JPS63243804A - Gap setting device - Google Patents

Gap setting device

Info

Publication number
JPS63243804A
JPS63243804A JP62078701A JP7870187A JPS63243804A JP S63243804 A JPS63243804 A JP S63243804A JP 62078701 A JP62078701 A JP 62078701A JP 7870187 A JP7870187 A JP 7870187A JP S63243804 A JPS63243804 A JP S63243804A
Authority
JP
Japan
Prior art keywords
diffraction grating
gap
diffraction
gratings
diffraction gratings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62078701A
Other languages
Japanese (ja)
Inventor
Yoriyuki Ishibashi
石橋 頼幸
Ryoichi Hirano
亮一 平野
Hiroaki Shimozono
裕明 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Optical Co Ltd
Original Assignee
Toshiba Corp
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Optical Co Ltd filed Critical Toshiba Corp
Priority to JP62078701A priority Critical patent/JPS63243804A/en
Priority to DE19873719538 priority patent/DE3719538A1/en
Priority to US07/060,601 priority patent/US4838693A/en
Publication of JPS63243804A publication Critical patent/JPS63243804A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To suppress a ripple component at the zero-cross point of a detection signal and to improve the setting accuracy of a gap by providing 1st and 2nd bodies with 1st and 2nd diffraction gratings and setting the longitudinal and lateral pitches of the 2nd diffraction gratings equal to each other. CONSTITUTION:A mask 13 and a wafer 12 are provided with diffraction gratings 31a and 31b, and 32a and 32b, and laser light C from a laser light source 17 is diffracted through the operation of the double diffraction grating while transmitted through the gratings 31a and 31b, reflected by the gratings 32a and 32b, and then transmitted through the gratings 31a and 31b again. Those diffracted light beams are inputted to a signal processing circuit 20 through mirrors 19a and 19b and the gap between the mask 13 and wafer 12 is adjusted 21. At this time, the longitudinal and lateral pitches of the diffraction gratings 32a and 32b are set equal to each other. Consequently, the ripple component at the zero-cross point is suppressed and the proper gap is set.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば超LSI製造のための露光MHにお
けるマスクとウェハとの間隙設定等に好適な間隙設定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gap setting device suitable for setting a gap between a mask and a wafer in exposure MH for VLSI manufacturing, for example.

(従来の技術) 例えば、超LSIの回路パターンの製造手段として、露
光装置が知られている。このような装置を用いてパター
ン転写を行なう場合、露光に先立ちマスクとウェハとの
間隙を高精度に設定する必要がある。
(Prior Art) For example, an exposure apparatus is known as a means for manufacturing a circuit pattern of a VLSI. When pattern transfer is performed using such an apparatus, it is necessary to set the gap between the mask and the wafer with high precision prior to exposure.

このマスクとウェハとの間隙設定法として回折格子を用
いた設定法が知られている。この設定法は、第4図に示
すように、マスク1にストライプ状、の回折格子2を設
けるとともに、ウェハ3に反射面4を股i、マスク1上
面からレーザー光を照射して、回折格子2によって生じ
る1次回折光強度I(+1>又は−1次回折光強度r(
−1)を測定することにより、マスク1とウェハ3との
間隙を設定する方式である。
A method using a diffraction grating is known as a method for setting the gap between the mask and the wafer. As shown in FIG. 4, this setting method involves providing a striped diffraction grating 2 on a mask 1, irradiating a laser beam from the upper surface of the mask 1 with a reflective surface 4 on the wafer 3, and 1st-order diffracted light intensity I (+1> or −1st-order diffracted light intensity r(
This method sets the gap between the mask 1 and the wafer 3 by measuring -1).

しかしながら、この間隙設定法では、マスク1が反射型
回折格子としても作用するので、マスク1→ウエハ3→
マスク1を経由して戻ってきた1次光又は−1次光と、
マスク1上で反射された光とが干渉してしまい、第5図
に示すように、λ/2(λはレーザ光の波長)周期の干
渉波が現われてしまう。このため、マスク1とウェハ3
との平行度等が影響して、マスク1とウェハ3の間隙を
高精度に検出するのが困難になるという不具合があった
However, in this gap setting method, mask 1 also acts as a reflection type diffraction grating, so mask 1 → wafer 3 →
The first-order light or -first-order light that returned via the mask 1,
The light reflected on the mask 1 interferes, and as shown in FIG. 5, an interference wave with a period of λ/2 (λ is the wavelength of the laser beam) appears. For this reason, mask 1 and wafer 3
There was a problem in that it was difficult to detect the gap between the mask 1 and the wafer 3 with high precision due to the influence of the parallelism between the mask 1 and the wafer 3.

そこで、本出願人等は、先に特願昭61−135172
号において、マスク側にストライプ状の第1の回折格子
を設け、これと対向するウェハ側に2次元格子状の第2
の回折格子を設けて上記干渉波の影響を排除した間隙設
定装置を提案した。
Therefore, the present applicants first applied for patent application No. 61-135172.
In this issue, a first striped diffraction grating is provided on the mask side, and a second two-dimensional grating is provided on the wafer side opposite to this.
We proposed a gap setting device that eliminates the influence of the interference waves by providing a diffraction grating.

第6図に、その−例を示す。An example is shown in FIG.

X方向に移動可能なウェハテーブル11上には、ウェハ
12が載置され、さらに、このウェハ12上に、所定の
間隙(2)を介してマスク13が配置されている。この
マスク13はホルダ14によって支持されている。マス
ク13の所定位置には、透過型の第1の回折格子15a
、15bが配置されている。また、回折格子15a、1
5bと対向するウェハ12側には、反射型の第2の回折
格子16a、16bが配置されている。
A wafer 12 is placed on a wafer table 11 that is movable in the X direction, and a mask 13 is placed on the wafer 12 with a predetermined gap (2) in between. This mask 13 is supported by a holder 14. A transmission type first diffraction grating 15a is provided at a predetermined position of the mask 13.
, 15b are arranged. Moreover, the diffraction gratings 15a, 1
Reflective second diffraction gratings 16a and 16b are arranged on the wafer 12 side facing 5b.

第1の回折格子15a、15bのパターンは、第7図に
示すように、ストライプ状のパターンで、第2の回折格
子16a、16bのパターンは、2次元格子状のパター
ンとなっている。そして、第2の回折格子16bのy方
向ピッチP bwyが第2の回折格子16aのy方向ピ
ッチル awyと異なるように設定されている。また、
第2の回折格子15a、16b間の距離b ハ、 b−a+Pwx/2 (a:第1の回折格子15a、15b間距離、Pwx;
第2の回折格子16a、16bのX方向ピッチ) に設定されている。
As shown in FIG. 7, the pattern of the first diffraction gratings 15a, 15b is a striped pattern, and the pattern of the second diffraction gratings 16a, 16b is a two-dimensional grating pattern. The y-direction pitch P bwy of the second diffraction grating 16b is set to be different from the y-direction pitch awy of the second diffraction grating 16a. Also,
Distance b between second diffraction gratings 15a and 16b c, ba+Pwx/2 (a: distance between first diffraction gratings 15a and 15b, Pwx;
The pitch of the second diffraction gratings 16a, 16b in the X direction) is set as follows.

これら回折格子158〜16bには、レーザ光源17か
らのレーザ光Cがミラー18を介して照射されている。
These diffraction gratings 158 to 16b are irradiated with laser light C from a laser light source 17 via a mirror 18.

そして、これら回折格子158〜16bで回折された光
のうち、特定の方向の光、例えば第8図におけるI(0
,1)方向の光をミラー19a、19bを介して信号処
理部20に導(ように構成されている。この信号処理部
20は、1(0,1)方向の回折光を検出する受光手段
を備えたものとなっている。
Among the lights diffracted by these diffraction gratings 158 to 16b, light in a specific direction, for example, I(0
, 1) directions to a signal processing section 20 via mirrors 19a and 19b. This signal processing section 20 includes a light receiving means for detecting diffracted light in the 1 (0, 1) direction. It is equipped with.

また、マスクホルダ14には、これを垂直方向に駆動し
てウェハ12とマスク13との間隙調整を行なう間隙調
整装置!21が接続されている。この間隙調整装置21
は、上記信号処理部20の出力で制御される。なお、ウ
ェハ12のX方向の位置は、ウェハテーブル11を駆動
モータ22で駆動じて行われる。
The mask holder 14 also has a gap adjustment device that adjusts the gap between the wafer 12 and the mask 13 by driving the mask holder in the vertical direction. 21 is connected. This gap adjustment device 21
is controlled by the output of the signal processing section 20. Note that the wafer 12 is positioned in the X direction by driving the wafer table 11 with a drive motor 22.

以上の構成において、レーザ光源17からミラー18を
介して第1の回折格子15に照射されたレーザ光Cは、
回折格子15a(15b)→回折格子16a (16b
) →回折格子15a (15b)を経由する間、二重
回折格子の作用によって回折される。このため、第8図
に示すようにそれぞれ9つの方向の0次及び1次の回折
光が得られる。
In the above configuration, the laser light C irradiated from the laser light source 17 to the first diffraction grating 15 via the mirror 18 is
Diffraction grating 15a (15b) → Diffraction grating 16a (16b)
) →Diffraction grating 15a (15b) While the light passes through, it is diffracted by the action of the double diffraction grating. Therefore, as shown in FIG. 8, zero-order and first-order diffracted lights in nine directions are obtained.

例えば1組の回折格子15a、16aについてみると、
X方向・に0次、y方向に1次の回折光1(0,1)の
強度とギャップ2とは第9図に示すようにな関係になる
For example, regarding one set of diffraction gratings 15a and 16a,
The intensity of the zero-order diffracted light 1 (0,1) in the X direction and the first order in the y direction and the gap 2 have a relationship as shown in FIG.

この装置では、X方向に0次、y方向に±1次の回折光
を検出するようにしているので、回折格子15a(15
b)で反射された光と上記回折光とが干渉することがな
い。したがって、得られた回折光に基づいて間隙調整装
置21を駆動することにより、干渉波の影響を受けない
高精度の間隙設定を行なうことができる。
This device detects 0th-order diffracted light in the X direction and ±1st order diffracted light in the y direction, so the diffraction grating 15a (15
The light reflected in b) and the diffracted light do not interfere with each other. Therefore, by driving the gap adjusting device 21 based on the obtained diffracted light, it is possible to perform highly accurate gap setting that is not affected by interference waves.

また、この装置では、回折格子158.16aで+lら
れる(0.1>回折光と、回折格子15b。
In addition, in this device, the diffraction grating 158.16a adds +l (0.1>diffracted light and the diffraction grating 15b.

16bで得られる(0.1)回折光とは、第2の回折格
子16a、16bのy方向の格子ピッチが異なっている
ことから、第6図にも示すように、それぞれ異なる方向
で検出される。したがって、これら回折光をそれぞれミ
ラー19a、19bを介して信号処理部20に導き、両
回折光の強度[1(0,1)、12  (0,1)から
、ΔI=11  (0,1)−12(0,1)なる演算
を行なうと、第10図に示すような曲線を得ることがで
きる。従って、この曲線のゼロクロス点を検出すること
により最適な間隙を設定できる。
Since the grating pitch in the y direction of the second diffraction gratings 16a and 16b is different from the (0.1) diffracted light obtained by the diffraction grating 16b, the diffracted light is detected in different directions as shown in FIG. Ru. Therefore, these diffracted lights are guided to the signal processing unit 20 via mirrors 19a and 19b, respectively, and the intensity of both diffracted lights [1(0,1), 12 (0,1), ΔI=11 (0,1) By performing the calculation -12(0,1), a curve as shown in FIG. 10 can be obtained. Therefore, the optimum gap can be set by detecting the zero-crossing point of this curve.

しかしながら、この装置では、第11図に示すように、
マスク13とウェハ12との間で多重反射する光が干渉
するために、第10図に示す曲線には、実際には第12
図に示すように、間隙がλ/2変わる毎に振幅が変化す
るリップルが生じ、この結果、ゼロクロス点が複数検出
されて正確な間隙位置決めを行なうことができないとい
う問題があった。
However, with this device, as shown in FIG.
Due to the interference of multiple reflected light between the mask 13 and the wafer 12, the curve shown in FIG.
As shown in the figure, a ripple whose amplitude changes every time the gap changes by λ/2 occurs, and as a result, a plurality of zero-crossing points are detected, making it impossible to perform accurate gap positioning.

(発明が解決しようとする問題点) このように、2重回折格子を用いた1IfJ述の間隙設
定装置では、多重反射によるリップルの影響でゼロクロ
ス点を正確に検出することができず、これがために間隙
調整精度の低下を招くという問題があった。
(Problems to be Solved by the Invention) As described above, the gap setting device described in 1IfJ using a double diffraction grating cannot accurately detect the zero crossing point due to the influence of ripples due to multiple reflections. Therefore, there was a problem that the accuracy of gap adjustment was lowered.

本発明は、このような問題点を解決すべくなされたもの
で、検出信号のゼロクロス点近傍でのリップルを除去し
、正確な間隙調整が可能な間隙設定装置を提供すること
を目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a gap setting device that eliminates ripples near the zero-crossing point of a detection signal and allows accurate gap adjustment.

[発明の構成] (問題点を解決するための手段) 本発明は、第1の物体に設けられたストライプ状の第1
の回折格子と、第2の物体に設けられた2次元格子状の
第2の回折格子とからなる2重回折格子を2組備えた間
隙設定装置において、前記第2の回折格子の横方向ピッ
チPwxと縦方向ピッチRwyとを等しく設定したこと
を特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a striped first structure provided on a first object.
In a gap setting device equipped with two sets of double diffraction gratings each consisting of a diffraction grating and a second diffraction grating in the form of a two-dimensional grating provided on a second object, It is characterized in that the pitch Pwx and the vertical pitch Rwy are set equal.

(作用) 本発明者等は、第2の回折格子の縦横のピッチを種々変
更して得られる検出信号をシミュレーションした。その
結果、前述した多重反射によるリップル成分の大きさは
、ある周期で変化しており、第2の回折格子の縦方向ピ
ッチPwyと横方向ピッチPwxとを等しく設定すると
、リップル成分の最も抑制された部分が丁度ゼロクロス
点に位置することが分った。
(Function) The present inventors simulated detection signals obtained by variously changing the vertical and horizontal pitches of the second diffraction grating. As a result, the magnitude of the ripple component due to multiple reflections described above changes in a certain period, and if the vertical pitch Pwy and the horizontal pitch Pwx of the second diffraction grating are set equal, the ripple component is suppressed the most. It was found that the part where the curve was located was located exactly at the zero-crossing point.

本発明は、このようなシミュレーション結果に基づいて
なされたものである。即ち、第2の回折格子の縦方向ピ
ッチPwyと横方向ピッチPwxとを等しく設定してい
るので、ゼロクロス点でのリップル成分が抑制され、適
正な間隙設定を行なうことができる。
The present invention was made based on such simulation results. That is, since the vertical pitch Pwy and the horizontal pitch Pwx of the second diffraction grating are set equal, the ripple component at the zero cross point is suppressed, and an appropriate gap can be set.

(実施例) 以下、本発明の一実施例ついて説明する。(Example) An embodiment of the present invention will be described below.

第1図は、この実施例で使用される2重回折格子のパタ
ーン示す図である。
FIG. 1 is a diagram showing the pattern of the double diffraction grating used in this example.

第1の回折格子31a、31bは、X方向のピッチがP
mxのストライプパターンからなるもので、距1!Ia
を隔てて配置されている。また、第2の回折格子32a
、32bは、X方向ピッチPwx、 y方向ピッチPw
yからなる二次元格子状のパターンからなるもので、距
離すを隔てて配置されている。
The first diffraction gratings 31a and 31b have a pitch of P in the X direction.
It consists of a stripe pattern of mx, and the distance is 1! Ia
are located apart from each other. In addition, the second diffraction grating 32a
, 32b are the X-direction pitch Pwx and the y-direction pitch Pw
It consists of a two-dimensional grid-like pattern consisting of y, and is arranged at a distance from each other.

距離aと距1bとは、b −a + Pwx/ 2 (
7)関係!、−ある。また、Pn+x −Pwx −p
wy −6gの関係に設定されている。
The distance a and the distance 1b are b - a + Pwx/2 (
7) Relationship! ,-There is. Also, Pn+x −Pwx −p
The relationship is set to wy -6g.

第2図にこの2重回折格子を用いたマスクとウェハの間
隙設定装置の構成例を示す。この装置が前述した第6図
の装置と異なるのは、レーザ光源17からのレーザ光を
撮動ミラー(音響光学偏光素子でもよい)41で、回折
格子31a、32aと回折格子31b、32bとに交互
に照射することによって、時分割で回折光強度■1と1
2とをそれぞれ独立に検出する点である。
FIG. 2 shows an example of the configuration of a gap setting device between a mask and a wafer using this double diffraction grating. The difference between this device and the device shown in FIG. 6 described above is that a laser beam from a laser light source 17 is directed to diffraction gratings 31a, 32a and diffraction gratings 31b, 32b using a photographing mirror 41 (which may be an acousto-optic polarizing element). By alternating irradiation, the diffracted light intensity ■1 and 1 can be time-divided.
2 and 2 are detected independently.

これは、第2の回折格子32a、32bのy方向ピッチ
Pwyが等しいため、前述した装置のように異なる位ば
て(0,±1)回折光を観測することができないためで
ある。
This is because the pitches Pwy in the y direction of the second diffraction gratings 32a and 32b are equal, so it is not possible to observe the diffracted light at different positions (0, ±1) as in the above-mentioned apparatus.

なお、回折格子31a、32aと回折格子31b、32
bとを更に離間配置して、それぞれ独立な経路でレーザ
光を照射しても同様な効果が得られる。
Note that the diffraction gratings 31a, 32a and the diffraction gratings 31b, 32
A similar effect can be obtained even if the laser beams are further spaced apart from each other and the laser beams are irradiated through independent paths.

差信号ΔIとしては、 Δl−11(0,−1) −12(0,−1)Δl−1
1(0,1)−12(0,−1)Δl−11(0’、−
1)−12(0,1)などを求めれば良い。
The difference signal ΔI is Δl-11(0,-1) -12(0,-1)Δl-1
1(0,1)-12(0,-1)Δl-11(0',-
1)-12(0,1) etc.

この実施例によって得られる差信号ΔIのシミュレーシ
ョン結果を第3図(a)に示す。
A simulation result of the difference signal ΔI obtained by this example is shown in FIG. 3(a).

この図から明らかなように、ゼロクロス点におけるリッ
プルは殆ど抑制されている。
As is clear from this figure, the ripple at the zero cross point is almost suppressed.

参考までに、■P+lx−Pwx −61J!11、P
WV−5IIIn、■Pa1x −Pwx −6譚、P
wy−34、■Pmx=Pwx−6−1pwy−12−
にそれぞれ設定した場合に得られる差信号ΔIについて
も同様のシミュレーションを行なったところ、それぞれ
第3図(b)。
For reference, ■P+lx-Pwx -61J! 11.P.
WV-5IIIn, ■Pa1x -Pwx -6 Tan, P
wy-34,■Pmx=Pwx-6-1pwy-12-
A similar simulation was performed for the difference signal ΔI obtained when each setting was made, and the results were shown in FIG. 3(b).

(c)、(d)に示すような結果が得られ、第2の回折
格子のX方向ピッチPwxとy方向ピッチPwyとが異
なると、それらがたとえ整数倍の関係にあってもゼロク
ロス点でのリップル抑制効果は得られないことが分った
The results shown in (c) and (d) are obtained, and if the X-direction pitch Pwx and the y-direction pitch Pwy of the second diffraction grating are different, even if they are in the relationship of integral multiples, the zero crossing point will occur. It was found that no ripple suppression effect could be obtained.

なお、以上の実施例では、PlxとPwxとが同じ寸法
である場合の実施例を示したが、本発明は、特にPmx
とPwxとが異なる場合でもPwxとPwyが等しい限
り同様の効果が得られる。これは本発明者等が行なった
シミュレーションによっても確認されている。
In addition, in the above embodiment, an example was shown in which Plx and Pwx have the same size, but the present invention is particularly applicable to Pmx
Even if and Pwx are different, the same effect can be obtained as long as Pwx and Pwy are equal. This has also been confirmed by simulations conducted by the inventors.

以上のように、この実施例によれば、ゼロクロス点近傍
のリップルを抑制することができるので、精度の良い間
隙設定を行なうことができる。
As described above, according to this embodiment, it is possible to suppress ripples in the vicinity of the zero-crossing point, so that accurate gap setting can be performed.

なお、本発明は、特にマスクとウェハとの間隙設定に適
用を限定されるものではなく、高精度の間隙設定を行な
う他の用途への適用も可能である。
Note that the present invention is not particularly limited in its application to setting the gap between a mask and a wafer, but can also be applied to other uses in which the gap is set with high precision.

[発明の効果] 以上説明したように、本発明によれば、第2の回折格子
の縦横ピッチを等しく設定したので、検出信号のゼロク
ロス点におけるリップル成分を抑制でき、間隙設定精度
の向上化を図ることができる。
[Effects of the Invention] As explained above, according to the present invention, since the vertical and horizontal pitches of the second diffraction grating are set equally, the ripple component at the zero cross point of the detection signal can be suppressed, and the gap setting accuracy can be improved. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る間隙設定装置における
2重回折格子のパターンを示す因、第2図は同装置の側
面図、第3図は同装置によって得られる検出信号と間隙
との関係のシミュレーション結果と参考例のシミュレー
ション結果とを示す図、第4図〜第12図は従来の間隙
設定装置の説明をするための図である。 1.13・・・マスク、2・・・回折格子、3.12・
・・ウェハ、4・・・反射面、11・・・ウェハテーブ
ル、14−・・ホルダ、15a、15b、31a、31
b・・・第1の回折格子、16a、16b、32a。 32b・・・第2の回折格子、17・・・レーザ光源、
18.19a、19b・・・ミラー、20・・・信号処
理部、21・・・間隙調整装置、22・・・駆動モータ
、41・・・振動ミラー。 出願人代理人 弁理士 鈴江武彦 j 第4図 1s−ち 5 巳 第6図 第8図 第 9 図       ギ丁・Yプ2第10図
Fig. 1 shows the pattern of a double diffraction grating in a gap setting device according to an embodiment of the present invention, Fig. 2 is a side view of the same device, and Fig. 3 shows the detection signal and gap obtained by the device. FIGS. 4 to 12 are diagrams illustrating the simulation results of the relationship between the two and the simulation results of the reference example, and are diagrams for explaining the conventional gap setting device. 1.13...Mask, 2...Diffraction grating, 3.12.
... Wafer, 4... Reflective surface, 11... Wafer table, 14-... Holder, 15a, 15b, 31a, 31
b...first diffraction grating, 16a, 16b, 32a. 32b... second diffraction grating, 17... laser light source,
18.19a, 19b...Mirror, 20...Signal processing unit, 21...Gap adjustment device, 22...Drive motor, 41...Vibrating mirror. Applicant's representative Patent attorney Takehiko Suzue Figure 4 1s-chi 5 Figure 6 Figure 8 Figure 9 Gicho Ypu 2 Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)第1の物体に設けられたストライプ状の2つの第
1の回折格子と、前記第1の物体と対向する第2の物体
上に前記2つの第1の回折格子とそれぞれ対向するよう
に配置された二次元格子状の2つの第2の回折格子と、
前記第1の回折格子にレーザ光をそれぞれ照射するレー
ザ光源と、上記第1の回折格子をそれぞれ透過した後、
前記第2の回折格子でそれぞれ反射され再び前記第1の
回折格子をそれぞれ透過した2組の回折光のうち、前記
第1の回折格子のストライプ方向と直交する方向が0次
、ストライプ方向が±1次の回折光をそれぞれ受光する
受光手段と、この受光手段でそれぞれ受光された前記回
折光の強度差に基づいて前記第1及び第2の物体の間隙
を調整する間隙調整手段とを具備した間隙設定装置にお
いて、前記第2の回折格子の横方向ピッチPwxと縦方
向ピッチRwyとを等しく設定したことを特徴とする間
隙設定装置。
(1) Two striped first diffraction gratings provided on a first object, and two first diffraction gratings each facing the two first diffraction gratings on a second object facing the first object. two second diffraction gratings arranged in a two-dimensional grating pattern;
a laser light source that irradiates each of the first diffraction gratings with laser light, and a laser light source that passes through each of the first diffraction gratings;
Of the two sets of diffracted lights that were each reflected by the second diffraction grating and transmitted through the first diffraction grating, the direction perpendicular to the stripe direction of the first diffraction grating is 0th order, and the stripe direction is ± A light receiving means for receiving each of the first-order diffracted lights, and a gap adjusting means for adjusting the gap between the first and second objects based on the difference in intensity of the diffracted lights respectively received by the light receiving means. A gap setting device characterized in that a horizontal pitch Pwx and a vertical pitch Rwy of the second diffraction grating are set to be equal.
(2)前記第1の回折格子のストライプのピッチPmx
と前記第2の回折格子の横方向ピッチPwxとを等しく
設定したことを特徴とする特許請求の範囲第1項記載の
間隙設定装置。
(2) Pitch Pmx of stripes of the first diffraction grating
2. The gap setting device according to claim 1, wherein the pitch Pwx in the lateral direction of the second diffraction grating is set to be equal to the pitch Pwx in the lateral direction of the second diffraction grating.
JP62078701A 1986-06-11 1987-03-31 Gap setting device Pending JPS63243804A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62078701A JPS63243804A (en) 1987-03-31 1987-03-31 Gap setting device
DE19873719538 DE3719538A1 (en) 1986-06-11 1987-06-11 METHOD AND DEVICE FOR ADJUSTING A SPLIT BETWEEN TWO OBJECTS TO A PREDICTED SIZE
US07/060,601 US4838693A (en) 1986-06-11 1987-06-11 Method and apparatus for setting a gap between first and second objects to a predetermined distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078701A JPS63243804A (en) 1987-03-31 1987-03-31 Gap setting device

Publications (1)

Publication Number Publication Date
JPS63243804A true JPS63243804A (en) 1988-10-11

Family

ID=13669174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078701A Pending JPS63243804A (en) 1986-06-11 1987-03-31 Gap setting device

Country Status (1)

Country Link
JP (1) JPS63243804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846548A1 (en) * 1996-12-06 1998-06-10 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
US9103662B2 (en) 2001-04-10 2015-08-11 Kla-Tencor Corporation Periodic patterns and technique to control misalignment between two layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846548A1 (en) * 1996-12-06 1998-06-10 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
US9103662B2 (en) 2001-04-10 2015-08-11 Kla-Tencor Corporation Periodic patterns and technique to control misalignment between two layers
US9234745B2 (en) 2001-04-10 2016-01-12 Kla-Tencor Corporation Periodic patterns and techniques to control misalignment between two layers
US9476698B2 (en) 2001-04-10 2016-10-25 Kla-Tencor Corporation Periodic patterns and technique to control misalignment between two layers

Similar Documents

Publication Publication Date Title
KR900004269B1 (en) Method and device for positioing 1st body and 2nd body
US4656347A (en) Diffraction grating position adjuster using a grating and a reflector
JPS60143632A (en) Alignment device
JPH0151801B2 (en)
JPH06188176A (en) Method and apparatus for mask-wafer gap control
US5100234A (en) Method and apparatus for aligning two objects, and method and apparatus for providing a desired gap between two objects
GB1582661A (en) Investigating flatness by interferometry
JPS63243804A (en) Gap setting device
CN115144944B (en) Grating alignment method, grating structure processing method and optical waveguide lens
JPH083404B2 (en) Alignment method
JP2001154040A (en) Method and device for manufacturing optical waveguide type diffraction grating
JP6957728B2 (en) Alignment measurement system
JPH0441485B2 (en)
JPS60256002A (en) Position detecting apparatus
JPH0429012B2 (en)
KR900005639B1 (en) Method and apparatus for setting a gap between first and second objects
JP2677662B2 (en) Relative alignment method and device
EP4019961A1 (en) Methods and apparatus for acoustic metrology
JPH0635927B2 (en) Position detecting method, apparatus therefor and position aligning apparatus
JP2885439B2 (en) Method and apparatus for aligning first and second objects
JPH0582729B2 (en)
JPS63184004A (en) Method and apparatus for setting gap between first and second objects to predetermined value
JPH02222520A (en) Alignment device for light exposing apparatus
JPH042116A (en) Method and device for detecting position and alignment device
JP2656333B2 (en) Gap setting method and apparatus