JPS632481B2 - - Google Patents

Info

Publication number
JPS632481B2
JPS632481B2 JP8755682A JP8755682A JPS632481B2 JP S632481 B2 JPS632481 B2 JP S632481B2 JP 8755682 A JP8755682 A JP 8755682A JP 8755682 A JP8755682 A JP 8755682A JP S632481 B2 JPS632481 B2 JP S632481B2
Authority
JP
Japan
Prior art keywords
frp
waveguide
metal
melting point
core metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8755682A
Other languages
Japanese (ja)
Other versions
JPS58204603A (en
Inventor
Toshio Ono
Hidetoshi Kitakoga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8755682A priority Critical patent/JPS58204603A/en
Publication of JPS58204603A publication Critical patent/JPS58204603A/en
Publication of JPS632481B2 publication Critical patent/JPS632481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】 この発明は、繊維強化プラスチツク(以下
FRPと略記する)製の導波管の製造方法に関す
るものである。
[Detailed Description of the Invention] This invention relates to fiber-reinforced plastics (hereinafter referred to as
This article relates to a method of manufacturing a waveguide made of FRP (abbreviated as FRP).

従来、航空、宇宙用に用いられる導波管は軽量
であることが要求されるため、軽金属製のものが
多く使用されてきた。しかし、FRPが比強度、
比剛性が優れていること、および熱膨張係数が小
さいことなどの理由から、最近、FRP製の導波
管の開発が活発化してきている。このような
FRP製の導波管では、FRPの補強材として、た
とえば炭素繊維のようなかなり電気伝導性の優れ
たものを使用したとしても、導波管としての電気
的要求特性を満足させることは困難であり、
FRPの内面に金、銅、銀などの導電性材料で層
を形成(メタライズ)させる必要がある。
Conventionally, waveguides used in aviation and space applications have been required to be lightweight, and thus many have been made of light metal. However, FRP has specific strength,
Recently, FRP waveguides have been actively developed due to their excellent specific stiffness and low coefficient of thermal expansion. like this
In FRP waveguides, it is difficult to satisfy the electrical requirements for a waveguide, even if a material with fairly good electrical conductivity, such as carbon fiber, is used as a reinforcing material for the FRP. can be,
It is necessary to form (metallize) a layer of conductive material such as gold, copper, or silver on the inner surface of FRP.

FRP製の導波管にメタライズする方法として
は、大別して以下の4通りが考えられる。
The following four methods can be considered for metalizing FRP waveguides.

無電解メツキ法…FRPに直接無電解メツキ
(通常は銅)を行なう方法、 気相メツキ法…FRPに金属の直接蒸着、イ
オンプレーテイング、スパツタリングを行なう
方法、 金属箔接着法…金属箔を接着剤でFRPに接
着するかまたは成形用芯金に金属箔を貼付けた
後、FRPを積層する方法、 金属面転写法…芯金にアルミニウムを用い、
この芯金に銅や金をメツキしてFRPを積層成
形した後、アルミニウムをアルカリ溶液で溶解
する方法、 が考えられる。
Electroless plating method: Direct electroless plating (usually copper) on FRP, Vapor phase plating method: Direct vapor deposition, ion plating, or sputtering of metal on FRP, Metal foil adhesion method: Bonding metal foil A method in which FRP is laminated after adhering to FRP with an agent or pasting metal foil on a core metal for molding.Metal surface transfer method...Using aluminum for the core metal,
One possible method is to plate this core metal with copper or gold, layer it with FRP, and then dissolve the aluminum in an alkaline solution.

しかし、上記無電解メツキ、気相メツキ法で
は、引き剥がし強度(90゜T字型引き剥がし法)
が0.5Kg/cm以下というきわめて密着力の弱い特性
しか得られない欠点がある。また、金属箔接着法
では、複雑な形状の導波管に金属箔を貼付けるに
当り、金属箔につなぎ目を設けずに貼付けたり、
均一にしわなどを発生させずに貼付けることは非
常に困難である。さらに、上記金属面転写法で
は、芯金のアルミニウムをアルカリ溶液で溶解さ
せる際にFRPがアルカリ溶液で侵されたり、ま
た芯金のメツキ面のピンホールからアルカリ溶液
がFRP面に浸透し、メツキ面とFRP面との間に
剥離が生じる危険性があるという欠点がある。こ
れらのため、航空、宇宙などの苛酷な環境条件下
で十分に耐えられるようなFRP製の導波管が得
られていないのが現状である。
However, in the electroless plating and vapor phase plating methods mentioned above, the peel strength (90° T-shaped peel method)
It has the disadvantage that only extremely weak adhesion properties can be obtained, with the adhesion being less than 0.5 Kg/cm. In addition, with the metal foil adhesion method, when attaching metal foil to a waveguide with a complex shape, it is possible to attach the metal foil without creating a seam.
It is extremely difficult to apply the adhesive uniformly without causing wrinkles or the like. Furthermore, in the metal surface transfer method described above, when the aluminum of the core metal is dissolved in an alkaline solution, the FRP may be attacked by the alkaline solution, or the alkaline solution may penetrate into the FRP surface through pinholes on the plated surface of the core metal, causing the plating to deteriorate. The disadvantage is that there is a risk of delamination between the surface and the FRP surface. For these reasons, it is currently not possible to obtain FRP waveguides that can sufficiently withstand the harsh environmental conditions of aviation, space, and the like.

この発明は、上述のような従来の製造方法の欠
点を除去しようとするものであつて、FRP製の
導波管の製造に当り、導波管の成形用芯金とし
て、積層成形されたFRPが芯金溶融時に著しく
変形させられたり、分解させられない程度の融点
を有する低融点合金、好ましくは融点が200〜250
℃の合金を用い、さらにこの低融点合金の芯金
に、電気伝導性の優れた銅、金、銀などの金属を
メツキし、この金属メツキ面にガラス繊維、炭素
繊維、アラミツド繊維などの繊維に熱硬化性樹脂
を含浸させて積層し、低融点合金の融点以下の温
度で加熱、加圧して硬化させた後、芯金の低融点
合金のみを加熱溶融させてFRP製の導波管の内
面に上記金属メツキ面を残すことにより、電気的
にも、金属とFRPとの密着強度の点からも、十
分に満足できるFRP製の導波管の製造方法を提
供することを目的としている。
This invention aims to eliminate the drawbacks of the conventional manufacturing method as described above, and in manufacturing a waveguide made of FRP, laminated FRP is used as a core metal for forming the waveguide. A low melting point alloy that does not cause significant deformation or decomposition when the core metal is melted, preferably a melting point of 200 to 250.
℃ alloy, the core metal of this low melting point alloy is plated with metals such as copper, gold, and silver that have excellent electrical conductivity, and fibers such as glass fiber, carbon fiber, aramid fiber, etc. are plated on the metal plated surface. are impregnated with thermosetting resin and laminated, heated and pressurized at a temperature below the melting point of the low melting point alloy to harden it, and then only the low melting point alloy of the core metal is heated and melted to form an FRP waveguide. The object of the present invention is to provide a method for manufacturing an FRP waveguide that is fully satisfactory both electrically and in terms of adhesion strength between the metal and FRP by leaving the metal-plated surface on the inner surface.

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この発明の一実施例の製造方法で得
た炭素繊維強化プラスチツク(以下CFRPと略記
する)製の導波管の概略断面図であり、CFRP1
の内面に、銅膜2および銅の腐食防止用保護膜と
して金膜3を設けてある。第2図は、この実施例
に使用される低融点合金(融点120℃)4を導波
管の内面形状に合せて加工した後、銅2および金
3をメツキした状態の芯金の概略断面図である。
そして、CFRP製の導波管を製造するには、まず
第3図に示すように、第2図の芯金に炭素繊維か
らなる布5をこれにエポキシ樹脂6を含浸させな
がら積層する。次に、第4図に示すように、積層
物上面に全面真空バツク成形用フイルム7を被ぶ
せて成形盤8に載せ、上記フイルム7の周辺部を
シール材9でシールして真空に引き、オートクレ
ーブ10に入れて100℃程度に加熱しかつ加圧し
て硬化させる。硬化後、オートクレーブから取り
出し、第5図に示すように恒温槽11に入れ、約
130℃の雰囲気中で芯金の低融点合金4のみを溶
融して、第1図に示すように、CFRP1の内面に
銅膜2および金膜3が残された導波管を得る。
FIG. 1 is a schematic cross-sectional view of a waveguide made of carbon fiber reinforced plastic (hereinafter abbreviated as CFRP) obtained by the manufacturing method of one embodiment of the present invention.
A copper film 2 and a gold film 3 are provided on the inner surface of the copper film 2 as a protective film for preventing corrosion of the copper. Figure 2 shows a schematic cross-section of a core metal plated with copper 2 and gold 3 after processing the low melting point alloy (melting point 120°C) 4 used in this example to match the inner shape of the waveguide. It is a diagram.
To manufacture a CFRP waveguide, first, as shown in FIG. 3, a cloth 5 made of carbon fiber is laminated on the core metal shown in FIG. 2 while being impregnated with an epoxy resin 6. Next, as shown in FIG. 4, the entire top surface of the laminate is covered with a film 7 for vacuum bag forming, placed on a forming plate 8, the periphery of the film 7 is sealed with a sealing material 9, and evacuated. Place it in an autoclave 10, heat it to about 100°C, and apply pressure to harden it. After curing, take it out from the autoclave and put it in a constant temperature bath 11 as shown in Fig.
Only the low melting point alloy 4 of the core metal is melted in an atmosphere of 130° C. to obtain a waveguide in which the copper film 2 and gold film 3 remain on the inner surface of the CFRP 1, as shown in FIG.

上述したように、この発明の実施例の製造方法
で製造したFRP製の導波管は、FRP成形に用い
られるエポキシ樹脂でメタライズ層が接着されて
いるため、従来の製造方法の無電解メツキ法、気
相メツキ法などのように硬化後に金属をFRPに
付着させたのとは異なり、十分な密着強度が得ら
れ、また従来の製造方法のアルカリ溶液を用いて
芯金のアルミニウムのみを溶解する化学的な金属
面転写法とは異なり、薬品によるFRPの劣化、
FRPとメタライズ層間の劣化などの恐れもなく、
きわめて高品質で、信頼性の高いFRP製の導波
管を製造できる。また、上述した実施例では直線
状の矩形導波管について説明したが、この発明
は、分岐した形状の導波管、ねじり型の導波管、
円形導波管、円形と矩形が結合されたようなきわ
めて複雑な形状の導波管も容易に製造でき、むし
ろこのような芯金の脱型が不可能な形状の導波管
などに非常に有効な製造方法である。
As mentioned above, the FRP waveguide manufactured by the manufacturing method of the embodiment of the present invention has a metallized layer bonded with the epoxy resin used for FRP molding, so it is difficult to use the electroless plating method of the conventional manufacturing method. Unlike the vapor phase plating method, which attaches metal to FRP after curing, sufficient adhesion strength can be obtained, and only the aluminum of the core metal is dissolved using an alkaline solution in conventional manufacturing methods. Unlike the chemical metal surface transfer method, FRP deterioration due to chemicals,
There is no fear of deterioration between FRP and metallized layer,
We can manufacture FRP waveguides of extremely high quality and reliability. Further, in the above-mentioned embodiments, a linear rectangular waveguide was explained, but the present invention can also be applied to a branched waveguide, a twisted waveguide,
It is easy to manufacture waveguides with extremely complex shapes such as circular waveguides and combinations of circular and rectangular shapes, and it is very useful for waveguides with shapes such as this where it is impossible to remove the core metal from the mold. This is an effective manufacturing method.

以上説明したように、この発明の導波管の製造
方法によれば、電気的にも、金属とFRPとの密
着強度についても十分に満足でき、高品質で信頼
性の高いFRP製の導波管を、その形状が複雑な
ものでも容易に製造できるという効果が得られ
る。
As explained above, according to the method for manufacturing a waveguide of the present invention, it is possible to produce a waveguide made of FRP with high quality and reliability, which is fully satisfactory both electrically and in terms of adhesion strength between metal and FRP. The effect is that the tube can be easily manufactured even if the tube has a complicated shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の製造方法によつ
て得た導波管の概略縦断面図、第2図は低融点合
金製芯金に銅および金をメツキした芯金の概略縦
断面図、第3図は芯金にFRPを積層成形した状
態を示す概略縦断面図、第4図はFRPを積層成
形しオートクレーブに入れてFRP製の導波管を
加熱加圧し硬化している状態を示す概略横断面
図、第5図は芯金の低融点合金を加熱溶融してい
る状態を示す概略横断面図である。 1…CFRP、2…銅膜、3…金膜、4…芯金の
低融点合金、5…炭素繊維布、6…エポキシ樹
脂、7…真空バツク成形用フイルム、8…成形
盤、9…シール材、10…オートクレーブ、11
…恒温槽。なお、図中同一符号は同一または相当
部分を示す。
FIG. 1 is a schematic vertical cross-sectional view of a waveguide obtained by a manufacturing method according to an embodiment of the present invention, and FIG. 2 is a schematic vertical cross-sectional view of a core metal made of a low melting point alloy plated with copper and gold. Figure 3 is a schematic vertical cross-sectional view showing the state in which FRP is laminated and molded on a core metal, and Figure 4 is a state in which FRP is laminated and molded, placed in an autoclave, and heated and pressurized to harden the FRP waveguide. FIG. 5 is a schematic cross-sectional view showing a state in which the low melting point alloy of the core metal is heated and melted. 1... CFRP, 2... Copper film, 3... Gold film, 4... Low melting point alloy for core bar, 5... Carbon fiber cloth, 6... Epoxy resin, 7... Film for vacuum back molding, 8... Molding machine, 9... Seal Material, 10...Autoclave, 11
...Thermostat. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強化プラスチツク製の導波管を製造する
に当り、導波管の成形用芯金として融点の低い低
融点合金を用い、さらに低融点合金の芯金に金属
をメツキし、この金属メツキ面に無機または有機
繊維に樹脂を含浸させて積層し、上記低融点合金
の融点以下の温度で加熱加圧して硬化させた後、
芯金の低融点合金のみを加熱溶融させて繊維強化
プラスチツク製の導波管の内面に上記金属メツキ
面を残して導波管とすることを特徴とする導波管
の製造方法。
1. In manufacturing a waveguide made of fiber-reinforced plastic, a low melting point alloy with a low melting point is used as the core metal for forming the waveguide, the core metal of the low melting point alloy is plated with metal, and the metal plated surface is Inorganic or organic fibers are impregnated with resin and laminated, and after hardening by heating and pressurizing at a temperature below the melting point of the low melting point alloy,
A method for producing a waveguide, which comprises heating and melting only the low-melting point alloy of the core metal to leave the metal-plated surface on the inner surface of the fiber-reinforced plastic waveguide.
JP8755682A 1982-05-24 1982-05-24 Manufacture of waveguide Granted JPS58204603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8755682A JPS58204603A (en) 1982-05-24 1982-05-24 Manufacture of waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8755682A JPS58204603A (en) 1982-05-24 1982-05-24 Manufacture of waveguide

Publications (2)

Publication Number Publication Date
JPS58204603A JPS58204603A (en) 1983-11-29
JPS632481B2 true JPS632481B2 (en) 1988-01-19

Family

ID=13918256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8755682A Granted JPS58204603A (en) 1982-05-24 1982-05-24 Manufacture of waveguide

Country Status (1)

Country Link
JP (1) JPS58204603A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605607A (en) * 1983-06-24 1985-01-12 Nippon Telegr & Teleph Corp <Ntt> Flanged waveguide and its manufacture
JPS60185404A (en) * 1984-03-05 1985-09-20 Shimada Phys & Chem Ind Co Ltd Manufacture of waveguide
CA2137165A1 (en) * 1992-06-01 1993-12-09 Eugene Nikolay Ivanov Dielectrically loaded cavity resonator
JP6707428B2 (en) * 2016-09-16 2020-06-10 デクセリアルズ株式会社 Fuse element, fuse element, protection element
CN108486570A (en) * 2018-01-26 2018-09-04 中国电子科技集团公司第三十八研究所 A kind of surface metalation processing method of the carbon fibre composite of thin-walled chamber fissured structure

Also Published As

Publication number Publication date
JPS58204603A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
US4407685A (en) Metallized film transfer process
JP2741330B2 (en) Metal-coated carbon fiber reinforced plastic pipe for rotating body and method of manufacturing the same
US4086378A (en) Stiffened composite structural member and method of fabrication
EP2399739A1 (en) Method for producing resin-based composite
CN101678865A (en) Transport vehicle integrated composite-material vehicle body and preparation method thereof
CN111674057A (en) Forming method of heat insulation preventing layer of cabin section
CN102712173A (en) Processes for production of core material and circuit board
WO2022260186A1 (en) Laminate for pressing, and pressed laminate
JPS632481B2 (en)
CN114030268B (en) Preparation method of honeycomb sandwich structure composite material with high-strength cementing property
CN108454132A (en) A kind of wave transparent heat insulation structural and preparation method
JPH09314744A (en) Manufacture of metal-carbon fiber-reinforced resin composite material hybrid
JPS61152104A (en) Electromagnetic wave reflector
JP2006289980A (en) Fixing method for fixing display body such as mark to composite material and its product
JPS62259819A (en) Manufacture of fiber reinforced plastic material
JPS5946771B2 (en) Molding and electrodeposition method for fiber-reinforced plastic composites
JP2007035835A (en) Manufacturing method of inner tub of cryostat
JP2605451B2 (en) Surface reinforcement method for concrete mold
JPH0314811Y2 (en)
JPS62275727A (en) Manufacture of electromagnetic wave shielding molded item
WO2023062870A1 (en) Metal-prepreg complex
JP2000286565A (en) Enclosure for electronic equipment
JPS62118611A (en) Manufacture of antenna reflection mirror panel
CN215301028U (en) Prepreg
CN216992830U (en) Anti-deformation injection molding mobile phone rear cover