JPS63254703A - Manufacture of rare earth permanent magnet with excellent anti-oxidation - Google Patents

Manufacture of rare earth permanent magnet with excellent anti-oxidation

Info

Publication number
JPS63254703A
JPS63254703A JP62087917A JP8791787A JPS63254703A JP S63254703 A JPS63254703 A JP S63254703A JP 62087917 A JP62087917 A JP 62087917A JP 8791787 A JP8791787 A JP 8791787A JP S63254703 A JPS63254703 A JP S63254703A
Authority
JP
Japan
Prior art keywords
powder
rare earth
alloy powder
phase
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62087917A
Other languages
Japanese (ja)
Other versions
JP2700643B2 (en
Inventor
Tsutomu Otsuka
努 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP62087917A priority Critical patent/JP2700643B2/en
Priority to EP87113557A priority patent/EP0261579B1/en
Priority to DE8787113557T priority patent/DE3783413T2/en
Publication of JPS63254703A publication Critical patent/JPS63254703A/en
Priority to US07/336,207 priority patent/US4898625A/en
Priority to US07/438,724 priority patent/US5011552A/en
Application granted granted Critical
Publication of JP2700643B2 publication Critical patent/JP2700643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a permanent magnet by sintering a powder molding which contains alloy powder obtained by R2T14B phase crystalline alloy powder (R is rare earth elements including Y, T is transition metal) obtained by R-Fe-M or R-Fe-M-B (M is one or more types of Co, Ni, Cu, Pb and Sn) liquid- quenched alloy powder or strip (amorphous and fine crystal) in R2T14B phase crystalline alloy powder (R is rare earth elements including Y, T is transition metal). CONSTITUTION:When R2T14B alloy magnet (R is Rare earth elements, T is transition metal) which contains as main ingredients R, Fe and B is manufactured by a powder metallurgical method, a powder molding which contains 5-30vol.% of alloy powder obtained by R-Fe-M or R-Fe-M-B (M is one or more types of Co, Ni, Cu, Pb and Sn) liquid-quenched alloy powder or strip (amorphous and fine crystal) in R2T14B phase crystalline alloy powder is sintered. Thus, since the R-Fe-M or R-Fe-M-B powder improved in its corrosion resistance is used for the powder which becomes nuclei of the liquid phase at the time of sintering and main ingredient of liquid phase, R-Fe solid solution in the sinter texture obtained after sintering becomes R-(Fe-M) solid solution to improve its corrosion resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNd2Fe14B系磁石で代表される希土類(
R)と遷移金属er)とBとからなるR2T14B系金
属間化合物磁石の中で、特にR−Fe−8を主成分とす
る永久磁石に係わシ、その耐酸化性及び磁石特性を改善
したR−Fe−B系磁石に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses rare earth (
Among R2T14B intermetallic compound magnets consisting of R), transition metal er), and B, the oxidation resistance and magnetic properties of permanent magnets, especially those whose main component is R-Fe-8, have been improved. This relates to an R-Fe-B magnet.

〔従来の技術〕[Conventional technology]

Nd−Fe−B系磁石で代表されるR−Fe−B系磁石
は、従来より普及しているSm−Co系合金永久磁石に
比べ。
R-Fe-B magnets, typified by Nd-Fe-B magnets, are compared to Sm-Co alloy permanent magnets, which have been widely used in the past.

高い磁石を有するため、その用途が拡大しつつある。Due to its high magnetism, its applications are expanding.

しかしながら、 R−Fe−B系磁石合金はその金属組
織中に、大気中において極めて酸化し易いR−Fe固溶
体相を含有しているため、磁気回路等の装置に組込だ場
合に、Sm−Co系磁石に比べ磁石の酸化による特性劣
化及びバラツキが大きく、また磁石より発生した酸化物
の飛散による周辺部品への汚染を引き起こすという欠点
を有する。
However, since the R-Fe-B magnet alloy contains an R-Fe solid solution phase in its metal structure, which is extremely easily oxidized in the atmosphere, when it is incorporated into devices such as magnetic circuits, Sm- Compared to Co-based magnets, these magnets suffer from greater deterioration and variation in characteristics due to oxidation of the magnet, and also have the disadvantage of causing contamination of peripheral parts due to scattering of oxides generated from the magnet.

これら耐食性の改善に関する文献として、特開昭60−
54406号(J、P、A)や特開昭60−63903
号等が挙げられる。これら文献では、磁石体表面にメッ
キ、化成皮膜等の耐酸化性皮膜を形成し、その耐食性向
上を図ることを目的としている。
As a literature regarding improvement of these corrosion resistance, JP-A-60-
No. 54406 (J, P, A) and JP-A-60-63903
For example, the number etc. These documents aim to improve the corrosion resistance of the magnet by forming an oxidation-resistant film such as plating or chemical conversion film on the surface of the magnet.

しかし、これらの耐酸化性皮膜は、その工程中において
多量の水及び水溶液を使用するため、処理工程中に、磁
石のR−Fe固溶体相が酸化することにより、皮膜形成
後、内部より酸化が進行しふくれ又は皮膜の剥離等を生
じてしまうため、耐食性の改善としては適していない。
However, since these oxidation-resistant coatings use large amounts of water and aqueous solutions during the process, the R-Fe solid solution phase of the magnet is oxidized during the treatment process, which causes oxidation to occur from within after the coating is formed. This progresses and causes blistering or peeling of the film, so it is not suitable for improving corrosion resistance.

また、水を使用しない方法として、エポキシ等の耐酸化
性樹脂コーティングまたは、最近、普及してきたスパッ
タ。
In addition, methods that do not use water include oxidation-resistant resin coating such as epoxy, or sputtering, which has recently become popular.

蒸着、イオンシレーティング等の方法によるkl、Ni
等の金属皮膜を形成させ、耐食性改善を図る乾式メッキ
等の方法もある。しかしながら、これら水を未使用のク
ーリング(cooling)においても、長期使用によ
る皮膜の劣化、使用中又は製品検査および装置への紹み
込みなどの取扱い時に、微小なカケ等により磁石表面が
大気と接した場合、この部分より磁石組織中のR−Fe
固溶体が時間と共に著しく酸化し、磁石内部全体に広が
っていくため。
Kl, Ni by methods such as vapor deposition and ion silating
There are also methods such as dry plating that form a metal film such as , etc. to improve corrosion resistance. However, even when unused water is used for cooling, the film may deteriorate due to long-term use, and the surface of the magnet may come into contact with the atmosphere due to minute chips, etc. during use or during handling such as product inspection or introduction into equipment. In this case, R-Fe in the magnet structure is removed from this part.
This is because the solid solution oxidizes significantly over time and spreads throughout the interior of the magnet.

耐食性改善の方策としては適していない。It is not suitable as a measure to improve corrosion resistance.

〔発明が解決しようとする問題点3 以上述べたように、いずれの従来の耐食性改善方法にお
いても、磁石中に極度に酸化し易いR−Fe固溶体が存
在するため上記した各方策が有する本来の耐食性を水系
磁石に付寄することは極めて困難であった。
[Problem to be Solved by the Invention 3] As mentioned above, in any of the conventional methods for improving corrosion resistance, the inherent problems of each of the above-mentioned measures are It has been extremely difficult to impart corrosion resistance to water-based magnets.

すなわち9本系磁石においてはこのR−F e固溶体相
の耐食性を根本的に改善しなければ、充分な耐食性を得
ることは不可能である。
That is, in a nine-piece magnet, it is impossible to obtain sufficient corrosion resistance unless the corrosion resistance of this R-Fe solid solution phase is fundamentally improved.

この方策として1本系磁石合金にNi +Cu 、s@
、pb等を添加する。ことにより2本系磁石合論の耐食
性を向上させ先に述べた各種耐食性皮膜を水系磁石にク
ーリング(cooling)することにより上記欠点を
解決することも可能であるが、従来の方法では磁石合金
インゴット作製時に、これら元素を添加して溶解したイ
ンゴットを使用するため、 R−Fe固溶体のみならず
1本系磁石の磁性相であるNd2Fe14B相へも、こ
れら元素が一様に拡散してしまい磁石特性を著しく劣化
させてしまうため、対策としては適していない。
As a measure for this purpose, Ni + Cu, s@
, pb, etc. Although it is possible to solve the above drawbacks by improving the corrosion resistance of the two-piece magnet and cooling the water-based magnet with the various corrosion-resistant coatings described above, the conventional method uses a magnet alloy ingot. Since an ingot with these elements added and melted is used during manufacturing, these elements diffuse uniformly not only into the R-Fe solid solution but also into the Nd2Fe14B phase, which is the magnetic phase of the single-piece magnet, resulting in poor magnetic properties. It is not suitable as a countermeasure as it significantly deteriorates the

そこで1本発明はこれらの問題点を解決するものであり
 、 R−Fe−M 、 R−Fe −M−B (Mは
Co、Ni +Cu+Ptl+異 S−の一種以上)液体急冷合金粉末及び薄帯(アモルフ
ァス及び微結晶)より得られる合金粉末と。
Therefore, the present invention solves these problems, and provides R-Fe-M, R-Fe-M-B (M is one or more of Co, Ni + Cu + Ptl + different S-) liquid quenched alloy powder and ribbon. (amorphous and microcrystalline) and alloy powder obtained from.

従来より製造されている主にNd 2Fe 14B固固
相分相より成る+ ngo を粉末を混合、成形した圧
粉体を従来通シの方法で焼結することにより著しく耐食
性が向上し磁石特性の劣化の度合が、極めて小さい磁石
を得ることができるものである。
By sintering conventionally produced green compacts, which are made by mixing powder of Nd 2Fe 14B solid-solid phase separated + ngo powder and molding it, the corrosion resistance is significantly improved and the magnetic properties are improved. It is possible to obtain a magnet with an extremely small degree of deterioration.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そこで2本発明によれば、 R,Fe、Bを主成分とす
るR2T14B系合金磁石(ここで、RはYを含む希土
類元素、Tは遷移金属を示す。)を粉末冶金法にて製造
する方法において、R2T14B相結晶質合金粉末にR
−Fe−M又はR−Fe−M−B (MはCo、hl 
、Cu、Pb、S、pの一種以上)液体急冷合金粉末又
は薄帯(アモルファス及び微結晶)よ!ll得られる合
金粉末を5〜30 vots含有する粉末成形体を焼結
することを特徴とする希土類永久磁石の製造方法が得ら
れる。
Therefore, according to the present invention, an R2T14B alloy magnet containing R, Fe, and B as main components (here, R is a rare earth element containing Y, and T is a transition metal) is manufactured by a powder metallurgy method. In the method, R2T14B phase crystalline alloy powder is
-Fe-M or R-Fe-M-B (M is Co, hl
, Cu, Pb, S, p) liquid quenched alloy powder or ribbon (amorphous and microcrystalline)! A method for producing a rare earth permanent magnet is obtained, which is characterized by sintering a powder compact containing 5 to 30 vots of the obtained alloy powder.

尚、好ましくはM (Co +Ni r Cu + P
b + Sm )より一種を選択する場合は、 Co 
: 10〜50wt%Ni、Cu:10〜40 wt%
Pb : 10〜25 wt%s9 : 10〜15 
wt%とする。
In addition, preferably M (Co + Ni r Cu + P
When selecting one type from b + Sm), Co
: 10-50 wt% Ni, Cu: 10-40 wt%
Pb: 10-25 wt%s9: 10-15
Let it be wt%.

またM (Co、Ni、Cu+Pb+Sm )より二種
以上の元素を選択する場合は、これら元素の総含有量が
10〜55 wtチとする。
In addition, when selecting two or more elements from M (Co, Ni, Cu+Pb+Sm), the total content of these elements is set to 10 to 55 wt.

ここで本発明は。Here, the present invention.

1)焼結時に液相の核となり、また、液相の主成分とな
るR−Fe−B粉末のみにNi+Cu、Pb等の元素を
添加したR−Fe−M又はR−Fe−M−B (M= 
Co 、Ni 、Cu 。
1) R-Fe-M or R-Fe-M-B in which elements such as Ni+Cu and Pb are added only to R-Fe-B powder, which becomes the nucleus of the liquid phase during sintering and is the main component of the liquid phase. (M=
Co, Ni, Cu.

Pb + Smの1種以上)を用いることにより、焼結
体中のR−Fe固溶体相を耐食性の向上したR−Fe−
M固溶体にさせる。また、更にメブキ、化成被膜等の持
つ本来の耐食性を水系磁石に付与する。
(Pb + Sm), the R-Fe solid solution phase in the sintered body is transformed into R-Fe- with improved corrosion resistance.
M to form a solid solution. Furthermore, it imparts to the water-based magnet the inherent corrosion resistance that is inherent in coatings, chemical conversion coatings, and the like.

2)上記R−Fe−M又はR−Fe−M−B (M=C
o、Ni +Cu、Pb++J (7)一種以上)を用
いることにより、焼結体の゛磁性相(R2Fe14B相
)の界面付近のみにCu + P b r Nl yS
?を分布させ、磁性相のBrの低下を極力弁えるの2点
を目的としている。
2) The above R-Fe-M or R-Fe-M-B (M=C
By using Ni+Cu, Pb++J (7) or more, Cu+PbrNlyS is formed only near the interface of the magnetic phase (R2Fe14B phase) of the sintered body.
? The two objectives are to distribute Br in the magnetic phase and to minimize the reduction in Br in the magnetic phase.

すなわち1本発明によれば、焼結時に液相の核となり、
液相の主成分となる粉末にR−Fe−Bよりも耐食性の
向上したR−Fe−M、R−Fe −M−B (M==
Co+N1tCu、Pb、S?の一種以上)粉末を用い
ているだめ焼結後得られた焼結体組織中のR−Fe固溶
体は、R−(Fe−M)固溶体となっており、耐食性が
向上しているだめに1本発明の目的の第一項が達成され
る。
That is, according to the present invention, the liquid phase becomes the core during sintering,
The main component of the liquid phase is R-Fe-M, R-Fe-M-B (M==
Co+N1tCu, Pb, S? The R-Fe solid solution in the structure of the sintered body obtained after sintering using powder (one or more types of powder) becomes an R-(Fe-M) solid solution, and the corrosion resistance is improved. The first object of the invention is achieved.

又、焼結時に液相の核となシ、液相の主成分となる粉末
のみにCO+ Nl * Cu等を添加しておシ、焼結
時に主に固相となる粉末には、これら元素を添加してい
ないため2両粉末を混合、成形した圧粉体を焼結するこ
とにより、哲られた焼結体の金属組織において、磁性相
(R2Fe14B相)の界面付近及びR−Fe固溶体相
のみに、 Cu、Ni、Pb、Sl1等のBrを低下せ
しめる元素を濃縮させることが可能となる。
In addition, CO + Nl * Cu, etc. are added only to the powder that becomes the nucleus of the liquid phase and the main component of the liquid phase during sintering, and these elements are added to the powder that becomes the main component of the liquid phase during sintering. By mixing the two powders and sintering the molded green compact, the metallographic structure of the sintered compact is formed near the interface of the magnetic phase (R2Fe14B phase) and the R-Fe solid solution phase. This makes it possible to concentrate elements that reduce Br, such as Cu, Ni, Pb, and Sl1.

すなわち、 R2Fe14B相の持つ高い飽和磁化の低
減を極力弁えた焼結体組織が得られるため本発明の目的
の第2項が達成される。
That is, a sintered body structure is obtained in which the high saturation magnetization of the R2Fe14B phase is reduced as much as possible, so that the second object of the present invention is achieved.

本発明において、焼結時液相の核となシ、生成分となる
R−Fe−M 、 R−Fe −M−B (M = C
o 、Ni 、Cu 、Pb 。
In the present invention, R-Fe-M, R-Fe-M-B (M = C
o, Ni, Cu, Pb.

SPの一種以上)粉末を、液体急冷合金粉末又は。one or more types of SP) powder, liquid quenched alloy powder or

薄帯(アモルファス及び微結晶)より得られる合金粉末
としたのは+ R−F e −M + R−F e−M
−Bインゴットは被粉砕性に劣るため、粉砕した粉末の
粒度分布が広くなったり、焼結時に、液相の核となるR
−Fe−M固溶体相粉末と固相であるR2Fe14B相
粉末との均一混合ができないため、焼結体組織が不均一
となり磁石特性の劣化をもたらすため本発明の目的の第
2項の効果を低減させてしまう。
The alloy powder obtained from the ribbon (amorphous and microcrystalline) is + R-Fe-M + R-Fe-M
- Since the B ingot has poor crushability, the particle size distribution of the crushed powder becomes wide, and during sintering, R becomes the core of the liquid phase.
-Since the Fe-M solid solution phase powder and the solid R2Fe14B phase powder cannot be mixed uniformly, the structure of the sintered body becomes non-uniform, resulting in deterioration of magnetic properties, which reduces the effect of the second objective of the present invention. I'll let you.

それ故+ R−F e −M + R−F e −M−
B粉末は、被粉砕性の高い液体急冷合金粉末、又は薄帯
(アモルファス及び微結晶)より得られる合金粉末とす
る必要がある。
Therefore + R-F e -M + R-F e -M-
Powder B needs to be a liquid quenched alloy powder with high pulverizability, or an alloy powder obtained from a ribbon (amorphous or microcrystalline).

本発明において、液体急冷合金粉末又は薄帯(アモルフ
ァス及び微結晶)より成るR−Fe−M又はR−Fe−
M−B粉末のM (Co、Ni 、Cu14’、Pb 
)値を10wt%以上としたのは、これよりも低いM値
では。
In the present invention, R-Fe-M or R-Fe-
M-B powder M (Co, Ni, Cu14', Pb
) value was set to 10 wt% or more for M values lower than this.

本発明の特徴とするR−Fe固溶体相の耐食性向上が不
充分であるためである。又Co≦50 wt% + N
t + Cu≦40 wt%、pb≦25 wt% 、
 s、9≦15wt%及びこれら元素の複合添加におい
てその上限を55 wt%としたのは、これよりも多い
M値では、磁性結晶粒内に存在するCu、Pb14値が
多くなり過ぎたり、また。
This is because the improvement in corrosion resistance of the R-Fe solid solution phase, which is a feature of the present invention, is insufficient. Also, Co≦50 wt% + N
t + Cu≦40 wt%, pb≦25 wt%,
The reason why we set the upper limit to 55 wt% for s, 9≦15 wt% and composite addition of these elements is because if the M value is higher than this, the Cu and Pb14 values present in the magnetic crystal grains may become too large, or .

Ni、Coにおいては焼結体内に磁石のIHCを劣化さ
せるラーフェス(Laves)相の量が多くなり過ぎる
ことによる磁石特性の劣化を生ずるためである。又。
This is because in the case of Ni and Co, the amount of Laves phase which deteriorates the IHC of the magnet becomes too large in the sintered body, resulting in deterioration of the magnetic properties. or.

これら液体急冷合金粉末及び薄帯(アモルファス及び微
結晶)より成る粉末の添加量を10〜3゜voj%とじ
たのは10 vot%より少ない領域では耐食性向上が
得られず、 30 voL%を越えた領域で肚記同様磁
石特性の劣化が著しく本発明の目的にそわないだめであ
る。
The addition amount of these powders consisting of liquid quenched alloy powder and ribbon (amorphous and microcrystalline) was limited to 10 to 3° voj%, because corrosion resistance cannot be improved if it is less than 10 voj%, and if it exceeds 30 voj%. In the above range, as in the case of Wuji, the magnetic properties deteriorate significantly, which is unsuitable for the purpose of the present invention.

本発明によれば、従来法で得られるインゴットを粉砕し
て得られたR2Fe14B相を主相とし焼結時に主に固
相となる粉末に焼結時主に液相となるR−Fe−M又は
R−Fe−M−B (M= Co 、Ni 、Cu 、
Pb 、 Sfの一種以上)原料粉末を液体急冷合金粉
末又は薄帯(アモルファス及び微結晶)より得た後、こ
れら粉末を混合・成形した圧粉体を従来と同様の方法で
焼結することにより、従来よりも耐食性に優れた。しか
も、磁石特性の優れた焼結体が得られ実用上非常に有益
である。
According to the present invention, the R2Fe14B phase obtained by crushing an ingot obtained by the conventional method is the main phase, and the R-Fe-M powder becomes mainly a solid phase during sintering. or R-Fe-M-B (M=Co, Ni, Cu,
After obtaining the raw material powder from liquid quenched alloy powder or ribbon (amorphous and microcrystalline) (Pb, Sf), by mixing and molding these powders and sintering the green compact in the same manner as before. , superior corrosion resistance than conventional products. Moreover, a sintered body with excellent magnetic properties can be obtained, which is very useful in practice.

〈実施例−1〉 純度99 wt%以上のNd−Fe−Bを用いアルゴン
雰囲気中にて高周波加熱により26.7 Nd−1,O
B−Febal(、t%)の組成を有するR2Fe14
B相ingotを得てさらにディスクミルを用いて、粗
粉砕した。そしてこの粉末をI材とした。
<Example-1> Nd-Fe-B with a purity of 99 wt% or more was heated to 26.7 Nd-1,O by high-frequency heating in an argon atmosphere.
R2Fe14 with the composition of B-Febal (, t%)
A phase B ingot was obtained and further coarsely ground using a disc mill. This powder was used as material I.

次に上記同等のNd r F e + B r Nr 
+ Cu I Co 14 ) P bを用いて、 6
ONd−1,OB−10Co 、 55Nd−1,0B
−29Co 。
Next, the above equivalent Nd r Fe + B r Nr
+ Cu I Co 14 ) P b using 6
ONd-1, OB-10Co, 55Nd-1, 0B
-29Co.

5ONd−1,0B−40Co143Nd−1,0B−
50Co、6ONd−1,0B−1ONi 、 57N
d−1,0B−18Ni 、 5ONd−1,OB−4
ONi 、6ONd−1,0B−10Cu 、6ONd
−1,OB−21Cu 145Nd1.0B−39Cu
 、6ONd−1,0B−10Pb、6ONd−1,0
By17Pb、6ONd−1,0B−25Pb 、 6
ONd−1,0B−108整、6ON入−1,0B−1
58p、(いずれもwt% + F eはbalanc
e )の組成を有する15種類のアモルファスリデン細
片を単ロール法にて得だ。そしてこれらアモルファスリ
、yン細片を粗粉砕して得られた15種類の粗粉末を■
材とした。そして、この15種類の■材に対して■材を
おのおの加え30 Nd−1,OB−(Fe−M) b
al(M” Nr + Co + Cu + S9 +
 Pb )の秤量組成を有する15種類の粗粉末を得た
。これら15種の粗粉末をが一ルミルを用いて平均粒径
3〜5μmに微粉砕した。
5ONd-1,0B-40Co143Nd-1,0B-
50Co, 6ONd-1, 0B-1ONi, 57N
d-1,0B-18Ni, 5ONd-1,OB-4
ONi, 6ONd-1, 0B-10Cu, 6ONd
-1, OB-21Cu 145Nd1.0B-39Cu
, 6ONd-1,0B-10Pb, 6ONd-1,0
By17Pb, 6ONd-1,0B-25Pb, 6
ONd-1,0B-108 set, 6ON included-1,0B-1
58p, (both wt% + Fe is balanc
Fifteen types of amorphous elidene strips having the composition shown in e) were obtained by a single roll method. Then, 15 types of coarse powder obtained by coarsely crushing these amorphous pieces were
It was used as a material. Then, to each of these 15 types of ■materials, we added ■materials to 30 Nd-1, OB-(Fe-M) b
al(M” Nr + Co + Cu + S9 +
Fifteen kinds of coarse powders with a weighed composition of Pb) were obtained. These 15 kinds of coarse powders were pulverized to an average particle size of 3 to 5 μm using a lumen mill.

次に得られた微粉末を20 koeの磁場中、1.0t
on/cm”の圧力で成形し圧粉体を得た。これら圧粉
体を1000〜1200℃でO〜2hrAr中焼結した
Next, the obtained fine powder was heated at 1.0 t in a 20 koe magnetic field.
A green compact was obtained by compacting at a pressure of 1000 to 1200° C. in Ar for 0 to 2 hours.

その後1400〜800℃で0.5〜10 hr加熱し
た後急冷した。又比較材として30Nd−1,OB −
Febal(wt%)の組成を有するインゴットを上記
と同様にして得た。その後上記と同様粗粉砕、微粉砕磁
場中成形。
Thereafter, it was heated at 1400 to 800°C for 0.5 to 10 hr, and then rapidly cooled. Also, as a comparison material, 30Nd-1, OB −
An ingot having a composition of Febal (wt%) was obtained in the same manner as above. After that, it is coarsely crushed and finely crushed and formed in a magnetic field as above.

焼結、熱処理を行い焼結体を得た。そしてこれら焼結体
を10w*X 10wX 8mに加工した後、 Cu下
皿メッキとした電解Niメッキ及びフロメート処理を施
こした。そしてこれらの膜厚を測定したところ3〜20
μmであったこれら試験片の磁石特性及び60℃×90
チ湿度試験を300 hr施こし耐食性試験を行った結
果を第−表に示す。
Sintering and heat treatment were performed to obtain a sintered body. After processing these sintered bodies into a size of 10w*×10w×8m, electrolytic Ni plating with Cu under plate plating and furomate treatment were performed. The thickness of these films was measured and was 3 to 20.
The magnetic properties of these test pieces and 60℃×90
A humidity test was conducted for 300 hours and a corrosion resistance test was conducted, and the results are shown in Table 1.

第−表より本発明による試験片はいずれも比較例の試験
片に比べ耐食性を示し、又磁石特性の面でも永久磁石と
して優れた磁石特性を示すことがわかる。
From Table 1, it can be seen that all the test pieces according to the present invention exhibit better corrosion resistance than the test pieces of the comparative examples, and also exhibit excellent magnetic properties as permanent magnets in terms of magnetic properties.

以下余日 〈実施例−2〉 実施例−1と同等の純度のNd −Fe−B−Ni −
Co −Cu−Pb−8rypを用いて6ONd−1,
0B−20Co−10Cu 。
The remaining days <Example-2> Nd-Fe-B-Ni- with the same purity as Example-1
6ONd-1 using Co-Cu-Pb-8ryp,
0B-20Co-10Cu.

4ONd−1,0B−50Co−5SvP、6ONd−
1,0B−5SP5Pb。
4ONd-1, 0B-50Co-5SvP, 6ONd-
1,0B-5SP5Pb.

5ONd1.0B−20Cu−10Pb 、 5ONd
−1,0B−10Cu−1,0B−10Co−58@−
6Cu 、5ONd−1,0B−15Ni−6Cu −
3Pb (いずれもFe−bal 、wtチ)の組成を
有するアモルファスIJ 、yン細片をAr中中口ロー
ル法て得た。そしてこれらアモルファスリボン細片を粗
粉砕し得られた粗粉末を■材とした。次にこれら10種
類の■材おのおのに実施例−1で得られたI材のi n
go を粉末を加え3 ONd −1,OB −(Fe
−M)bat (M= Co 。
5ONd1.0B-20Cu-10Pb, 5ONd
-1,0B-10Cu-1,0B-10Co-58@-
6Cu, 5ONd-1,0B-15Ni-6Cu −
An amorphous IJ, Yin strip having a composition of 3Pb (both Fe-bal and wt) was obtained using an Ar medium roll method. Then, these amorphous ribbon pieces were coarsely pulverized, and the resulting coarse powder was used as material (2). Next, for each of these 10 types of material I, in
3 ONd −1,OB −(Fe
-M) bat (M=Co.

lル Ni 、Cu 14.Pbの一種以上)wt%の組成を
有する10゜種類の粗粉末を得た。さらにこれら10種
類の粗粉末を実施例−1と同様にして微粉砕、磁場中′
成形、焼結、熱処理、加工を耐食性メッキ及び化成処理
を行い試験片(10XI OX8 )を得た。次にこれ
ら試験片に実施例1と同様60℃×90チ極温恒湿試験
を行った。第2表にこれら試験片の磁石特性及び恒温恒
湿試験結果実施例−1の比較材の結果を示す。
l Ni, Cu 14. 10° types of coarse powders having a composition of (at least one type of Pb) wt% were obtained. Furthermore, these 10 kinds of coarse powders were finely pulverized in the same manner as in Example-1, and then placed in a magnetic field.
A test piece (10XI OX8) was obtained by molding, sintering, heat treatment, and processing, followed by corrosion-resistant plating and chemical conversion treatment. Next, these test pieces were subjected to an extreme temperature and humidity test at 60° C. x 90 times in the same manner as in Example 1. Table 2 shows the magnetic properties of these test pieces and the constant temperature and humidity test results for the comparative material of Example-1.

第2表より本発明による磁石試験片は、いずれも比較材
に比べ耐食性に優れ、又磁石特性の面でも永久磁石とし
て優れた磁石特性を示している。
Table 2 shows that all of the magnet test pieces according to the present invention have superior corrosion resistance compared to comparative materials, and exhibit excellent magnetic properties as permanent magnets in terms of magnetic properties.

以下余日 〈実施例−3〉 実施例−1で得られた焼結体のうち、60Nd−1,O
B −21Cu−Febal 、 6ONd−1,0B
−17Pb−Febal (wt4)及び実施例2で得
られた焼結体のうち6ONd −1,OB −10Cu
−2ONi−Febal、6ONd−1,0B−10C
o−58$−6Cu7Febal (wt%)を加えて
得られた焼結体について。
The remaining days will be discussed below.Example-3 Among the sintered bodies obtained in Example-1, 60Nd-1,O
B-21Cu-Febal, 6ONd-1,0B
-17Pb-Febal (wt4) and 6ONd -1, OB -10Cu of the sintered bodies obtained in Example 2
-2ONi-Febal, 6ONd-1,0B-10C
Regarding the sintered body obtained by adding o-58$-6Cu7Febal (wt%).

E、D、Xを用いて各元素の濃度分布を調査するためN
d 2F e 14B相界面付近より粒子内へ2μm間
隔にてスポット分析を行った。その結果をおのおの第3
表〜第6表に示す。
N to investigate the concentration distribution of each element using E, D, and
Spot analysis was performed at 2 μm intervals into the particles from near the d 2F e 14B phase interface. The results are shown in the third column.
Shown in Tables to Table 6.

第3′”〜第6表よ’) Co r Cu + Nl 
r P b p SRの元素がNd2Fe14B粒子界
面付近に濃縮していることがわかる。
3'''~Table 6') Cor Cu + Nl
It can be seen that the r P b p SR element is concentrated near the Nd2Fe14B particle interface.

以下f−日 第3表 6ONd−1,0B−21Cu−Feba 1
第4表 6ONd−1,0B−17,0Pb−Feba
l第5表 6ONd−1,0B−10Cu−2ONi−
Febal第6表 6ONd−1,OB−1010Co
−54−6Cu−Febal(%) ここで2表を簡単に説明する。
Below is f-day Table 3 6ONd-1,0B-21Cu-Feba 1
Table 4 6ONd-1,0B-17,0Pb-Feba
lTable 5 6ONd-1,0B-10Cu-2ONi-
Febal Table 6 6ONd-1, OB-1010Co
-54-6Cu-Febal (%) Table 2 will be briefly explained here.

第1表は実施例1におけるアモルファスNd−Fe−B
−M (M =Co + Nir Cu r P b 
+ S¥1の一種)を混合して得られた焼結体の磁石特
性及びこれら焼結体に電解Niメッキ及び亜鉛クロメー
ト処理を施した試料の60℃X90チ湿度試験(300
hr )結果を示したものである。
Table 1 shows the amorphous Nd-Fe-B in Example 1.
−M (M = Co + Nir Cur P b
60°C x 90° humidity test (300°C
hr) The results are shown.

第2表は実施例2におけるアモルファスNd−Fe−B
 −M (M = Co+Ni 、Cu、Pb、S9の
二種以上)を混合して得られた焼結体の磁石特性及びこ
れら焼結体に電解Niメッキ、亜鉛クロメート処理を施
した試料の60℃×90%湿度試験(300hr)結果
を示したものである。
Table 2 shows the amorphous Nd-Fe-B in Example 2.
Magnetic properties of sintered bodies obtained by mixing -M (M = two or more of Co+Ni, Cu, Pb, and S9) and samples subjected to electrolytic Ni plating and zinc chromate treatment on these sintered bodies at 60°C ×90% humidity test (300 hr) results are shown.

第3表は実施例3における6ONd−1,0B−21C
u−Febal (wt%)のアモルファス粉末を混合
して得られた焼結体のE、D、Xスポット分析結果であ
る。
Table 3 shows 6ONd-1,0B-21C in Example 3.
These are the E, D, and X spot analysis results of a sintered body obtained by mixing u-Febal (wt%) amorphous powder.

第4表、第5表、第6表はおのおの実施例3における6
ONd1.0B−17Pb−Febal、6ONd−1
,0B−110Cu−2ONj−Febal 、 6O
Nd−1,0B−10Co−54−6Cu−Febal
アモルファス粉末をおのおの加えて得られた焼結体のE
、D、Xスポット分析結果である。
Tables 4, 5, and 6 are 6 in Example 3, respectively.
ONd1.0B-17Pb-Febal, 6ONd-1
,0B-110Cu-2ONj-Febal, 6O
Nd-1,0B-10Co-54-6Cu-Febal
E of the sintered body obtained by adding each amorphous powder
, D, X spot analysis results.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で示される如(、Nd−Fe−B系磁石を
粉末冶金法により製造する場合において、従来の製法で
得られる結晶性Nd2Fe14B相を主相とするインゴ
ット粉末に焼結時に主に液相となる原料粉末であるR−
Fe−M又はR−Fe−B−M粉末を非晶質合金又は微
結晶合金より待た後、これら粉末を混合成形した圧粉体
を焼結することにより従来よりも耐酸化性を向上させる
ことができ、 Ni等の耐酸化性メッキ、化成被膜等の
持つ本来の耐食性を付与することが可能となる。また、
特に液相成分と固相成分とを混合した成形体を焼結して
いるため。
As shown in the above examples (in the case of manufacturing Nd-Fe-B magnets by powder metallurgy), ingot powder having the crystalline Nd2Fe14B phase obtained by the conventional manufacturing method as the main phase is mainly used during sintering. R-, which is the raw material powder that becomes the liquid phase
After Fe-M or R-Fe-B-M powder is added to the amorphous alloy or microcrystalline alloy, the oxidation resistance is improved more than before by sintering a compact formed by mixing and molding these powders. This makes it possible to provide the inherent corrosion resistance of oxidation-resistant plating such as Ni, chemical conversion coating, etc. Also,
Especially since a molded body containing a mixture of a liquid phase component and a solid phase component is sintered.

Nd2Fe14B相界面付近にのみ、耐食性を向上させ
磁石特性を劣化させるNi 、Cu + Pb + s
l等の元素を濃縮させた金属組織を有する焼結体が得ら
れ、磁石特性の劣化が小さり、シかも耐酸化性に優れた
焼結体磁石を得ることができる。
Ni, Cu + Pb + s, which improve corrosion resistance and deteriorate magnetic properties only near the Nd2Fe14B phase interface
A sintered body having a metal structure in which elements such as 1 are concentrated can be obtained, and a sintered body magnet with less deterioration of magnetic properties and excellent oxidation resistance can be obtained.

以上Nd−Fe−Bについてのみ述べたが、Yを含めた
希土類元素(R)−Fe−B系合金についても同様の効
果が期待できることは容易に推察できるところである。
Although only Nd-Fe-B has been described above, it can be easily inferred that similar effects can be expected for rare earth element (R)-Fe-B alloys including Y as well.

Claims (3)

【特許請求の範囲】[Claims] (1)R、Fe、Bを主成分とするR_2T_1_4B
系合金磁石(ここで、RはYを含む希土類元素、Tは遷
移金属を示す。)を粉末冶金法にて製造する方法におい
て、R_2T_1_4B相結晶質合金粉末にR−Fe−
M又はR−Fe−M−B(MはCo、Ni、Cu、Pb
、Snの一種以上)液体急冷合金粉末又は薄帯(アモル
ファス及び微結晶)より得られる合金粉末を5〜30v
ol%含有する粉末成形体を焼結することを特徴とする
耐酸化性に優れた希土類永久磁石の製造方法。
(1) R_2T_1_4B whose main components are R, Fe, and B
In a method for producing a R_2T_1_4B phase crystalline alloy powder (herein, R is a rare earth element containing Y, and T is a transition metal) by a powder metallurgy method, R-Fe-
M or R-Fe-M-B (M is Co, Ni, Cu, Pb
, one or more types of Sn) liquid quenched alloy powder or alloy powder obtained from ribbon (amorphous and microcrystalline) at 5 to 30V.
1. A method for producing a rare earth permanent magnet with excellent oxidation resistance, which comprises sintering a powder compact containing ol%.
(2)特許請求の範囲第1項記載の希土類磁石の製造方
法において、前記M(Co、Ni、Cu、Pb、Sn)
より一種を選択する場合は、Co:10〜50wt%N
i、Cu:10〜40wt%Pb:10〜25wt% 
Sn:10〜15wt%とすることを特徴とする耐酸化
性に優れた希土類永久磁石の製造方法。
(2) In the method for manufacturing a rare earth magnet according to claim 1, the M (Co, Ni, Cu, Pb, Sn)
When selecting one type, Co: 10-50wt%N
i, Cu: 10-40 wt% Pb: 10-25 wt%
A method for producing a rare earth permanent magnet with excellent oxidation resistance, characterized in that Sn: 10 to 15 wt%.
(3)特許請求の範囲第4項記載の希土類磁石の製造方
法において、前記M(Co、Ni、Cu、Pb、Sn)
より二種以上の元素を選択する場合は、これら元素の総
含有量が10〜55wt%であることを特徴とする耐酸
化性に優れた希土類永久磁石の製造方法。
(3) In the method for manufacturing a rare earth magnet according to claim 4, the M (Co, Ni, Cu, Pb, Sn)
A method for producing a rare earth permanent magnet with excellent oxidation resistance, characterized in that when two or more elements are selected, the total content of these elements is 10 to 55 wt%.
JP62087917A 1986-09-16 1987-04-11 Manufacturing method of rare earth permanent magnet with excellent oxidation resistance Expired - Fee Related JP2700643B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62087917A JP2700643B2 (en) 1987-04-11 1987-04-11 Manufacturing method of rare earth permanent magnet with excellent oxidation resistance
EP87113557A EP0261579B1 (en) 1986-09-16 1987-09-16 A method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
DE8787113557T DE3783413T2 (en) 1986-09-16 1987-09-16 METHOD FOR PRODUCING A RARE-EARTH IRON BOR PERMANENT MAGNET WITH THE AID OF A QUARKED ALLOY POWDER.
US07/336,207 US4898625A (en) 1986-09-16 1989-04-11 Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
US07/438,724 US5011552A (en) 1986-09-16 1989-11-17 Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087917A JP2700643B2 (en) 1987-04-11 1987-04-11 Manufacturing method of rare earth permanent magnet with excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPS63254703A true JPS63254703A (en) 1988-10-21
JP2700643B2 JP2700643B2 (en) 1998-01-21

Family

ID=13928273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087917A Expired - Fee Related JP2700643B2 (en) 1986-09-16 1987-04-11 Manufacturing method of rare earth permanent magnet with excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JP2700643B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006107A1 (en) * 1989-10-12 1991-05-02 Kawasaki Steel Corporation Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
WO2012032961A1 (en) * 2010-09-06 2012-03-15 ダイハツ工業株式会社 Magnetic material and method for producing same
JP2012062541A (en) * 2010-09-17 2012-03-29 Daihatsu Motor Co Ltd Method for manufacturing magnetic material
JP2012080073A (en) * 2010-09-06 2012-04-19 Daihatsu Motor Co Ltd Magnetic material
WO2012124387A1 (en) * 2011-03-16 2012-09-20 ダイハツ工業株式会社 Magnetic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393841A (en) * 1986-10-04 1988-04-25 Shin Etsu Chem Co Ltd Rare-earth permanent magnet alloy
JPS63127505A (en) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd Magnet and manufacture thereof
JPS63127504A (en) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd Magnet and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393841A (en) * 1986-10-04 1988-04-25 Shin Etsu Chem Co Ltd Rare-earth permanent magnet alloy
JPS63127505A (en) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd Magnet and manufacture thereof
JPS63127504A (en) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd Magnet and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006107A1 (en) * 1989-10-12 1991-05-02 Kawasaki Steel Corporation Corrosion-resistant, rare earth-transition metal magnet and method of production thereof
WO2012032961A1 (en) * 2010-09-06 2012-03-15 ダイハツ工業株式会社 Magnetic material and method for producing same
JP2012080073A (en) * 2010-09-06 2012-04-19 Daihatsu Motor Co Ltd Magnetic material
JP2012062541A (en) * 2010-09-17 2012-03-29 Daihatsu Motor Co Ltd Method for manufacturing magnetic material
WO2012124387A1 (en) * 2011-03-16 2012-09-20 ダイハツ工業株式会社 Magnetic material
JP6033768B2 (en) * 2011-03-16 2016-11-30 ダイハツ工業株式会社 Manufacturing method of magnetic material

Also Published As

Publication number Publication date
JP2700643B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
DE60221448T2 (en) Rare earth alloy sintered compact
DE102017115791B4 (en) R-T-B-based rare earth permanent magnet
DE102014221200A1 (en) METHOD FOR PRODUCING RARE-THERMAL NETWORKS
EP0249973B1 (en) Permanent magnetic material and method for producing the same
DE112015001825T5 (en) Rare earth permanent magnet
EP3401933A1 (en) Mn-Bi-BASED MAGNETIC POWDER, METHOD FOR PRODUCING SAME, COMPOUND FOR BOND MAGNET, BOND MAGNET, Mn-Bi-BASED METAL MAGNET AND METHOD FOR PRODUCING SAME
DE102014103210B4 (en) MAKING ND-FE-B MAGNETS USING HOT PRESSES WITH REDUCED DYSPROSIUM OR TERBIUM
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
DE102015106080A1 (en) R-T-B BASED PERMANENT MAGNET AND RAW ALLOY FOR SAME
DE102014105778B4 (en) R-T-B BASED PERMANENT MAGNET
JPS6063901A (en) Permanent magnet superior in resistance to oxidation
JPS63254703A (en) Manufacture of rare earth permanent magnet with excellent anti-oxidation
JP2546989B2 (en) Permanent magnet with excellent oxidation resistance
DE2321368A1 (en) NEW SINTER PRODUCT MADE FROM AN INTERMETALLIC COBALT-NEODYME-SAMARIUM COMPOUND AND PERMANENT MAGNETS MANUFACTURED FROM IT
JPH04330702A (en) Rare-earth permanent magnet of excellent corrosion resistance
JPH03250607A (en) Corrosive resistant rare earth-transition metal magnet and its manufacture
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
JPH01111843A (en) Rare-earth permanent magnet material and its manufacture
JPH06112026A (en) Permanent magnet with excellent thermal stability and corrosion-resisting property and manufacture thereof
JPH01105502A (en) Rare earth permanent magnet exhibiting high resistance to oxidation and manufacture thereof
DE102014104419A1 (en) Rare earth based magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH04337604A (en) Rare-earth iron permanent magnet
JPH02192102A (en) Permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees