroconductive Paste
JP3323801B2 (en) Porcelain capacitors
JPH0528891B2 (en)
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JP2736397B2 (en) Porcelain capacitor and method of manufacturing the same
JPS63254714A (en) Manufacture of laminated capacitor element
JP2761690B2 (en) Porcelain capacitor and method of manufacturing the same
JP2736396B2 (en) Porcelain capacitor and method of manufacturing the same
JP2831894B2 (en) Porcelain capacitor and method of manufacturing the same
JP2761689B2 (en) Porcelain capacitor and method of manufacturing the same
JP2825813B2 (en) Manufacturing method of multilayer ceramic body
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2757402B2 (en) Method for producing high-permittivity dielectric ceramic composition
JP2879867B2 (en) Porcelain capacitor and method of manufacturing the same
JP2825812B2 (en) Manufacturing method of multilayer ceramic body
JPH0646620B2 (en) Method for manufacturing multilayer capacitor element
JP3029502B2 (en) Porcelain capacitor and method of manufacturing the same
JPH07105306B2 (en) Method for manufacturing monolithic ceramic capacitor
JPH0515291B2 (en)
JP2938673B2 (en) Porcelain capacitor and method of manufacturing the same
JPH05283274A (en) Paste composition for copper-based conductor and manufacture of laminated ceramic element
JP2938671B2 (en) Porcelain capacitor and method of manufacturing the same