JPS63253266A - Very small current measuring method - Google Patents

Very small current measuring method

Info

Publication number
JPS63253266A
JPS63253266A JP8908587A JP8908587A JPS63253266A JP S63253266 A JPS63253266 A JP S63253266A JP 8908587 A JP8908587 A JP 8908587A JP 8908587 A JP8908587 A JP 8908587A JP S63253266 A JPS63253266 A JP S63253266A
Authority
JP
Japan
Prior art keywords
current
measured
high resistance
time
under test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8908587A
Other languages
Japanese (ja)
Inventor
Takeshi Yamano
剛 山野
Kyohiko Kotani
小谷 教彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8908587A priority Critical patent/JPS63253266A/en
Publication of JPS63253266A publication Critical patent/JPS63253266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To decrease the movement of a measuring range at the time of measuring an element to be measured, and to measure the current of the element to be measured stably and with high accuracy in a short time, by setting in advance a current measuring range at the time of starting the measurement by a high resistance. CONSTITUTION:First of all, a current is allowed to flow to a high resistance 2 in a state that an element to be measured 3 is not connected to connecting points 2a, 2b, a measuring range of a very small ampere meter 1 is set, and also, a current of this time is measured. The high resistance 2 having a resistance value extending from the same degree as the element to be measured 3 to a range being higher by one digit or so is used. Subsequently, the element to be measured 3 is connected to the connecting points 2a, 2b. The measuring range of the very small ampere meter 1 moves smoothly to a measuring range corresponding to a current which flows in accordance with the impedance of the element to be measured, and the current is measured. By subtracting the current which is measured in the beginning in order to set the measuring range, from the current of said time, the current flowing to the element to be measured 3 can be derived.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、微少電流測定法に関し、特にキャパシタ等
の高インピーダンス素子における微少絶縁リーク電流の
測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring minute currents, and particularly to a method for measuring minute insulation leakage currents in high impedance elements such as capacitors.

[従来の技術] 第2図は、従来の一般的な電流測定回路である。[Conventional technology] FIG. 2 shows a conventional general current measurement circuit.

図に示すように、電源E、に微少電流計1を介してMO
Sキャパシタ等の被測定素子3が接続されており、電源
Eoによって被測定素子3に流れる電流を微少電流計1
によりn1定するものである。
As shown in the figure, MO
A device to be measured 3 such as an S capacitor is connected, and a current flowing through the device to be measured 3 by a power source Eo is measured by a minute ammeter 1.
n1 is determined by .

第3図は、微少電流計1の回路構成を示す図である。FIG. 3 is a diagram showing the circuit configuration of the microammeter 1.

端子1a、lbには、電流−電圧変換用のオペアンプ4
の1対の入力端子が接続されており、オペアンプ4の出
力端子には電流計測部5が接続されている。また、オペ
アンプ4の1対のバイアス端子間には、直列接続された
オペアンプバイアス源Et、E2が接続されており、オ
ペアンプバイアス源E、、E2の接続点は端子1bに接
続されている。さらに、オペアンプ4の出力端子と端子
1aとの間には、帰還抵抗6が接続されている。
An operational amplifier 4 for current-voltage conversion is connected to terminals 1a and lb.
A pair of input terminals of the operational amplifier 4 are connected to the output terminal of the operational amplifier 4, and a current measuring section 5 is connected to the output terminal of the operational amplifier 4. Moreover, between the pair of bias terminals of the operational amplifier 4, operational amplifier bias sources Et and E2 connected in series are connected, and the connection point of the operational amplifier bias sources E, E2 is connected to the terminal 1b. Furthermore, a feedback resistor 6 is connected between the output terminal of the operational amplifier 4 and the terminal 1a.

このように、一般的に、微少電流計1の入力部には、オ
ペアンプ4が用いられており、微少電流計1の端子1a
、lb間は、オペアンプの特性上、仮想0電位となるた
め、見掛は上、インピーダンスは0Ωとなる。しかしな
がら、端子1aに入力された電流は、帰還抵抗6、オペ
アンプ4、バイアス源E、、E2を介して端子1bから
出力される。帰還抵抗6は−オペアンプ4のゲイン能力
を考えた場合、微少電流測定レンジの逆数、たとえば1
0  Aレンジであれば10 Ωというような高い抵抗
値のものが用いられる。したがって、端子1a、lb間
のインピーダンスはほぼOΩであるが、電源E、からの
電流は、オペアンプ4および電源E、、E2の内部イン
ピーダンスが低いため、はぼ帰還抵抗6を介して被測定
素子3に供給されることになる。
In this way, the operational amplifier 4 is generally used in the input section of the microammeter 1, and the terminal 1a of the microammeter 1
, lb is a virtual 0 potential due to the characteristics of the operational amplifier, so the appearance is high and the impedance is 0Ω. However, the current input to the terminal 1a is outputted from the terminal 1b via the feedback resistor 6, the operational amplifier 4, and the bias sources E, E2. The feedback resistor 6 is - Considering the gain capability of the operational amplifier 4, the reciprocal of the minute current measurement range, for example 1
For the 0 A range, a high resistance value such as 10 Ω is used. Therefore, the impedance between the terminals 1a and lb is approximately OΩ, but since the internal impedance of the operational amplifier 4 and the power supplies E, E2 is low, the current from the power supply E is passed through the feedback resistor 6 to the device under test. 3 will be supplied.

[発明が解決しようとする問題点] 微少電流を測定する場合、測定レンジを切換えるごとに
電流が安定するまでに時間がかかるので、測定レンジの
移動が多くなると測定時間が長くかかる。MOSキャパ
シタ等の絶縁リーク電流の値は、製造上のパラメータの
ばらつきによって被測定素子間で平均で1〜3桁程度の
ばらつきをもっている。したがって、個々の被測定素子
ごとに測定レンジが異なるため、測定開始レンジを定め
ることができず、測定レンジの移動が多くなり、これに
よって測定時間が長くかかるという問題があった。また
、被測定素子3に帰還抵抗6を介して充電される時間も
測定レンジによって異なるため、測定が不安定となり短
時間で精度良く多くの被測定素子の微少電流の測定が行
なえないという問題もあった。
[Problems to be Solved by the Invention] When measuring minute currents, it takes time for the current to stabilize each time the measurement range is changed, so the more the measurement range is moved, the longer the measurement time will be. The value of insulation leakage current of a MOS capacitor or the like has an average variation of about 1 to 3 digits between devices under test due to variations in manufacturing parameters. Therefore, since the measurement range is different for each device to be measured, it is impossible to determine the measurement start range, and the measurement range has to be moved frequently, which causes a problem that the measurement time takes longer. Furthermore, since the time for charging the device under test 3 via the feedback resistor 6 also differs depending on the measurement range, there is a problem that the measurement becomes unstable and it is not possible to accurately measure the minute currents of many devices under test in a short time. there were.

この発明は、上記のような間型点を解消するためになさ
れたもので、予め、測定開始時の測定レンジを設定して
おき、被測定素子の微少電流を短時間に精度良く測定す
ることができる微少電流測定法を提供することを目的と
する。
This invention was made in order to eliminate the above-mentioned gap point, and it is possible to set the measurement range at the start of measurement in advance and measure the minute current of the device under test with high accuracy in a short time. The purpose of this study is to provide a microcurrent measurement method that enables

[問題点を解決するための手段] この発明に係る微少電流測定法は、まず、被測定素子の
インピーダンスと同程度から1桁程度高い範囲の抵抗値
を有する高抵抗を電流計を介して所定の電源に接続し、
前記高抵抗に流れる電流を測定する。次に、前記高抵抗
に並列に被測定素子を接続し、前記高抵抗および前記被
測定素子に流れる電流の合成電流を測定する。そして、
前記合成電流の測定値から高抵抗のみに流れる電流の測
定値を差し引くことによって被測定素子に流れる電流を
求める。
[Means for Solving the Problems] In the microcurrent measurement method according to the present invention, first, a high resistance having a resistance value ranging from about the same level as the impedance of the device to be measured to about an order of magnitude higher is measured using an ammeter. Connect to the power supply of
Measure the current flowing through the high resistance. Next, an element to be measured is connected in parallel to the high resistance, and a combined current of the current flowing through the high resistance and the element to be measured is measured. and,
The current flowing through the device under test is determined by subtracting the measured value of the current flowing only through the high resistance from the measured value of the composite current.

[作用] この発明の微少電流測定法によれば、予め高抵抗によっ
て測定開始時の電流測定レンジが設定されるので、被測
定素子を測定する際の測定レンジの移動が減少するとと
もに、被測定素子への充電時間が一定になり、これによ
り、被測定素子の電流測定を短時間で安定にかつ精度良
く行なうことができる。
[Function] According to the microcurrent measurement method of the present invention, since the current measurement range at the start of measurement is set in advance by a high resistance, the movement of the measurement range when measuring the device under test is reduced, and the The charging time for the device becomes constant, and as a result, the current measurement of the device under test can be carried out stably and accurately in a short period of time.

[実施例] 以下、この発明の一実施例を図面を用いて説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この発明の微少電流測定法に用いる測定回路
である。
FIG. 1 shows a measurement circuit used in the microcurrent measurement method of the present invention.

図において、電源Eoに微少電流計1を介して高抵抗2
が接続されている。高抵抗2の両端の接続点2a、2b
にはMOSキャパシタ等の被測定素子3が接続される。
In the figure, a high resistance 2 is connected to the power source Eo through a microcurrent meter 1.
is connected. Connection points 2a and 2b at both ends of high resistance 2
A device to be measured 3 such as a MOS capacitor is connected to.

高抵抗2は、被測定素子3と同程度から1桁程度高い範
囲の抵抗値のものを用いる。
The high resistance 2 has a resistance value ranging from about the same as that of the device to be measured 3 to about an order of magnitude higher.

まず最初に、接続点2g、2bに被測定素子3を接続し
ない状態で高抵抗2に電流を流し、微少電流計1の測定
レンジを設定するとともに、このときの電流を測定する
First, a current is passed through the high resistance 2 without connecting the device to be measured 3 to the connection points 2g and 2b, and the measurement range of the microammeter 1 is set, and the current at this time is measured.

次に、接続点2a、2bに被測定素子3を接続する。微
少電流計1の測定レンジは、高抵抗2により設定された
測定レンジから、被測定素子3のインピーダンスに応じ
て流れる電流に相当する測定レンジへスムーズに移動し
、電流の測定が行なわれる。このときの電流は、被測定
素子3に流れる電流と高抵抗2に流れる電流との和であ
るので、この電流から、測定レンジ設定のために最初に
測定した電流を差し引くことにより、被測定素子3に流
れる電流を求めることができる。
Next, the device to be measured 3 is connected to the connection points 2a and 2b. The measurement range of the microammeter 1 moves smoothly from the measurement range set by the high resistance 2 to the measurement range corresponding to the current flowing according to the impedance of the device to be measured 3, and the current is measured. The current at this time is the sum of the current flowing through the device under test 3 and the current flowing through the high resistance 2, so by subtracting the current initially measured for measurement range setting from this current, The current flowing through 3 can be found.

さらに、同様にして、接続点2a、2bに他の被測定素
子3を接続することにより、その被測定素子3に流れる
電流を求めることができる。
Furthermore, by connecting another device under test 3 to the connection points 2a and 2b in the same manner, the current flowing through the device under test 3 can be determined.

なお、この発明は、10−”〜10−” Aの範囲の微
少電流を測定する場合に効果的である。
Note that the present invention is effective when measuring minute currents in the range of 10-'' to 10-''A.

このように、この測定法によると、最初に高抵抗2によ
り測定開始時の測定レンジが設定されているので、被測
定素子3を取替えた際の測定レンジの移動が減少すると
ともに充電時間がほぼ一定となり、電流が安定になるま
での時間が短くなる。
In this way, according to this measurement method, the measurement range at the start of measurement is initially set by the high resistance 2, so the movement of the measurement range when the device under test 3 is replaced is reduced, and the charging time is approximately The current becomes constant, and the time it takes for the current to become stable becomes shorter.

したがって、短時間で多くの被測定素子3の測定を精度
良く行なうことができる。
Therefore, it is possible to accurately measure many devices under test 3 in a short time.

なお、この測定法は、MOSキャパシタの絶縁リーク電
流を測定する場合に限られず、半導体のpn接合の逆方
向バイアス時のリーク電流、絶縁膜の洩れ電流など、半
導体装置あるいはそれ以外の装置に流れる微少電流を測
定する場合にも適用することができ、同様の効果を奏す
る。
Note that this measurement method is not limited to measuring insulation leakage current of MOS capacitors, but also leakage current during reverse bias of semiconductor pn junctions, leakage current of insulation films, etc. that flows in semiconductor devices or other devices. It can also be applied to the measurement of minute currents and produces similar effects.

[発明の効果コ 以上のようにこの発明によれば、高抵抗により測定開始
時の測定レンジが設定されるので、測定レンジの移動が
減少するとともに電流が安定になるまでの時間が短縮さ
れ、測定レンジの移動がスムーズに行なわれる。したが
って、多くの被測定素子の電流測定を短時間で安定にか
つ精度良く行なうことができる。
[Effects of the Invention] As described above, according to the present invention, since the measurement range at the start of measurement is set using a high resistance, the movement of the measurement range is reduced and the time until the current becomes stable is shortened. The measurement range can be moved smoothly. Therefore, current measurements of many devices to be measured can be performed stably and accurately in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の微少電流測定法に用いる測定回路の
一実施例を示す図、第2図は従来の電流測定回路を示す
図、第3図は微少電流計の入出力部の概略回路を示す図
である。 図において、1は微少電流計、2は高抵抗、2a、2b
は接続点、3は被測定素子、EOは電源である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a diagram showing an embodiment of the measurement circuit used in the microcurrent measurement method of the present invention, Fig. 2 is a diagram showing a conventional current measurement circuit, and Fig. 3 is a schematic circuit of the input/output section of the microcurrent meter. FIG. In the figure, 1 is a microcurrent meter, 2 is a high resistance, 2a, 2b
3 is a connection point, 3 is an element to be measured, and EO is a power supply. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)高インピーダンスの被測定素子に流れる微少電流
を測定する方法であって、 被測定素子のインピーダンスと同程度から1桁程度高い
範囲の抵抗値を有する高抵抗を電流計を介して所定の電
源に接続し前記高抵抗に流れる電流を測定した後、前記
高抵抗に並列に被測定素子を接続して前記高抵抗および
前記被測定素子に流れる電流の合成電流を測定し、前記
合成電流の測定値から前記高抵抗のみに流れる電流の測
定値を差し引くことによって前記被測定素子に流れる電
流を求める微少電流測定法。
(1) A method for measuring minute currents flowing through a high-impedance device under test, in which a high resistance having a resistance value ranging from about the same level as the impedance of the device under test to about an order of magnitude higher is measured via an ammeter at a predetermined value. After connecting to a power source and measuring the current flowing through the high resistance, connect an element under test in parallel to the high resistance and measure the composite current of the current flowing through the high resistance and the element under test. A microcurrent measurement method in which the current flowing through the device under test is determined by subtracting the measured value of the current flowing only through the high resistance from the measured value.
(2)前記微少電流は、10^−^1^4〜10^−^
1^0Aであることを特徴とする特許請求の範囲第1項
記載の微少電流測定法。
(2) The minute current is 10^-^1^4~10^-^
1. The microcurrent measurement method according to claim 1, wherein the current is 1^0A.
JP8908587A 1987-04-10 1987-04-10 Very small current measuring method Pending JPS63253266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8908587A JPS63253266A (en) 1987-04-10 1987-04-10 Very small current measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8908587A JPS63253266A (en) 1987-04-10 1987-04-10 Very small current measuring method

Publications (1)

Publication Number Publication Date
JPS63253266A true JPS63253266A (en) 1988-10-20

Family

ID=13961028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8908587A Pending JPS63253266A (en) 1987-04-10 1987-04-10 Very small current measuring method

Country Status (1)

Country Link
JP (1) JPS63253266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087065A (en) * 2012-10-22 2014-05-12 Keithley Instruments Inc Active shunt ammeter and method of measuring current flowing through device under test

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087065A (en) * 2012-10-22 2014-05-12 Keithley Instruments Inc Active shunt ammeter and method of measuring current flowing through device under test

Similar Documents

Publication Publication Date Title
WO1989008839A1 (en) Electronic battery testing device
US6726361B2 (en) Arrangement for measuring the temperature of an electronic circuit
JPH06258384A (en) Current measuring apparatus for integrated-circuit testing and integrated circuit
US3577072A (en) Bridge circuit for differentially measuring capacitance
JPS63253266A (en) Very small current measuring method
JPS6155284B2 (en)
US3378765A (en) Device for the direct measurement of capacitance
US3914624A (en) Circuit to raise a quantity to a predetermined power
KR0140949B1 (en) Semiconductor integrated circuit device
JPS61110064A (en) Measuring apparatus for circuit constant
CN220305415U (en) Low value resistance measuring circuit
JP3143036B2 (en) Resistivity measurement circuit
SU1084709A1 (en) Device for measuring transistor dissipation parameters
SU428306A1 (en) DEVICE FOR MEASURING RESISTANCE ^^ SHE
GB2307753A (en) Determining electrical impedance
SU1170378A1 (en) Two-terminal network voltage-current characteristic meter
JPH1123664A (en) Measuring circuit of semiconductor device
JP2000146711A (en) Temperature sensor device
JPH0572243A (en) Measuring method of integrated circuit device
KR910004501B1 (en) Signal precessing circuit
JPH0572259A (en) Measuring method for semiconductor integrated circuit device
JPH0524222Y2 (en)
JPS58124973A (en) Measuring device
JPH04244974A (en) Measurement of semiconductor integrated circuit
JPH01301189A (en) Electric characteristic measuring method for semiconductor device