JPS63247617A - Optical scale - Google Patents

Optical scale

Info

Publication number
JPS63247617A
JPS63247617A JP8225287A JP8225287A JPS63247617A JP S63247617 A JPS63247617 A JP S63247617A JP 8225287 A JP8225287 A JP 8225287A JP 8225287 A JP8225287 A JP 8225287A JP S63247617 A JPS63247617 A JP S63247617A
Authority
JP
Japan
Prior art keywords
scale
light
rotary shaft
optical scale
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8225287A
Other languages
Japanese (ja)
Inventor
Tadashi Hanabusa
端 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8225287A priority Critical patent/JPS63247617A/en
Publication of JPS63247617A publication Critical patent/JPS63247617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To fit a circular member to the rotary shaft of a body to be detected stably with high accuracy in a simple assembling process by providing a hole part which has a groove part on its internal wall for fitting the rotary shaft of the body to be detected in the center of rotation of the circular member. CONSTITUTION:An optical scale 3 is provided with the hole part 32 where the rotary shaft 7 is fitted in the center of rotation of a mark part 8 at the peripheral edge part, plural groove parts 31 are provided on the internal wall of the hole part 32, and a flange part 11 is provided so as to increase the joined surface between the scale 3 and rotary shaft 7. When the scale 3 is fitted onto the rotary shaft 7, a spacer with thickness corresponding to a gap l is sandwiched between the scale 3 and a fixed optical grating and while the scale 3 is pressed and rotated, an adhesive is made to flow to between the flange 11 and rotary shaft 7 and into the groove parts 31; and the spacer is drawn out after the adhesive is dried. Then, the gap between the scale 3 and fixed optical grating is adjusted corrected to the length l and the gap has little variation. Thus, the adhesive strength of the flange part 11 is increased by making the adhesive flow in the groove parts 31 although there is almost no gap between the hole part 32 and rotary shaft 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学式スケールに関し、特に光学式ロータリー
エンコーダー等の被検物の回転状態を測定する際に該被
検物に装着する光学式スケールに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical scale, and in particular to an optical scale that is attached to an object to be measured, such as an optical rotary encoder, when measuring the rotational state of the object. It is related to.

(従来の技術) 従来より電子タイプライタ−等の情報機器に3いて、キ
ャリッジ等の可動部の位置・速度を検出する為に、光学
式エンコーダが多く用いられてきた。このような光学式
エンコーダは、通常可動部に固定され、光学式符号が記
録された光学式スケールに光を投射し、該光学式スケー
ルで変調された光を光電変換することによって前記可動
部の位置情報を符号化した電気信号として取り出すよう
に構成されていた。そして、光学式スケールとしては、 (I)金属板にエツチングによりスリットを加工したも
の (II)ガラス、プラスチック等の透明基板上に銀、銅
、クロム、アルミニウムなどの金属を蒸着し、金属層の
みをエツチング辷よってスリット状に削除したもの 等が用いられていた。
(Prior Art) Optical encoders have traditionally been widely used in information devices such as electronic typewriters to detect the position and speed of movable parts such as carriages. Such an optical encoder is usually fixed to a movable part, projects light onto an optical scale on which an optical code is recorded, and photoelectrically converts the light modulated by the optical scale, thereby controlling the movable part. It was configured to extract location information as an encoded electrical signal. Optical scales are (I) a metal plate with slits etched into it (II) metals such as silver, copper, chromium, aluminum, etc. are deposited on a transparent substrate such as glass or plastic, and only the metal layer is used. A slit-like material was used by etching the material into a slit shape.

しかし、これらはエツチング可能なスリット幅が構成上
金属の厚みの2倍以上に制限され、微細な符号を記録す
ることが困難であった。また、製作工程が複雑で、しか
もエツチングに高価な感光性樹脂を用いる為、コスト高
になるといった欠点があった。
However, the width of the slit that can be etched is limited to twice or more the thickness of the metal due to the structure, making it difficult to record fine symbols. In addition, the manufacturing process is complicated, and expensive photosensitive resin is used for etching, resulting in high costs.

又、従来の光学式スケールは、例えば第5図に示すよう
な方法で被検物に取り付けられていた。
Furthermore, conventional optical scales have been attached to objects to be tested, for example, by the method shown in FIG.

第5図は従来の光学式スケールを用いて光学式エンコー
ダを構成した一例の概略図であり、図中21は光源、2
2は金属板をエツチングすることによって光透過部と光
非透過部とを有する標識部を形成した従来の光学式スケ
ール、30はコリメータレンズ、23は金属板をエツチ
ングすることにより製作した固定光学格子、24は受光
素子、25は波形整形回路であり、受光素子24からの
信号、例えば正弦波形を波形整形して同図のSに示した
ような信号波形に整形するものである。26は本光学式
エンコーダにより位置検出をされるべき被検物の回転軸
、27は光学式スケール22を軸26に取り付けるため
に軸26に接着されている取付板、28は光学式スケー
ル22を取付板27に固定する際の押え板であり、29
はその際に用いられるネジである。光源21.固定光学
格子23.受光素子24はプラスチックや金属からなる
ケース(図示せず)に固定され、またケースは回転軸2
6にベアリング等を介して位置決められている。
FIG. 5 is a schematic diagram of an example of an optical encoder configured using a conventional optical scale, in which reference numeral 21 indicates a light source;
2 is a conventional optical scale in which a marking part having a light transmitting part and a non-light transmitting part is formed by etching a metal plate, 30 is a collimator lens, and 23 is a fixed optical grating manufactured by etching a metal plate. , 24 is a light receiving element, and 25 is a waveform shaping circuit, which shapes the signal from the light receiving element 24, for example, a sine waveform, into a signal waveform as shown in S in the figure. Reference numeral 26 indicates a rotation axis of the object to be detected whose position is to be detected by this optical encoder, 27 indicates a mounting plate glued to the shaft 26 in order to attach the optical scale 22 to the shaft 26, and 28 indicates a mounting plate for attaching the optical scale 22 to the shaft 26. It is a holding plate when fixing to the mounting plate 27, and 29
is the screw used at that time. Light source 21. Fixed optical grating 23. The light receiving element 24 is fixed to a case (not shown) made of plastic or metal, and the case is connected to the rotating shaft 2.
6 via a bearing or the like.

ここで、光学式スケール22と固定光学格子23との隙
間は光学式エンコーダの性能に大きく影響を与えるため
微少であり、かつ、光学式スケール22は隙間を変化さ
せることなく回転しなければならない。このためには、
取付板27等に高い部品精度、接着精度が要求され、又
、同時に光学式スケール22を被検物に回転軸26に強
固に安定した状態で取り付けることも要求され、これら
のことを満足させようとすると作業工程及び装置全体が
複雑化してくる傾向があった。
Here, the gap between the optical scale 22 and the fixed optical grating 23 is minute because it greatly affects the performance of the optical encoder, and the optical scale 22 must rotate without changing the gap. For this purpose,
High component accuracy and adhesion accuracy are required for the mounting plate 27, etc., and at the same time, it is also required that the optical scale 22 be firmly and stably attached to the rotating shaft 26 on the test object, so it is necessary to satisfy these requirements. In this case, the work process and the entire device tended to become complicated.

(発明が解決しようとする問題点) 本発明は本出願人の先の出願である特願昭60−143
130号で提案した光学式スケールを更に改良し、簡単
な組立工程で被検物の回転軸に高錆度にしかも安定的に
取り付けることのできる光学式スケールの提供を目的と
する。
(Problems to be solved by the invention) The present invention is based on the patent application filed in Japanese Patent Application No. 60-143, which was filed earlier by the present applicant.
The objective is to further improve the optical scale proposed in No. 130, and to provide an optical scale that can be stably attached to the rotating shaft of a test object with a high degree of rust through a simple assembly process.

(問題点を解決するための手段) 回転可能な円形状の部材の周縁部に設けた、該部材の回
転状態を検出する為の標識部と、該部材の回転中心に被
検物の回転軸を嵌入する為の内壁に溝部を有した穴部と
を設けたことである。
(Means for Solving the Problem) A marking part is provided on the periphery of a rotatable circular member to detect the rotation state of the member, and a rotation axis of the specimen is located at the center of rotation of the member. A hole with a groove is provided in the inner wall for inserting the hole.

この他本発明の特徴は実施例において記載されている。Other features of the invention are described in the Examples.

(実施例) 第1図は、本発明の光学式スケールを用いて光学式エン
コーダを構成した一実施例を示す斜視図である。同図に
おいて、1は光源、2はコリメータレンズ、3は本発明
に基づいたロータリー型の光学式スケールで、被検物の
回転軸7に固定され、この駆動に伴なって回転する。光
学式スケール3の周縁部には、光透過部と光非透過部と
が交互に形成された標識部8と回転軸7に嵌入させる為
の回転中心に設けた穴部32、そして後述するように穴
部32の内壁には複数の溝部31とが設けられている。
(Embodiment) FIG. 1 is a perspective view showing an embodiment of an optical encoder using the optical scale of the present invention. In the figure, 1 is a light source, 2 is a collimator lens, and 3 is a rotary type optical scale based on the present invention, which is fixed to a rotation axis 7 of the object to be examined and rotates as the object is driven. The periphery of the optical scale 3 includes a marking part 8 in which light-transmitting parts and non-light-transmitting parts are formed alternately, a hole part 32 provided at the center of rotation for fitting the rotating shaft 7, and as described later. A plurality of grooves 31 are provided on the inner wall of the hole 32.

11はフランジ部で光学式スケール3を回転軸7に嵌入
する際の双方の接合面を増大させている。
Reference numeral 11 denotes a flange portion which increases the contact surface between the optical scale 3 and the rotary shaft 7 when the optical scale 3 is inserted into the rotating shaft 7.

4は透明部材から成る固定光学格子で、5は前記透明光
学路Y−4を透過した光を電気信号に変換する受光素子
、6は波形整形回路で、受光素子5からの出力信号を波
形整形して同図の右側にSで示したような信号波形に整
形するものである。
4 is a fixed optical grating made of a transparent member, 5 is a light receiving element that converts the light transmitted through the transparent optical path Y-4 into an electrical signal, and 6 is a waveform shaping circuit that shapes the waveform of the output signal from the light receiving element 5. Then, the signal waveform is shaped as shown by S on the right side of the figure.

第2図(A)、(B)は、航記光学式スケール3の構成
を示す概略図であり、同図(A)は下面から見た図、同
図(B)は同図(A)のAA’における略断面図である
。光学式スケール3はガラス、プラスチック等の透過性
部材を用いて、凸状の標識部8とフランジ部11とが一
体に成形されて成る。またこの標識部8には、光透過部
9と光非透過部lOとが交互に規則正しく形成され、該
標識部8により第1図にように照射された光を変調する
FIGS. 2(A) and 2(B) are schematic diagrams showing the configuration of the navigation optical scale 3; FIG. 2(A) is a view seen from the bottom, and FIG. It is a schematic cross-sectional view at AA' of The optical scale 3 is formed by integrally molding a convex marker portion 8 and a flange portion 11 using a transparent member such as glass or plastic. Further, light transmitting portions 9 and light non-transmitting portions 1O are regularly and alternately formed in this marker portion 8, and the light irradiated by the marker portion 8 is modulated as shown in FIG.

第3図は、第2図(A)におけるBB’の1部断面図で
ある。館述の光透過部9は、入射光L1に対し、その入
射角が臨界角より小さな角度をなす、例えば9aのよう
な平坦面から成る。また、光非透過部10は、入射光L
2に対し、その入射角が臨界角以上の角度となるように
傾斜している傾斜面10a及び10bから成る。例えば
、傾斜面10aと10bのなす角度を90°とし、傾斜
面10aと10bとを合わせた水平方向の幅W+(入射
光の光軸に垂直な面への傾斜面の投影像の幅を示す)と
平坦面9a夫々の幅W2とを同一とする。すると同図か
ら明らかなように、傾斜部10aに入射した光は入射角
が45°となるので全反射されて直角に反射され、もう
1つの他の傾斜部Jobに45°の角度をなして入射し
、再び全反射されて直角に反射されてもとの入射側に戻
る。又、傾斜部10bに入射した光についても上記と同
様に入射側に戻る。ところが、平坦面9aに入射する光
はそのまま透過してしまう。このことは平坦面のみが開
口のスリットの役割を果たすことを意味する。従って、
この光学式スケール3は丁度スリットと遮光部が同一幅
、等ピッチで配列されたものと同じとなる。又、眞述の
固定光学格子4にも光学式スケール3と同様の凹凸が形
成されている。
FIG. 3 is a partial sectional view of BB' in FIG. 2(A). The light transmitting section 9 mentioned above is made of a flat surface, such as 9a, which has an angle of incidence smaller than the critical angle with respect to the incident light L1. In addition, the light non-transmissive portion 10 is configured so that the incident light L
2, it consists of inclined surfaces 10a and 10b which are inclined so that the angle of incidence is greater than the critical angle. For example, assuming that the angle formed by the inclined surfaces 10a and 10b is 90°, the combined horizontal width W+ of the inclined surfaces 10a and 10b (indicates the width of the projected image of the inclined surface on a plane perpendicular to the optical axis of the incident light) ) and the width W2 of each flat surface 9a are the same. Then, as is clear from the figure, the light incident on the slope 10a has an incident angle of 45°, so it is totally reflected and reflected at a right angle, and the light enters another slope Job at an angle of 45°. The light enters, is totally reflected again, is reflected at right angles, and returns to the original incident side. Further, the light incident on the inclined portion 10b also returns to the incident side in the same manner as described above. However, the light incident on the flat surface 9a is transmitted as is. This means that only the flat surface plays the role of the opening slit. Therefore,
This optical scale 3 is exactly the same as one in which slits and light shielding parts are arranged with the same width and at equal pitches. Further, the fixed optical grating 4 mentioned above also has concavities and convexities similar to those of the optical scale 3.

次に、本発明の光学式スケールを用いた光学式エンコー
ダの動作を第1図及び第4図(八) 、 (B)を用い
て説明する。第4図(八) 、 (B)は光学式スケー
ル3.固定光学格子4及び受光素子5の略断面図で5間
図(A)が光学式スケール3と固定光学格子4とに形成
された標識の位相が一致した状態、同図(B)が1/2
周期位相がずれた状態を示す。
Next, the operation of the optical encoder using the optical scale of the present invention will be explained using FIG. 1 and FIG. 4 (8) and (B). Figures 4 (8) and (B) show the optical scale 3. In the schematic cross-sectional views of the fixed optical grating 4 and the light receiving element 5, (A) shows the state in which the phases of the marks formed on the optical scale 3 and the fixed optical grating 4 match, and (B) shows the state in which the phases of the marks formed on the optical scale 3 and the fixed optical grating 4 match. 2
Indicates a state where the periodic phase is shifted.

第1図において、光源lからの光はコリメータレンズ2
により平行光とされ光学式スケール3の上方から入射す
る。上述のように上方から入射した光はその平坦面で光
学式スケール3を透過する。又、その傾斜面では2回全
反射されて光学式スケール3を透過しない。従って、光
学式スケール3を透過した光により規則的な光の明暗分
布を生じる。ここで光学式スケール3はその回転軸7と
共に図示矢印方向に回転し、その明暗分布も同方向に移
動する。ここで、固定光学格子4と光学式スケールとに
形成された符号は同一、即ち、固定光学格子4の明暗分
布と、入射する光の明暗分布とは等ピッチとなっている
ので、双方の凹凸の位相が第4図(A)の如く一致した
時には、光学式スケール3を透過した光は全て固定光学
格子4を透過するので受光素子5へ入射する光量は最大
となる。又、凹凸の位相が第4図(B)のように1/2
周期ズした時には光学格子同士の傾斜面と平坦面とが夫
々対応した位置となるので、光学式スケール3を透過す
る光は全て固定光学格子4の傾斜面で2回全反射されて
入射側に戻り、受光素子5へ入射する光量は最小となる
In Fig. 1, the light from the light source l is transmitted through the collimator lens 2.
The light is made into parallel light and enters the optical scale 3 from above. As described above, the light incident from above is transmitted through the optical scale 3 through its flat surface. Furthermore, the light is totally reflected twice on the inclined surface and does not pass through the optical scale 3. Therefore, the light transmitted through the optical scale 3 produces a regular brightness/darkness distribution of light. Here, the optical scale 3 rotates in the direction of the arrow shown in the figure together with its rotation axis 7, and its brightness distribution also moves in the same direction. Here, the signs formed on the fixed optical grating 4 and the optical scale are the same, that is, the brightness distribution of the fixed optical grating 4 and the brightness and darkness distribution of the incident light are at the same pitch, so the unevenness of both When the phases match as shown in FIG. 4(A), all of the light that has passed through the optical scale 3 passes through the fixed optical grating 4, so the amount of light that enters the light receiving element 5 becomes maximum. Also, the phase of the unevenness is 1/2 as shown in Figure 4 (B).
When the period is shifted, the inclined surfaces and flat surfaces of the optical gratings correspond to each other, so all the light that passes through the optical scale 3 is totally reflected twice by the inclined surface of the fixed optical grating 4 and returns to the incident side. The amount of light that returns and enters the light receiving element 5 becomes minimum.

そして、この光量が最大になるときと最小になるときと
の間には、光学式スケール3の平坦面と固定光学格子4
の平坦面とが部分的に一致し、その一致した部分の面積
の割合に応じた光量を受光素子5は受光する。従って、
受光素子5からの出力信号は正弦波状となり、この出力
信号は波形整形回路6により第1図のSのようなパルス
状の信号に整形される。
Between the time when the amount of light is maximum and the time when it is minimum, there is a gap between the flat surface of the optical scale 3 and the fixed optical grating 4.
The light-receiving element 5 receives a light amount corresponding to the proportion of the area of the matched portion. Therefore,
The output signal from the light-receiving element 5 has a sinusoidal waveform, and this output signal is shaped by the waveform shaping circuit 6 into a pulse-like signal such as S in FIG.

本発明の光学式スケールは、例えば第2図の如きスケー
ルと同一形状のマスク型を加工し、ここからNi電鋳等
によって反転型をとり、次にこれを成形用金型として、
プラスチック等の材料に凹凸を転写することによって作
製される。従って、被検物(実施例では回転軸7)にス
ケールを取り付ける為の接合部たるフランジ部11も、
高精度にしかも簡単に形成される。又、第1図において
、光学式スケール3を回転軸7に取り付ける場合には、
まず光学式スケール3と固定光学格子4間の受光素子5
に形容を与えない部分に、隙間lに相当する厚さのスペ
ーサーをはさみ、次に光学式スケール3を押さえて回転
させながらフランジ部11と回転軸7との間及び溝部3
1に接着剤を流し込む。そして、接着剤が完全に乾燥し
た後、スペーサーを引きぬく。この作業によって光学式
スケール3と固定光学格子4との隙間は正しくスペーサ
ーの厚み!に調整され、又回転させながら接着されるの
で隙間の変化はほとんどない。
For the optical scale of the present invention, for example, a mask mold having the same shape as the scale as shown in FIG.
It is manufactured by transferring the unevenness to a material such as plastic. Therefore, the flange part 11, which is the joint part for attaching the scale to the test object (rotary shaft 7 in the embodiment), also
It can be easily formed with high precision. In addition, in FIG. 1, when attaching the optical scale 3 to the rotating shaft 7,
First, the light receiving element 5 between the optical scale 3 and the fixed optical grating 4
A spacer with a thickness corresponding to the gap l is inserted between the parts that do not give shape to the spacer, and then the optical scale 3 is held down and rotated while the spacer between the flange part 11 and the rotating shaft 7 and the groove part 3 are inserted.
Pour the adhesive into 1. Then, after the adhesive is completely dry, pull out the spacer. With this process, the gap between the optical scale 3 and the fixed optical grating 4 is the correct thickness of the spacer! Since it is adjusted and glued while rotating, there is almost no change in the gap.

特に本実施例ではフランジ部11に設けた穴部32と回
転軸7との取付精度を高める為に、双方の嵌合がきつく
なるようにしている。この為穴部32と回転軸7との隙
間は全んどなくなるが、穴部32の内壁に複数の溝部3
1を設け、該構部31に接着剤を流し込むようにして、
これによりフランジ部11の接着強度を高めている。
In particular, in this embodiment, in order to improve the accuracy of attachment between the hole 32 provided in the flange portion 11 and the rotary shaft 7, the fitting between the two is made tight. Therefore, the gap between the hole 32 and the rotating shaft 7 is completely eliminated, but there are a plurality of grooves 3 on the inner wall of the hole 32.
1 and pour the adhesive into the structural part 31,
This increases the adhesive strength of the flange portion 11.

尚、本実施例において穴部32の内壁に設ける溝部31
は回転軸7の回転軸方向に平行に又は非平行に複数個設
けても良く、又、内壁に添って螺施状や8次状に設けて
も良い。
Note that in this embodiment, the groove 31 provided on the inner wall of the hole 32
A plurality of these may be provided in parallel or non-parallel to the direction of the rotation axis of the rotating shaft 7, or may be provided in a spiral shape or an octagonal shape along the inner wall.

又、本実施例においては溝部31をフランジ部11の穴
部32の代わりに回転軸7の外周に若しくは双方に設け
ても良い。
Further, in this embodiment, the groove portion 31 may be provided on the outer periphery of the rotating shaft 7 or on both sides instead of the hole portion 32 of the flange portion 11.

尚、光学式スケール3と固定光学格子4との間に設ける
スペーサーとしては、ウレタンシート等を使用すると、
光学式スケールに傷が付きにくく好都合である。又、ス
ペーサーをはさみ込む場所として、光学式スケール3の
標識部8の更に外周に平坦な部分を設け、これに対向す
る固定光学格子4の部分も平坦に形成して、これらの平
坦部を基準にすると、より作業が容易となる。
Note that if a urethane sheet or the like is used as a spacer between the optical scale 3 and the fixed optical grating 4,
This is advantageous because the optical scale is less likely to be scratched. Further, a flat part is provided on the outer periphery of the marking part 8 of the optical scale 3 as a place for inserting the spacer, and a part of the fixed optical grating 4 facing this is also formed flat, and these flat parts are used as a reference. This will make the work easier.

本発明は、以上の実施例に限らず、紳々の応用が可能で
ある。例えば光学式エンコーダに用いる場合、透過光で
はなく、反射光を検出するようにしてもかまわない。
The present invention is not limited to the above embodiments, and can be applied in various ways. For example, when used in an optical encoder, reflected light may be detected instead of transmitted light.

(発明の効果) 本発明によれば光学式スケールの回転軸取付は用穴部の
内壁に溝部を一体成形して設けることにより、被検物の
回転軸への取付けを容易にし、しかも取付は強度を高め
た高精度の光学式スケールを達成することができる。
(Effects of the Invention) According to the present invention, the rotary shaft of the optical scale is mounted by integrally molding the groove on the inner wall of the hole, thereby making it easy to mount the object to be measured on the rotary shaft. A highly accurate optical scale with increased strength can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学式スケールを用いて光学式エンコ
ーダを構成した例を示す斜視図、第2図(Δ) 、 (
B)は夫々本発明の光学式スケールの一実施例を示す概
略図、第3図は第2図の光学式スケールの部分断面図、
第4図(八) 、 (B)は夫々第1図の光学式エンコ
ーダの動作を説明する要部断面図、第5図は従来の光学
式スケールを用いた光学式エンコーダの構成例を示す斜
視図である。 3−−−−−−光学式スケール、8−−−−−標識部、
9・・・・・・光透過部    9 a−=平坦面、1
0−・・光非透過部、 10a、10b −傾斜部、   11−・・フランジ
部、32−・・穴部、      31・・・溝部。
Fig. 1 is a perspective view showing an example of an optical encoder configured using the optical scale of the present invention, and Fig. 2 (Δ), (
B) is a schematic diagram showing one embodiment of the optical scale of the present invention, FIG. 3 is a partial cross-sectional view of the optical scale of FIG. 2,
Figures 4 (8) and (B) are sectional views of essential parts explaining the operation of the optical encoder shown in Figure 1, respectively, and Figure 5 is a perspective view showing an example of the configuration of an optical encoder using a conventional optical scale. It is a diagram. 3------Optical scale, 8---Label part,
9...Light transmitting part 9 a-=flat surface, 1
0--Light non-transmissive portion, 10a, 10b-Slanted portion, 11--Flange portion, 32--Hole portion, 31--Groove portion.

Claims (2)

【特許請求の範囲】[Claims] (1)回転可能な円形状の部材の周縁部に設けた、該部
材の回転状態を検出する為の標識部と、該部材の回転中
心に被検物の回転軸を嵌入する為の内壁に溝部を有した
穴部とを設けたことを特徴とする光学式スケール。
(1) A marking part provided on the peripheral edge of a rotatable circular member to detect the rotational state of the member, and an inner wall for fitting the rotation axis of the specimen into the rotation center of the member. An optical scale characterized by having a hole having a groove.
(2)前記部材を透光性部材より構成すると共に、前記
標識部を光透過部と入射光線に対し、その入射角が臨界
角以上となるように設定した傾斜面から成る光非透過部
とを交互に設けて構成したことを特徴とする特許請求の
範囲第1項記載の光学式スケール。
(2) The member is made of a light-transmitting member, and the marking part is made of a light-transmitting part and a light-impermeable part consisting of an inclined surface set such that the angle of incidence is equal to or greater than a critical angle with respect to the incident light beam. 2. The optical scale according to claim 1, wherein the optical scale is configured by alternately providing the following.
JP8225287A 1987-04-03 1987-04-03 Optical scale Pending JPS63247617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8225287A JPS63247617A (en) 1987-04-03 1987-04-03 Optical scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8225287A JPS63247617A (en) 1987-04-03 1987-04-03 Optical scale

Publications (1)

Publication Number Publication Date
JPS63247617A true JPS63247617A (en) 1988-10-14

Family

ID=13769248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8225287A Pending JPS63247617A (en) 1987-04-03 1987-04-03 Optical scale

Country Status (1)

Country Link
JP (1) JPS63247617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161311A (en) * 1988-12-14 1990-06-21 Matsushita Electric Ind Co Ltd Optical encoder
JPH02118823U (en) * 1989-03-13 1990-09-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161311A (en) * 1988-12-14 1990-06-21 Matsushita Electric Ind Co Ltd Optical encoder
JPH02118823U (en) * 1989-03-13 1990-09-25

Similar Documents

Publication Publication Date Title
KR100900873B1 (en) Optical encoder and apparatus using optical encoder
US7332711B2 (en) Photoelectric encoder, scale therefor and method for manufacturing the same
US7061624B2 (en) Grating interference type optical encoder
JP3196459B2 (en) Rotary encoder
US10094684B2 (en) Method of manufacturing rotary scale, rotary scale, rotary encoder, driving apparatus, image pickup apparatus and robot apparatus
GB2095399A (en) Photoelectrical displacement-measuring device
US7586621B2 (en) Displacement-measuring optical scale and optical encoder using same
JP2008256655A (en) Optical displacement measuring apparatus
US9035232B2 (en) Method for working out the eccentricity and the angular position of a rotating element and device for carrying out such a method
JPS63247617A (en) Optical scale
JPS623617A (en) Optical scale
JPH0584818U (en) Optical scale
JPS625127A (en) Optical scale
JP2002257595A (en) Device and method for detecting rotational displacement quantity, correcting device and method and disk
JPH0271118A (en) Apparatus for optically detecting position or speed of moving body
JPS625129A (en) Optical scale
JPS623616A (en) Optical scale
JPS625130A (en) Optical encoder
JP2810521B2 (en) Rotary encoder and device using the same
JPH0425616Y2 (en)
JPS62128615A (en) Optical encoder
JPS62135724A (en) Optical scale
JP2002277286A (en) Device of detecting rotation displacement amount and disk
JP2001012968A (en) Rotary encoder
JPS625131A (en) Optical scale