JPS6324414B2 - - Google Patents

Info

Publication number
JPS6324414B2
JPS6324414B2 JP59056516A JP5651684A JPS6324414B2 JP S6324414 B2 JPS6324414 B2 JP S6324414B2 JP 59056516 A JP59056516 A JP 59056516A JP 5651684 A JP5651684 A JP 5651684A JP S6324414 B2 JPS6324414 B2 JP S6324414B2
Authority
JP
Japan
Prior art keywords
activated carbon
amine
impregnated
acid
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59056516A
Other languages
Japanese (ja)
Other versions
JPS60202735A (en
Inventor
Nobuo Ishizaki
Hiroshi Shimizu
Seiji Watanuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59056516A priority Critical patent/JPS60202735A/en
Publication of JPS60202735A publication Critical patent/JPS60202735A/en
Publication of JPS6324414B2 publication Critical patent/JPS6324414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は気相中のアルデヒド類に対して優れた
吸着性能を発揮する活性炭素吸着剤に関するもの
である。 近年自動車室内、家庭の居間、喫茶店の如き密
閉された小空間でのタバコの煙中の刺激性成分
(例えばアセトアルデヒド、ホルムアルデヒド)
を効率よく除去するフイルターの要望は増大しつ
つある。 通常の粒状活性炭吸着剤は、空気中の有害物質
(例えばベンゼン、クロロホルム等)を低濃度で
も比較的高い平衡吸着量で吸着するため現在広く
利用されている。しかしながら、これらの吸着剤
はホルムアルデヒド、アセトアルデヒド、アクロ
レインの如き低濃度で刺激性の強いアルデヒド類
ガス成分に対しては平衡吸着量が低く、かつ吸着
されたガスが濃縮されて脱着するという欠点を有
していた。 上記欠点を解消すべく、例えば特開昭56−
53744号公報に記載の如く活性炭にアニリンを添
着させた吸着剤を用いて気相中のアルデヒド類を
除去する方法が試みられている。しかしながらこ
の方法とても満足な結果を与えるものでない。と
いうのは使用する活性炭は通常のヤシガラ活性炭
あるいは石炭系活性炭である為、細孔直径30Å以
下の細孔容積量が小さいため添着剤(アニリン)
の添着効果が小さいという欠点を内在させるもの
であつたし、添着剤(アニリン)自身アルデヒド
類の吸着に対して経時的に不安定なデメリツトを
有し、又発ガン性があるとされているものなので
実用化には問題があつた。 本発明者等は、かかる在来技術を改良すべく検
討した結果、特異な細孔構造を有する活性炭素材
に特定のアミン化合物を添着させて作製した吸着
剤が人体に何等悪影響を及ぼすことなく気相中の
アルデヒド類を効率よく長期間に亘り除去するこ
とを見い出して本発明に到達した。 尚、活性炭素の細孔直径および細孔容積は、常
圧下の液体窒素の沸点(−195.8℃)における吸
着側の窒素ガス吸着等温線を用いてクランストン
−インクレー(Cranston−Inkley)の計算法に
より求めた。なお、多分子吸着層と相対圧との関
係は t(Å)=3.54〔5/1n(PS/P)〕1/3 なる修正フレンケル−ハルシー(Frenkel−
Halsey)の式(慶伊富長「吸着」共立出版)よ
り計算した。 但し、細孔直径300Åに相当する相対圧での窒
素ガス吸着量に標準状態における気体窒素の密度
の比(1.584×10-3)を乗じた値を細孔直径300Å
以下の全細孔容積とみなした。 まず本発明において使用する活性炭素材につい
て説明する。本発明に用いる活性炭素材は細孔直
径300Å以下の細孔の容積が0.4c.c./g以上、且つ
細孔直径30Å以下の細孔容積の細孔直径300Å以
下の細孔容積に対して占める比率(以下αと略
称)が80%以上の活性炭素材であることが必須で
ある。 即ち、細孔直径300Å以下の細孔容積V1が0.4
c.c./g未満であつたり、細孔直径30Å以下の比率
αが80%未満の活性炭素材の使用では、いくら本
発明のアミン化合物を添着したとしてもその添着
効果および寿命が充分でなく好ましい結果を与え
ない。 上記、特定細孔構造を有する活性炭素材は、例
えば次のような方法で製造される。即ち、(1)再生
セルロース繊維、ノボラツク型フエノール樹脂繊
維を炭化後、水蒸気で高温活性化処理を施す方法
(2)市販粒状ヤシガラ活性炭を高温下、水蒸気で再
活性化処理を施す方法等を挙げることができる。
もちろん、細孔直径300Å以下の細孔容積が0.4
c.c./g以上で、且つ、細孔直径30Å以下の細孔容
積の占める比率が80%以上の活性炭素を与える方
法であれば、上記方法に限定されるものではな
い。 活性炭素材の形状は上記の如く粉末状、粒状、
繊維状いずれでもよいが吸着性、添着処理の容易
さの点より微粒状、粉末状、特に粒径が30μ以下
の微粉末状が好適である。 本発明は前述した様な活性炭素材を用いること
により添着層の吸着面積を物理的に増加させて気
相中のアルデヒド類を効率よく除去するものであ
るが、他方用いる添着剤自身、公知のものに比し
てアルデヒド類を経時依存がなくよく化学的に吸
着するものであつてこれらの物理的、化学的作用
が相乗的に働いて顕著なアルデヒド吸着、除去が
はじめてなされたものである。 次に本発明に用いるアミン化合物について説明
する。本発明に用いるアミン化合物は20℃での蒸
気圧が10mmHg以下の脂肪族系第1級アミンもし
くは第2級アミンのものであることが必須であ
る。第1級アミン/第2級アミンの中でも蒸気圧
が10mmHgを超えるものは添着後飛散するとか、
臭気が立つ等問題が多い。本発明に用いる脂肪族
第1級アミンあるいは第2級アミンとしてモノエ
タノールアミン、N−アミノエチルエタノールア
ミン、N−メチルエタノールアミン、エチルモノ
エタノールアミン、ジメチルエタノールアミン、
ジエチルエタノールアミン等のエタノール系アミ
ン;モノイソプロパノールアミン;トリエチレン
テトラミン、テトラエチレンペンタミン、ヘキサ
メチレンジアミン、ベンジルアミン、キシリレン
ジアミン等が挙げられるが、好適には上記のエタ
ノール系アミンが挙げられる(なお、本発明の脂
肪族系アミンとは芳香環にN原子が直接結合しな
いアミン化合物であり、ベンジルアミン、キシリ
レンジアミンの様な芳香環とN原子との間にCH2
基が介在しているものも含む)。なお、脂肪族系
第3級アミンはアルデヒドと反応性が低いので本
発明では採用しない。また芳香族アミン(アニリ
ン、フエニレンジアミン、ナフチルアミン等)は
前述した様に人体への有害性、また保存中(この
ものを添着して作製したフイルターを保存中)の
分解が惹起し、吸着性能が経時的に減少するので
本発明では採用しない。 また本発明の吸着剤は活性炭素材に上記アミン
化合物を添着して作製されるが、アミン化合物の
活性炭素材への添着量は0.1〜50重量%、好まし
くは1〜30重量%である。添着は、20℃での蒸気
圧10mmHg以下の脂肪族系第1級アミン又は第2
級アミンの溶液を活性炭素材にスプレー塗布後、
乾燥する方法あるいは所定濃度の該アミン化合物
溶液に、所定量の活性炭素材を浸漬、濾過するこ
と等により達成できる。 さらに、該アミンとして下記のようなpKaが
3.5〜5.5の弱酸で緩衝したものを添着すると、さ
らにアルデヒドガスへの除去効果が向上する。即
ち、酢酸、プロピオン酸、酪酸、纐草酸、カプリ
ン酸、エナント酸(CH3−(CH25COOH)、ペラ
ルゴン酸(CH3−(CH27−COOH)、のような飽
和モノカルボン酸、乳酸、琥珀酸、安息香酸、グ
ルタミン酸、カルボキシメチルセルロース
(CMC)、アルギン酸、ポリメタリツク酸等があ
る。緩衝の方法としては、アミン水溶液に弱酸あ
るいは弱酸の塩を添加する方法あるいは、アミン
を吸着させた活性炭スラリーに弱酸あるいは弱酸
の塩を添加する方法がある。 本発明に係る吸着剤は例えばフイルター用途に
適用される。本発明の吸着剤を適用するフイルタ
ーは、(1)本発明に係る微粉末状の活性炭素材に本
発明のアミンを添着後、アルギン酸ソーダ、カル
ボキシメチルセルロース、水ガラス、シリカゾ
ル、ポリスチレン溶液等の溶液に分散し、紙、不
織布、フオーム材、ハニカム状フイルター、多孔
性の粒状物等に塗布、乾燥してつくる方法、ある
いは()該活性炭素材を通気性のあるシート状あ
るいはシート化、段加工後、ハニカム状に成形
し、この後アミン添着処理を施す方法あるいは
()微粒状の活性炭素材に本発明のアミンを添着
後、不織布、トウ、織物等に接着剤とともにまぶ
す方法等がある。 特に、吸着剤のアルデヒド類ガスへの接触効率
と通気性のバランスが良好なハニカム状フイルタ
ーあるいは多孔性ウレタン・フオーム(商品名:
エバー・ライト・スコツト;ブリジストンタイヤ
KK)へのコーテイング・フイルターの使用が好
ましい。 本発明の吸着剤は、特定の分子構造を有するア
ミンが特定の細孔分布をもつ活性炭素に添着され
ているため、有害かつ高刺激性のアルデヒドガス
に対し優れた吸着性能を示すこと、添着薬品の再
飛散が無いこと、又、アルデヒド・ガスのみに選
択的に化学吸着するため、他の有機性ガスの吸着
による劣化が小さいという特徴を有する。 従つて、ホルムアルデヒド、アセトアルデヒド
等が充満しやすい自動車内、電車車輛内、喫茶
店、映画館、遊ぎ場あるいは、家庭の居間に本発
明に係る吸着剤を使用したフイルターを設置する
と効率よく上記有害ガスを除去し、通気抵抗も低
く、室内の暖冷房効果を低下させることが少ない
というメリツトを有する。又、シガレツト・フイ
ルター用吸着剤として使用すると、タバコ煙の刺
激成分を効率よく除去するため喫味の改良効果が
計れるという特徴も有する。 以下本発明の実施例を記載するが、本発明はこ
れら実施例に何ら限定されるものではない。 実施例 1 1.5dの再生セルロース繊維に、リン酸アンモニ
ウムを10重量%含浸、乾燥後、不活性ガス中で室
温から60℃/hの昇温速度で300℃まで熱処理を施
し耐炎性繊維を得た。次いで、この耐炎性繊維を
水蒸気含有不活性ガス中で400℃/hrの昇温速度で
900℃まで昇温し、1hrその温度で保持し、活性化
処理を施した。V1が0.78c.c./g、α=92%の繊維
状活性炭が得られた。上記活性炭素材60部、水
度がSR30゜に叩解されたNBKPパルプ(針葉樹ブ
リーチングクラフトパルプ)40部及びポリビニル
アルコール繊維7部の組成で、ヤンキー型湿式抄
紙機で活性炭素ペーパーを45g/m2の目付で抄造
した。ペーパー厚み0.20mmの活性炭素紙を得た。
次いで該炭素紙をコルゲート加工機でピツチ巾
3.1mm、ピツチ高2.1mmの片面段ボール・シートに
形成した。 該片面段ボール・シートを、層長2.0cmにスリ
ツト後、直径15cmの円板状に巻き上げ、ハニカム
状フイルターを得た。 該ハニカム・フイルターを、琥珀酸でPH7に調
整したアミノエチル・エタノールアミン(20℃で
の蒸気圧0.01mmHg以下)の20重量%の水溶液に
30分間浸漬後、風乾し、アミノエチル・エタノー
ルアミンが20重量%添着されたフイルターを得
た。得られたフイルターについて下記の方法に基
づいてアルデヒドガス吸着性を評価した。 即ち、該フイルターを市販の小型室内空気清浄
器(松下電工製 エアーリフレ)に装填した。 該空気清浄器を2.7m2のアセトアルデヒドガス
を約3ppmで満たされたプラスチツク製ボツクス
の中央に設置し、風量0.53m2/minで運転した。
アセトアルデヒドガスの減衰曲線を30分にわたり
FID法式ガスクロマトグラフで測定した。該減衰
曲線を1次反応式と仮定して、その反応速度定数
を計算し、これをフイルターのアセトアルデヒド
ガスへの吸収能のメジヤーとした。上記の評価に
よるフイルターのアセトアルデヒド吸着性能を表
1に示す。なお、第1表中添着後3hrs、1weekと
あるのはフイルター作製後3時間、1週間放置し
た後のフイルター性能である。なお、フイルター
を放置した場所は映画館とした。 比較例 1 実施例1の活性化条件を850℃、0.5hrで変更
し、V1=0.35c.c./g α=97% の繊維状活性炭を得た。 該活性炭を用い実施例1と同じように抄紙、段
ボール、ハニカム・フイルターをつくり、琥珀酸
中和アミノエチルエタノールアミンを20重量%添
着処理して実施例1と同じ方法でアセトアルデヒ
ドの性能評価を試みた。第1表に結果を示す。 比較例 2 実施例1で得た再生セルロース系活性炭素繊維
に酢酸マグネシウムを含浸・添着後900℃の水蒸
気含有燃焼ガス雰囲気で再活性化処理を施し、 V1が0.90c.c./g αが55% の繊維状活性炭を得た。これを用いて、実施例1
と同じように抄紙、段ボール、ハニカム・フイル
ターをつくり、琥珀酸中和アミノエチルエタノー
ルアミンを20重量%添着処理して実施例1と同じ
方法でアセトアルデヒドの性能評価を試みた。第
1表に結果を示す。 実施例 2 2dのノボラツク型フエノール樹脂繊維を、水
蒸気含有不活性ガス中で400℃/hの昇温速度で
900℃まで2h、その温度で保持し、活性化処理を
施した。 V1が0.80c.c./g αが95% の繊維状活性炭が得られた。これを用いて、実施
例1と同じように抄紙、段ボール、ハニカム・フ
イルターをつくり、プロピオン酸中和アミノエチ
ルエタノールアミンを20重量%添着処理して実施
例1と同じ方法でアセトアルデヒドの性能評価を
試みた。第1表に結果を示す。 比較例 3 市販ヤシガラ活性炭 V1=0.30c.c./g α=97% を粗粉砕後、ボール・ミルで平均粒径20μmに微
粉砕した。該活性炭素を用いて実施例1と同様に
抄紙、段ボール化後、ハニカム・フイルターをつ
くり、プロピオン酸中和アミノエチルエタノール
アミンを20重量%添着処理した後、実施例1と同
様な方法でアセトアルデヒドの吸収速度を測定し
た。結果を第1表に示す。 比較例 4 市販石炭系活性炭 V1=0.50c.c./g α=60% をボール・ミルで、平均粒径20μmに微粉砕後、
実施例1と同じく、抄紙、段ボール、ハニカム・
フイルターをつくり、アミノエチル・エタノール
アミンを20重量%添着処理して、アセトアルデヒ
ドの吸収速度を測定した。結果を第1表に示す。 比較例 5 実施例2のハニカム・フイルターに、プロピオ
ン酸中和トリブチルアミンを20重量%添着処理し
てアセトアルデヒドの吸収速度を測定した。 比較例 6 実施例2のハニカム・フイルターにプロピオン
酸中和トリエタノールアミンを20重量%添着処理
して、アセトアルデヒドの吸収速度を測定した。 実施例 3 比較例3で用いた8〜14メツシユのヤシガラ活
性炭を50〜100メツシユに粗粉砕し、ロータリー
キルン炉で、900℃の燃焼ガス雰囲気下5時間再
賦活処理を施し、 V1=0.59c.c./g α=85% の活性炭素を得た。 該活性炭をボール・ミルで平均粒径20μmに微
粉砕した。該活性炭素を用いて、実施例1と同様
にペーパー化、段成型、ハニカム・フイルター化
後、酢酸でPH7に調整したNメチルエタノールア
ミン水溶液に含浸、乾燥することにより、該アミ
ンを20重量%添着後、実施例1と同様な方法でア
セトアルデヒドの吸収速度を測定した。結果を第
1表に示す。 比較例 7 実施例3のハニカム・フイルターにアニリンを
20重量%添着処理して実施例1と同様にアセトア
ルデヒドの吸収速度を測定した。結果を第1表に
示す。アニリンを使用する場合吸着性が経時的に
著しく減少することがわかる。 比較例 8 実施例3のハニカム・フイルターにトリエチレ
ンジアミン(1,4ジアザビシクロ〔2,2,
2〕オクタン)を20重量%添着処理して実施例1
と同様な方法でアセトアルデヒドの吸収速度を測
定した。結果を第1表に示す。 比較例 9 実施例3のハニカム・フイルターにn−プロピ
ルアミン(20℃の蒸気圧250mmHg)を20重量%添
着処理して、アセトアルデヒドの吸収速度を測定
した。結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an activated carbon adsorbent that exhibits excellent adsorption performance for aldehydes in the gas phase. In recent years, irritating components (e.g. acetaldehyde, formaldehyde) in cigarette smoke have been introduced in small, closed spaces such as car interiors, home living rooms, and coffee shops.
There is an increasing demand for filters that can efficiently remove . Conventional granular activated carbon adsorbents are currently widely used because they adsorb harmful substances in the air (eg, benzene, chloroform, etc.) with a relatively high equilibrium adsorption amount even at low concentrations. However, these adsorbents have the disadvantage that the equilibrium adsorption amount is low for highly irritating aldehyde gas components such as formaldehyde, acetaldehyde, and acrolein, and that the adsorbed gas is concentrated and desorbed. Was. In order to eliminate the above drawbacks, for example,
As described in Japanese Patent No. 53744, a method has been attempted for removing aldehydes in the gas phase using an adsorbent in which activated carbon is impregnated with aniline. However, this method does not give very satisfactory results. This is because the activated carbon used is ordinary coconut shell activated carbon or coal-based activated carbon, and the pore volume with a pore diameter of 30 Å or less is small, so the impregnant (aniline) is used.
The impregnating agent (aniline) itself has the disadvantage of being unstable over time when adsorbing aldehydes, and is said to be carcinogenic. Because of this, there were problems in putting it into practical use. As a result of studies aimed at improving this conventional technology, the present inventors have discovered that an adsorbent made by impregnating a specific amine compound with an activated carbon material having a unique pore structure has no adverse effect on the human body and has no adverse effect on the human body. The present invention was achieved by discovering that aldehydes in the phase can be efficiently removed over a long period of time. The pore diameter and pore volume of activated carbon are calculated using the Cranston-Inkley calculation method using the nitrogen gas adsorption isotherm on the adsorption side at the boiling point of liquid nitrogen (-195.8°C) under normal pressure. It was calculated by The relationship between the multimolecular adsorption layer and relative pressure is the modified Frenkel-Halsey (t (Å)) = 3.54 [5/1n (PS/P)] 1/3 .
Halsey)'s formula (Tominaga Kei's "Adsorption", Kyoritsu Publishing). However, the value obtained by multiplying the amount of nitrogen gas adsorbed at a relative pressure corresponding to a pore diameter of 300 Å by the ratio of the density of gaseous nitrogen in standard conditions (1.584 × 10 -3 ) is calculated as the pore diameter of 300 Å.
The total pore volume was taken as: First, the activated carbon material used in the present invention will be explained. The activated carbon material used in the present invention has a volume of pores with a pore diameter of 300 Å or less of 0.4 cc/g or more, and a ratio of the pore volume of pores with a pore diameter of 30 Å or less to the pore volume of pores with a pore diameter of 300 Å or less ( It is essential that the activated carbon material has a carbon content of 80% or more (hereinafter abbreviated as α). That is, the pore volume V 1 with a pore diameter of 300 Å or less is 0.4
cc/g or less than 80% of the ratio α of pore diameters of 30 Å or less, no matter how much the amine compound of the present invention is impregnated, the impregnation effect and lifespan are insufficient, resulting in unfavorable results. I won't give it. The above activated carbon material having a specific pore structure is manufactured, for example, by the following method. Namely, (1) a method of carbonizing regenerated cellulose fibers or novolak type phenolic resin fibers and then subjecting them to high temperature activation treatment with steam;
(2) Examples include a method in which commercially available granular coconut shell activated carbon is reactivated with steam at high temperatures.
Of course, if the pore diameter is 300Å or less, the pore volume is 0.4
The method is not limited to the above method as long as it provides activated carbon with a volume ratio of cc/g or more and a pore volume ratio of 80% or more with a pore diameter of 30 Å or less. The shape of the activated carbon material is powdery, granular, or
It may be in any fibrous form, but from the viewpoint of adsorption properties and ease of impregnation treatment, fine particulate or powder form, particularly fine powder form with a particle size of 30 μm or less, is preferable. The present invention uses the above-mentioned activated carbon material to physically increase the adsorption area of the impregnating layer and efficiently remove aldehydes in the gas phase.On the other hand, the impregnant itself used is a known one. In contrast, it chemically adsorbs aldehydes without any time dependence, and these physical and chemical effects work synergistically to achieve remarkable adsorption and removal of aldehydes for the first time. Next, the amine compound used in the present invention will be explained. The amine compound used in the present invention is essential to be an aliphatic primary amine or secondary amine having a vapor pressure of 10 mmHg or less at 20°C. Among primary amines/secondary amines, those with vapor pressure exceeding 10 mmHg are said to scatter after being impregnated.
There are many problems such as odor. As the aliphatic primary amine or secondary amine used in the present invention, monoethanolamine, N-aminoethylethanolamine, N-methylethanolamine, ethylmonoethanolamine, dimethylethanolamine,
Examples include ethanolic amines such as diethylethanolamine; monoisopropanolamine; triethylenetetramine, tetraethylenepentamine, hexamethylenediamine, benzylamine, xylylenediamine, etc., and preferably the above-mentioned ethanolic amines ( In addition, the aliphatic amine of the present invention is an amine compound in which the N atom is not directly bonded to the aromatic ring, and there is a CH 2
(including those with intervening groups). Note that aliphatic tertiary amines are not used in the present invention because they have low reactivity with aldehydes. In addition, aromatic amines (aniline, phenylenediamine, naphthylamine, etc.) are harmful to the human body, as mentioned above, and decompose during storage (filters made with these amines are stored), resulting in poor adsorption performance. is not adopted in the present invention because it decreases over time. Further, the adsorbent of the present invention is produced by impregnating the above-mentioned amine compound onto an activated carbon material, and the amount of the amine compound impregnated onto the activated carbon material is 0.1 to 50% by weight, preferably 1 to 30% by weight. Impregnation is carried out using aliphatic primary amines or secondary amines with a vapor pressure of 10 mmHg or less at 20°C.
After spraying a solution of grade amine on the activated carbon material,
This can be achieved by drying or by immersing a predetermined amount of activated carbon material in a solution of the amine compound at a predetermined concentration and filtering it. Furthermore, the amine has the following pKa:
If a buffered acid of 3.5 to 5.5 is added, the removal effect on aldehyde gas will be further improved. i.e., saturated monocarboxylic acids such as acetic acid, propionic acid, butyric acid, citric acid, capric acid, enanthic acid (CH 3 -(CH 2 ) 5 COOH), pelargonic acid (CH 3 -(CH 2 ) 7 -COOH), etc. Examples include lactic acid, succinic acid, benzoic acid, glutamic acid, carboxymethyl cellulose (CMC), alginic acid, polymetallic acid, etc. Buffering methods include a method of adding a weak acid or a salt of a weak acid to an aqueous amine solution, or a method of adding a weak acid or a salt of a weak acid to an activated carbon slurry on which an amine has been adsorbed. The adsorbent according to the present invention is applied, for example, to filter applications. A filter to which the adsorbent of the present invention is applied is obtained by (1) impregnating the amine of the present invention to the finely powdered activated carbon material of the present invention, and then impregnating it with a solution such as sodium alginate, carboxymethyl cellulose, water glass, silica sol, or polystyrene solution. A method in which the activated carbon material is dispersed, applied to paper, nonwoven fabric, foam material, honeycomb filter, porous granular material, etc., and dried; There is a method in which the material is formed into a honeycomb shape and then subjected to an amine impregnation treatment, or (2) a method in which the amine of the present invention is impregnated onto a finely divided activated carbon material and then sprinkled onto a nonwoven fabric, tow, textile, etc. with an adhesive. In particular, honeycomb filters or porous urethane foam (product name:
Ever Light Scotto; Bridgestone Tires
KK) is preferred. The adsorbent of the present invention has an amine with a specific molecular structure impregnated with activated carbon having a specific pore distribution, so it exhibits excellent adsorption performance against harmful and highly irritating aldehyde gas. It has the characteristics that there is no re-scattering of chemicals, and because it chemically adsorbs selectively only to aldehyde gas, there is little deterioration due to adsorption of other organic gases. Therefore, if a filter using the adsorbent of the present invention is installed in a car, a train car, a coffee shop, a movie theater, a playground, or a living room where formaldehyde, acetaldehyde, etc. are easily filled, the harmful gases mentioned above can be efficiently removed. It has the advantage of eliminating airflow, having low ventilation resistance, and less reducing indoor heating and cooling effects. Furthermore, when used as an adsorbent for cigarette filters, it has the characteristic of improving smoking taste by efficiently removing the irritating components of tobacco smoke. Examples of the present invention will be described below, but the present invention is not limited to these Examples in any way. Example 1 A 1.5 d regenerated cellulose fiber was impregnated with 10% by weight of ammonium phosphate, dried, and then heat treated in an inert gas from room temperature to 300°C at a heating rate of 60°C/h to obtain a flame-resistant fiber. Ta. This flame-resistant fiber was then heated at a heating rate of 400°C/hr in an inert gas containing water vapor.
The temperature was raised to 900°C, maintained at that temperature for 1 hour, and activated. Fibrous activated carbon with V 1 of 0.78 cc/g and α=92% was obtained. With a composition of 60 parts of the above activated carbon material, 40 parts of NBKP pulp (softwood bleached kraft pulp) beaten to a water content of SR30°, and 7 parts of polyvinyl alcohol fiber, activated carbon paper was produced at 45 g/m 2 using a Yankee wet paper machine. The paper was made with a weight of . Activated carbon paper with a paper thickness of 0.20 mm was obtained.
Next, the carbon paper is processed into a pitch width using a corrugating machine.
It was formed on a single-sided corrugated sheet of 3.1 mm and pitch height of 2.1 mm. The single-sided corrugated sheet was slit to a layer length of 2.0 cm, and then rolled up into a disc shape with a diameter of 15 cm to obtain a honeycomb filter. The honeycomb filter was soaked in a 20% by weight aqueous solution of aminoethyl ethanolamine (vapor pressure at 20°C: 0.01 mmHg or less) adjusted to pH 7 with succinic acid.
After immersing for 30 minutes, the filter was air-dried to obtain a filter impregnated with 20% by weight of aminoethyl ethanolamine. The aldehyde gas adsorption properties of the obtained filters were evaluated based on the following method. That is, the filter was loaded into a commercially available small indoor air purifier (Air Refle, manufactured by Matsushita Electric Works). The air purifier was installed in the center of a plastic box filled with 2.7 m 2 of acetaldehyde gas at about 3 ppm, and operated at an air flow rate of 0.53 m 2 /min.
Decay curve of acetaldehyde gas over 30 minutes
Measured using an FID method gas chromatograph. Assuming that the attenuation curve was a first-order reaction equation, the reaction rate constant was calculated, and this was taken as the measure of the filter's ability to absorb acetaldehyde gas. Table 1 shows the acetaldehyde adsorption performance of the filter based on the above evaluation. Note that 3 hours and 1 week after application in Table 1 refers to the filter performance after being left for 3 hours and 1 week after the filter was manufactured. The location where the filter was left was a movie theater. Comparative Example 1 The activation conditions of Example 1 were changed to 850° C. for 0.5 hr to obtain fibrous activated carbon with V 1 =0.35 cc/g α = 97%. Using the activated carbon, paper, cardboard, and honeycomb filters were made in the same manner as in Example 1, and 20% by weight of succinic acid neutralized aminoethylethanolamine was impregnated thereon, and the performance of acetaldehyde was evaluated in the same manner as in Example 1. Ta. Table 1 shows the results. Comparative Example 2 The regenerated cellulose-based activated carbon fiber obtained in Example 1 was impregnated and impregnated with magnesium acetate, and then reactivated in a steam-containing combustion gas atmosphere at 900°C, and V1 was 0.90cc/g α was 55%. fibrous activated carbon was obtained. Using this, Example 1
Paper, cardboard, and honeycomb filters were made in the same manner as in Example 1, and 20% by weight of succinic acid-neutralized aminoethylethanolamine was impregnated thereon to evaluate the performance of acetaldehyde in the same manner as in Example 1. Table 1 shows the results. Example 2 A 2D novolak type phenolic resin fiber was heated at a heating rate of 400°C/h in an inert gas containing water vapor.
The temperature was raised to 900°C for 2 hours, and the activation treatment was performed. Fibrous activated carbon with a V 1 of 0.80 cc/g α of 95% was obtained. Using this, paper, cardboard, and honeycomb filters were made in the same manner as in Example 1, and 20% by weight of propionic acid neutralized aminoethylethanolamine was impregnated thereon, and the performance of acetaldehyde was evaluated in the same manner as in Example 1. I tried. Table 1 shows the results. Comparative Example 3 Commercially available coconut shell activated carbon V 1 =0.30 cc/g α = 97% was coarsely ground and then finely ground to an average particle size of 20 μm using a ball mill. After making paper and corrugating the activated carbon in the same manner as in Example 1, a honeycomb filter was made and impregnated with 20% by weight of propionic acid-neutralized aminoethylethanolamine. The absorption rate was measured. The results are shown in Table 1. Comparative Example 4 Commercially available coal-based activated carbon V 1 = 0.50 cc/g α = 60% was pulverized to an average particle size of 20 μm using a ball mill.
As in Example 1, paper making, cardboard, honeycomb
A filter was made, impregnated with 20% by weight of aminoethyl ethanolamine, and the absorption rate of acetaldehyde was measured. The results are shown in Table 1. Comparative Example 5 The honeycomb filter of Example 2 was impregnated with 20% by weight of propionic acid-neutralized tributylamine, and the absorption rate of acetaldehyde was measured. Comparative Example 6 The honeycomb filter of Example 2 was impregnated with 20% by weight of propionic acid neutralized triethanolamine, and the absorption rate of acetaldehyde was measured. Example 3 The coconut shell activated carbon of 8 to 14 meshes used in Comparative Example 3 was coarsely pulverized into 50 to 100 meshes, and subjected to reactivation treatment in a rotary kiln furnace for 5 hours in a combustion gas atmosphere at 900 ° C. V 1 = 0.59 cc. /g α=85% activated carbon was obtained. The activated carbon was pulverized in a ball mill to an average particle size of 20 μm. Using the activated carbon, the activated carbon was made into paper, step-formed, and honeycomb filtered in the same manner as in Example 1, and then impregnated with an aqueous N-methylethanolamine solution adjusted to pH 7 with acetic acid and dried to obtain 20% by weight of the amine. After impregnation, the absorption rate of acetaldehyde was measured in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 7 Aniline was applied to the honeycomb filter of Example 3.
The absorption rate of acetaldehyde was measured in the same manner as in Example 1 after 20% by weight impregnation treatment. The results are shown in Table 1. It can be seen that when using aniline, the adsorption properties decrease significantly over time. Comparative Example 8 The honeycomb filter of Example 3 was coated with triethylenediamine (1,4 diazabicyclo[2,2,
2] Example 1 by impregnating 20% by weight of octane
The absorption rate of acetaldehyde was measured in the same manner. The results are shown in Table 1. Comparative Example 9 The honeycomb filter of Example 3 was impregnated with 20% by weight of n-propylamine (vapor pressure of 250 mmHg at 20°C), and the absorption rate of acetaldehyde was measured. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 細孔直径300Å以下の細孔容積が0.4c.c./g以
上で、且つ細孔直径30Å以下の細孔容積の占める
比率が80%以上の活性炭素材に20℃での蒸気圧が
10mmHg以下の脂肪族系第1級アミンもしくは第
2級アミンを添着させたことを特徴とする気相中
のアルデヒド類の吸着剤。 2 脂肪族系アミンがエタノール系アミンである
特許請求の範囲第1項記載の吸着剤。 3 該アミンが、pKa3.5〜5.5の弱酸で緩衝され
たものである特許請求の範囲第1項記載の吸着
剤。
[Scope of Claims] 1. An activated carbon material having a pore volume of 0.4 cc/g or more with a pore diameter of 300 Å or less and a ratio of 80% or more of the pore volume with a pore diameter of 30 Å or less to steam at 20°C. The pressure
An adsorbent for aldehydes in a gas phase, characterized in that it is impregnated with an aliphatic primary amine or a secondary amine of 10 mmHg or less. 2. The adsorbent according to claim 1, wherein the aliphatic amine is an ethanol amine. 3. The adsorbent according to claim 1, wherein the amine is buffered with a weak acid having a pKa of 3.5 to 5.5.
JP59056516A 1984-03-23 1984-03-23 Adsorbent of aldehydes in gaseous phase Granted JPS60202735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056516A JPS60202735A (en) 1984-03-23 1984-03-23 Adsorbent of aldehydes in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056516A JPS60202735A (en) 1984-03-23 1984-03-23 Adsorbent of aldehydes in gaseous phase

Publications (2)

Publication Number Publication Date
JPS60202735A JPS60202735A (en) 1985-10-14
JPS6324414B2 true JPS6324414B2 (en) 1988-05-20

Family

ID=13029283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056516A Granted JPS60202735A (en) 1984-03-23 1984-03-23 Adsorbent of aldehydes in gaseous phase

Country Status (1)

Country Link
JP (1) JPS60202735A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275487A (en) * 2005-03-30 2006-10-12 Shimizu Corp Carbon dioxide removing air conditioning system
JP5040526B2 (en) * 2006-08-31 2012-10-03 東レ株式会社 Adsorbents, filter media and air filters
CN101890263B (en) * 2010-06-17 2012-09-19 佛山市顺德区阿波罗环保器材有限公司 Filter material for removing aldehydes
JP2012020229A (en) * 2010-07-14 2012-02-02 Kao Corp Method for manufacturing activated carbon particle
JP2014171970A (en) * 2013-03-08 2014-09-22 Japan Enviro Chemicals Ltd Adsorbent
JPWO2015046417A1 (en) 2013-09-27 2017-03-09 東洋紡株式会社 Aldehyde removal material
JP6471256B1 (en) * 2018-05-18 2019-02-13 ユニチカ株式会社 Deodorizing material and deodorizing sheet
JP7103642B2 (en) * 2018-11-22 2022-07-20 ユニチカ株式会社 Deodorant and deodorant sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080969A (en) * 1973-11-21 1975-07-01
JPS56113342A (en) * 1980-02-13 1981-09-07 Nippon Kasei Kk Adsorbent for lower level aldehyde

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080969A (en) * 1973-11-21 1975-07-01
JPS56113342A (en) * 1980-02-13 1981-09-07 Nippon Kasei Kk Adsorbent for lower level aldehyde

Also Published As

Publication number Publication date
JPS60202735A (en) 1985-10-14

Similar Documents

Publication Publication Date Title
RU2642388C2 (en) Smoking product
WO2000025610A1 (en) Filter for selective removal of a gaseous component
US4062368A (en) Tobacco-smoke filters
JP5570753B2 (en) Filter material made of porous silica and cigarette filter using the same
US4266561A (en) Tobacco smoke filtering compositions
US6911189B1 (en) Filter for selective removal of a gaseous component
WO2006072889A1 (en) Activated carbons with molecular sieve membranes and their use as adsorbents in smoking articles
US2739598A (en) Filter for tobacco smoke
TWI324049B (en) Smoking filter and smoking article
JPS6324414B2 (en)
JP4808969B2 (en) Cigarette smoke filter
KR20220153577A (en) filter media
JPS6324413B2 (en)
JPH06104200B2 (en) Adsorption sheet manufacturing method
JPH01236941A (en) Gaseous ammonia adsorbent
JP3407748B2 (en) Adsorbent sheet
JPH0424034B2 (en)
JPS5988078A (en) Tobacco filter
JPS6054669A (en) Selective adsorbent for tobacco smoke filter
JP2950683B2 (en) Air purifier and air purifier
JPS6251651B2 (en)
JP4378449B2 (en) Adsorbent and production method thereof
JP5229784B2 (en) Tobacco deodorant filter
WO2023163110A1 (en) Filter for heat-not-burn flavor inhalation article
JPS642915B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term