JPS63243688A - Condenser - Google Patents

Condenser

Info

Publication number
JPS63243688A
JPS63243688A JP27791787A JP27791787A JPS63243688A JP S63243688 A JPS63243688 A JP S63243688A JP 27791787 A JP27791787 A JP 27791787A JP 27791787 A JP27791787 A JP 27791787A JP S63243688 A JPS63243688 A JP S63243688A
Authority
JP
Japan
Prior art keywords
tube
tubes
condenser
refrigerant
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27791787A
Other languages
Japanese (ja)
Other versions
JPH0345302B2 (en
Inventor
Hironaka Sasaki
広仲 佐々木
Ryoichi Hoshino
良一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Publication of JPS63243688A publication Critical patent/JPS63243688A/en
Publication of JPH0345302B2 publication Critical patent/JPH0345302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/22Making finned or ribbed tubes by fixing strip or like material to tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce the pressure loss of refrigerant as well as flowing air and improve the heat exchanging efficiency of the title condenser, by a constitution wherein a plurality of tubes is arranged in parallel and corrugated fins are arranged between neighboring tubes while both ends of respective tubes are connected in communication with hollow headers. CONSTITUTION:Refrigerant, entered from the upper inlet tube 6 of a left header 3, passes through respective tubes 1 of an inlet port side passage group A and arrives at a right header 4, thereafter, is converted and flows to a left header 3 through respective passages of an intermediate passage group B. Then, the refrigerant is converted further and flows to the right header 4 through respective passages of an outlet port side passage group C, thereafter, flows out of the condenser through an outlet port tube 8. During passing through respective passage groups, the refrigerant effects heat exchange between air, flowing through air flowing gaps including corrugated fins 2 formed between tubes 1, 1. According to this constitution, the bending works of the tubes 1 are not necessitated; accordingly, limits in the selection of the width of the tube 1, the height of the fin 2 or the like may be eliminated. The tubes 1 and the fins 2 may be designed so as to increase the heat exchanging efficiency of the condenser based on the merits described above.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はカーエアコンやルームエアコン等に用いられ
る凝縮器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a condenser used in car air conditioners, room air conditioners, and the like.

従来技術及びその問題点 上記のような用途に用いられる凝縮器としては、従来一
般に、ハーモニカチューブと称されるような多孔押出偏
平チューブを蛇行状に曲げ、その平行部間にコルゲート
フィンを配置してコアを構成したいわゆるサーペンタイ
ン型凝縮器が用いられている。
Conventional technology and its problems Condensers used for the above-mentioned purposes are generally made by bending a multi-hole extruded flat tube called a harmonica tube into a serpentine shape, and placing corrugated fins between the parallel parts. A so-called serpentine condenser with a core constructed of

ところで、凝縮器の性能を向上するための対策としては
、前記コルゲートフィンのフィンピッチを小さくする、
チューブの幅を拡げて冷媒の圧力損失を小さくする、チ
ューブ相互の間隔すなわちフィン高さを小さくしてチュ
ーブの平行部間に介在されるフィン数を多くしフィン効
率を高めることなどが考えられる。
By the way, measures to improve the performance of the condenser include reducing the fin pitch of the corrugated fins.
Possible methods include increasing the width of the tubes to reduce the pressure loss of the refrigerant, and decreasing the distance between the tubes, that is, the height of the fins, increasing the number of fins interposed between the parallel portions of the tubes and increasing the fin efficiency.

しかるに、上記のようなサーペンタイン型凝縮器におい
て、チューブの幅を拡げることは、チューブの曲げ加工
の困難性を増すことになる。
However, in the serpentine condenser as described above, increasing the width of the tube increases the difficulty of bending the tube.

またチューブ曲げ部の曲率半径を一定以上小さくできな
いことから、チューブ間隔の狭小化による熱交換効率の
向上にも限界がある。
Furthermore, since the radius of curvature of the tube bent portion cannot be reduced beyond a certain level, there is a limit to the improvement in heat exchange efficiency by narrowing the tube spacing.

このように従来のサーペンタイン型凝縮器は、その構造
上、圧力損失の減少や熱交換効率の向上のために採りう
る設計仕様に限界があった。
As described above, the conventional serpentine condenser has a limited design specification due to its structure in order to reduce pressure loss and improve heat exchange efficiency.

この発明はかかる技術的背景のもとになされたものであ
って、凝縮器をそのチューブ幅やチューブ間隔すなわち
フィン高さ等を種々の値に設定しうる構造のものとした
うえで、さらに冷媒や流通空気の圧力損失を減少しかつ
熱交換効率を向上するための最適条件を求めたものであ
る。
The present invention was made against this technical background, and the condenser has a structure in which the tube width and tube spacing, that is, the fin height, etc., can be set to various values, and the refrigerant The purpose of this study was to find the optimal conditions for reducing the pressure loss of circulating air and improving heat exchange efficiency.

問題点を解決するための手段 而してこの発明は、複数のチューブが並列状に配置され
るとともに、隣接チューブ間にコルゲートフィンが配置
され、かつ各チューブの両端が中空ヘッダーに連通接続
された凝縮器であって、前記チューブが、チューブ幅二
6〜16mm、チューブ高さ:1.5〜5mm、チュー
ブ内冷媒通路高さ:1.Omrtt以上に規制されると
ともに、前記コルゲートフィンが、フィン高さ:8〜1
6mrasフィンピッチ=1.6〜3.2mmに規制さ
れてなることを特徴とする凝縮器を要旨とする。
Means for Solving the Problems According to the present invention, a plurality of tubes are arranged in parallel, corrugated fins are arranged between adjacent tubes, and both ends of each tube are connected to a hollow header. In the condenser, the tube has a tube width of 26 to 16 mm, a tube height of 1.5 to 5 mm, and a refrigerant passage height in the tube of 1. Omrtt or more, and the corrugated fin has a fin height of 8 to 1
The gist of the present invention is a condenser characterized in that the fin pitch is regulated to 6 mras fin pitch = 1.6 to 3.2 mm.

実施例 次にこの発明の構成を図示実施例に基いて詳細に説明す
る。
Embodiments Next, the structure of the present invention will be explained in detail based on illustrated embodiments.

この実施例はアルミニウム合金製凝縮器を示すものであ
る。
This example shows an aluminum alloy condenser.

第1図〜第6図において、(1)は水平状態で上下方向
に配置された複数のチューブ、(2)はその隣接するチ
ューブ(1)(1)間に介在されたコルゲートフィンで
ある。チューブ(1)はアルミニウム材による偏平状の
押出型材からなるものである。このチューブ(1)はい
わゆるハモニカチューブと称されるような多孔形のもの
を用いても良い。また押出型材によらず電縫管を用いて
も良い。コルゲートフィン(2)は心材の片面または両
面にろう材が被覆されたアルミニウムプレージングシー
トからなるもので、チューブ(1)とほぼ同じ幅を有し
、ろう付によりチューブに接合されている。コルゲート
フィン(2)は、その壁面にルーバー(2a)を切り起
こし形成したものが用いられている。
In FIGS. 1 to 6, (1) is a plurality of tubes arranged vertically in a horizontal state, and (2) is a corrugated fin interposed between adjacent tubes (1). The tube (1) is made of a flat extruded aluminum material. This tube (1) may be of a porous type, so-called a harmonica tube. Furthermore, an electric resistance welded tube may be used instead of the extruded material. The corrugated fin (2) is made of an aluminum plating sheet whose core material is coated with a brazing material on one or both sides, has approximately the same width as the tube (1), and is joined to the tube by brazing. The corrugated fin (2) has a louver (2a) cut and raised on its wall surface.

(3)(4)は左右のへ・□ンダーである。これらのヘ
ッダー(3)(4)は心材の片面または両面にろう材が
被覆されたアルミニウムプレージングシートからなる電
縫管をもって形成されている。なお電縫管によらずアル
ミニウム押出形材をもって構成しても良い。各ヘッダー
には長さ方向に沿って間隔的にチューブ挿入穴(5)が
穿設されるとともに、鎖式に各チューブ(1)の両端が
挿入され、かつろう付により強固に接合連結されている
。なお、ろう付によることなく、チューブの長さ方向に
仕切壁を設けることにより、樹脂充填空間を形成し、チ
ューブを樹脂充填空間を貫通状態にヘッダーに挿入する
とともに、前記充填空間に樹脂を注入することによって
ヘッダーとチューブとを接合する構成としても良い。さ
らに左ヘッダー(3)の上端には冷媒人口管(6)が連
結される一方、右ヘンダー(4)の下端には冷媒出口管
(8)が連結され、また左ヘッダー(3)の下端及び右
ヘッダー(4)の上端は蓋片(7)(9)によりそれぞ
れ閉塞されている。さらにまた、左ヘッダー(3)の中
央部やや上の位置及び右ヘッダー(4)の下端から全長
の1/3程度の位置には、各1個の仕切板(10)  
(11)が設けられている。
(3) and (4) are left and right benders. These headers (3) and (4) are formed of electric resistance welded tubes made of an aluminum plating sheet whose core material is coated with a brazing material on one or both sides. Note that the structure may be made of an aluminum extruded shape instead of the electric resistance welded tube. Tube insertion holes (5) are bored in each header at intervals along the length direction, and both ends of each tube (1) are inserted in a chain type manner and are firmly connected by brazing. There is. Note that without brazing, a resin filling space is formed by providing a partition wall in the length direction of the tube, and the tube is inserted into the header so as to pass through the resin filling space, and the resin is injected into the filling space. A configuration may also be adopted in which the header and the tube are joined by doing so. Further, a refrigerant population pipe (6) is connected to the upper end of the left header (3), a refrigerant outlet pipe (8) is connected to the lower end of the right header (4), and a refrigerant outlet pipe (8) is connected to the lower end of the left header (3). The upper end of the right header (4) is closed by cover pieces (7) and (9), respectively. Furthermore, one partition plate (10) is installed at a position slightly above the center of the left header (3) and at a position approximately 1/3 of the total length from the bottom end of the right header (4).
(11) is provided.

これらの仕切板により、各ヘッダー(3)(4)がそれ
ぞれ上下2室に分割され、もってチューブ(1)群によ
って構成される全冷媒通路が、入口側通路群(A)と、
出口側通路群(C)と、それらの中間に位置する中間通
路群(B)との3つの通路群に分けられ、冷媒を順次各
通路群をめぐって蛇行状に流通させるものとなされてい
る。なお第1図に示す(13)  (14)は最外側の
コルゲートフィン(2)(2)の外側に配置された上下
のサイドプレートである。
With these partition plates, each header (3) (4) is divided into two upper and lower chambers, so that the entire refrigerant passage constituted by the tube (1) group is divided into the inlet side passage group (A),
It is divided into three groups of passages: an outlet side passage group (C) and an intermediate passage group (B) located between them, and the refrigerant is made to flow in a meandering manner around each passage group in sequence. Note that (13) and (14) shown in FIG. 1 are upper and lower side plates arranged on the outside of the outermost corrugated fins (2) and (2).

上記構成の凝縮器は、ヘッダー(3)(4)に列設した
挿入孔(5)にチューブ(1)の端部を挿入したのち、
隣接チューブ間にコルゲートフィン(2)を介在状態に
配置するとともに、最外側のチューブの外側にコルゲー
トフィンとサイドプレート(13)  (14)とを順
次的に配置し、さらに所要部品を所定位置に配置したの
ち、これを真空ろう付等により一括ろう付したものであ
る。この凝縮器において、左ヘッダ=(3)の上部入口
管(6)から流入した冷媒は、入口側通路群(A)の各
チューブ(1)を通過して右ヘッダー(4)に至ったの
ち、反転して中間通路群(B)の各通路を左ヘッダー(
3)へと流れ、さらに反転して出口側通路群(C)の各
通路を右ヘッダーへと流れて出口管(8)から凝縮器外
へと流出する。そして各通路群を流通する間に、チュー
ブ(1)(1)間に形成されたコルゲートフィン(2)
を含む空気流通間隙を矢印(W)で示す方向に流通する
空気と熱交換を行う。
In the condenser with the above configuration, after inserting the end of the tube (1) into the insertion holes (5) arranged in the headers (3) and (4),
The corrugated fins (2) are interposed between adjacent tubes, and the corrugated fins and side plates (13) and (14) are sequentially placed outside the outermost tube, and the required parts are placed in predetermined positions. After arranging them, they are collectively brazed using vacuum brazing or the like. In this condenser, the refrigerant flowing from the upper inlet pipe (6) of the left header (3) passes through each tube (1) of the inlet side passage group (A) and reaches the right header (4). , flip each aisle in the middle aisle group (B) to the left header (
3), further reverses, flows through each passage of the outlet side passage group (C) to the right header, and flows out of the condenser from the outlet pipe (8). Corrugated fins (2) formed between the tubes (1) (1) while flowing through each passage group.
Heat exchange is performed with the air flowing in the direction shown by the arrow (W) through the air circulation gap containing the space.

ところで上記のようなチューブ(1)を流通する冷媒や
チューブ間隙を流通する空気の圧力損失ひいては熱交換
効率は、チューブ(1)及びコルゲートフィン(2)の
設計仕様に大きく支配される。そこでこの発明では、前
記チューブ(1)はその幅(W)が6〜16mmの範囲
に、高さくHt)が1.5〜5mmに、チューブ内の冷
媒通路(12)の高さくHp)が1.0mm以上にそれ
ぞれ規制され、かつコルゲートフィン    □(2)
はその高さくHf)すなわち隣接チューブ(1)(1)
の間隔が8〜16mInの範囲に、フィンピッチ(Fp
)は1.6〜3.2mmの範囲にそれぞれ規制されるこ
とを条件とする。ここでそれぞれの限定理由について説
明すれば、チュー・ブ幅(W)が6〜16mmに規制さ
れるのは、第7図に示した実験結果に基くグラフに示す
ように、6 mm未満では隣接チューブ(1)(1)間
に介在されるコルゲートフィン(2)の幅も小さいもの
となるとともに、該フィン(2)に形成されるルーバー
(2a)の数も減少し、熱交換性能が劣化するからであ
り、逆に16Mを超えて広幅に形成されるとフィン(2
)の幅も大きくなり流通空気の流通抵抗の増大による圧
力損失の増大、及び凝縮器の重量の増大を招来し実用性
が損われるからである。好ましくは10〜14!M1と
するのが良い。チューブ高さくHt)が1.5〜5rw
Itに規制されるのは、第8図に示されるように5Mを
超えて高くなると、流通空気の圧力損失が高くなるから
であり、逆に1,51111未満ではチューブ内の冷媒
通路高さくHp)をチューブ肉厚との関係で1. 0m
111以上確保するのが困難となるからである。好まし
くは2.5〜4In11とするのが良い。チューブ(1
)内の冷媒通路高さくHp)が1.0mm以上に規制さ
れるのは、1.0M未満では冷媒の圧力損失が高くなり
、熱交換効率の低下を招来するからである。好ましくは
165〜2.  Omtrtとするのが良い。一方、フ
ィン高さくHf)が8〜16IMIに規制されるのは、
第9図に示されるように8M未満では流通空気の圧力損
失が増大するからであり、逆に16m以上では全体のフ
ィン数が少なくなりフィン効率が低下し熱交換性能が悪
くなるからである。好ましくは8〜12#I1mとする
のが良い。またフィンピッチ(Fp)が1. 6〜3.
 2mtrtに規制されるのは、第10図に示されるよ
うに1.6mm未満ではルーバー(2a)が干渉して性
能が低下するとともに空気の圧力損失が増大するからで
あり、逆に3゜2mmを超えると熱交換性能が劣化する
からである。
By the way, the pressure loss of the refrigerant flowing through the tube (1) and the air flowing through the tube gap, as well as the heat exchange efficiency, are largely controlled by the design specifications of the tube (1) and the corrugated fins (2). Therefore, in this invention, the width (W) of the tube (1) is in the range of 6 to 16 mm, the height (Ht) is in the range of 1.5 to 5 mm, and the height of the refrigerant passage (12) in the tube (Hp) is in the range of 6 to 16 mm. Respectively regulated to 1.0 mm or more, and corrugated fins □ (2)
is its height Hf), that is, the adjacent tube (1) (1)
The fin pitch (Fp
) shall be regulated within the range of 1.6 to 3.2 mm. To explain the reasons for each limitation, the tube width (W) is restricted to 6 to 16 mm, as shown in the graph based on the experimental results shown in Figure 7. The width of the corrugated fins (2) interposed between the tubes (1) (1) also becomes smaller, and the number of louvers (2a) formed on the fins (2) also decreases, deteriorating heat exchange performance. On the other hand, if the width exceeds 16M, the fins (2
) becomes larger, leading to an increase in pressure loss due to an increase in the flow resistance of the circulating air and an increase in the weight of the condenser, impairing its practicality. Preferably 10-14! It is better to set it to M1. Tube height (Ht) is 1.5~5rw
The reason why it is regulated by It is that when the height exceeds 5M, as shown in Fig. 8, the pressure loss of the circulating air increases, and conversely, when it is less than 1,51111, the height of the refrigerant passage in the tube increases. ) in relation to the tube wall thickness. 0m
This is because it becomes difficult to secure 111 or more. Preferably it is 2.5 to 4 In11. Tube (1
The reason why the height of the refrigerant passage (Hp) in ) is restricted to 1.0 mm or more is because if it is less than 1.0 M, the pressure loss of the refrigerant increases, resulting in a decrease in heat exchange efficiency. Preferably 165-2. It is better to set it to Omtrt. On the other hand, the fin height (Hf) is regulated to 8 to 16 IMI because
This is because, as shown in FIG. 9, if the length is less than 8 m, the pressure loss of the circulating air will increase, while if it is 16 m or more, the total number of fins will decrease, the fin efficiency will decrease, and the heat exchange performance will deteriorate. Preferably, it is 8 to 12 #I1m. Also, the fin pitch (Fp) is 1. 6-3.
The reason why it is restricted to 2 mtrt is that, as shown in Figure 10, if it is less than 1.6 mm, the louver (2a) will interfere, resulting in a decrease in performance and an increase in air pressure loss. This is because heat exchange performance deteriorates when the temperature exceeds .

発明の効果 この発明に係る凝縮器は、複数のチューブが並列状に配
置されるとともに、隣接チューブ間にコルゲートフィン
が配置され、かつ各チューブの両端が中空ヘッダーに連
通接続された構造のものであるから、従来のサーペンタ
イン型凝縮器のように、チューブの曲げ加工を施す必要
がなくなる。このため、チューブの幅やチューブ間隔即
ちフィン高さ等の選択に制限がなくなり、任意の設計仕
様が可能となる。かつかかる構成とした上で、凝縮器の
性能に最も影響を及ぼすチューブとコルゲートフィンに
関し、チューブ幅、チューブ高さ、チューブ内の冷媒通
路高さ、フィン高さ、フィンピッチを最も適正な範囲に
設定したものであるから、重量の増大を招来することな
く、冷媒や流通空気の圧力損失と熱交換性能とが調和し
た最も効率の良い最適状態で動作せしめうる凝縮器の提
供が可能となる。従って本発明に係る凝縮器を、例えば
カーエアコン用に適用した場合には、最近の自動車の一
般的傾向である前面の空気取入れ口の寸法が小さくとも
、充分良好な熱交換効率が得られるものとなる。
Effects of the Invention The condenser according to the present invention has a structure in which a plurality of tubes are arranged in parallel, corrugated fins are arranged between adjacent tubes, and both ends of each tube are connected to a hollow header. Because of this, there is no need to bend the tube like in conventional serpentine condensers. Therefore, there are no restrictions on the selection of tube width, tube spacing, ie, fin height, etc., and arbitrary design specifications are possible. With this configuration, the tube width, tube height, refrigerant passage height in the tube, fin height, and fin pitch are set to the most appropriate range for the tubes and corrugated fins that most affect the performance of the condenser. Because of this setting, it is possible to provide a condenser that can be operated in the most efficient and optimal state where the pressure loss of the refrigerant and circulating air and heat exchange performance are in harmony without causing an increase in weight. Therefore, when the condenser according to the present invention is applied to, for example, a car air conditioner, a sufficiently good heat exchange efficiency can be obtained even if the size of the front air intake port is small, which is a general trend in recent automobiles. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示すもので、第1図は凝縮
器の全体正面図、第2図は同じく平面図、第3図は第1
図の■−■線断面図、第4図は構成部材を分離状態にし
て示した要部の斜視図、第5図は第3図と同一方向から
見た断面拡大図、第6図はコルゲートフィンとチューブ
を示す正面拡大図、第7図は、第1図から第6図に示し
た凝縮器におけるチューブ幅の変化と熱通過率の変化と
の関係を示すグラフ、第8図は同じくチューブ高さの変
化と空気側の圧力損失の変化との関係を示すグラフ、第
9図は同じくフィン高さの変化に対する交換熱量及び空
気の圧力損失の変化の関係を示すグラフ、第10図は同
じくフィンピッチの変化に対する交換熱量及び空気の圧
力損失の変化の関係を示すグラフである。 (1)・・・チューブ、(2)・・・コルゲートフィン
、(3)  (4)・・・ヘッダー、(W)・・・チュ
ーブ幅、(Ht)・・・チューブ高さ、(Hp)・・・
冷媒通路高さ、(Hf)・・・フィン高さ、(F p)
・・・フィンピッチ。 以上 特許出願人  昭和アルミニウム株式会社1“:”・′
い、 代理人 弁理士 清水大義・、7′”)−、′、: 第2図 第3図 第5図 第4図 咀1路 ゐご フィ〉ピッデー 1 ′ 第6図
The drawings show one embodiment of the present invention; FIG. 1 is an overall front view of the condenser, FIG. 2 is a plan view of the condenser, and FIG.
Figure 4 is a perspective view of the main parts with the constituent members separated, Figure 5 is an enlarged cross-sectional view seen from the same direction as Figure 3, Figure 6 is a corrugated cross-sectional view. Figure 7 is a front enlarged view showing the fins and tubes, and Figure 7 is a graph showing the relationship between changes in tube width and heat transfer rate in the condensers shown in Figures 1 to 6. A graph showing the relationship between changes in height and changes in pressure loss on the air side. Figure 9 is a graph showing the relationship between changes in heat exchange and air pressure loss with respect to changes in fin height. Figure 10 is the same. It is a graph showing the relationship between changes in the amount of heat exchanged and changes in air pressure loss with respect to changes in fin pitch. (1)...Tube, (2)...Corrugated fin, (3) (4)...Header, (W)...Tube width, (Ht)...Tube height, (Hp) ...
Refrigerant passage height, (Hf)...Fin height, (F p)
...fin pitch. Patent applicant: Showa Aluminum Co., Ltd. 1 “:”・′
Agent: Patent Attorney Shimizu Taigi・,7'")-,',: Figure 2, Figure 3, Figure 5, Figure 4, Figure 4, Figure 6

Claims (1)

【特許請求の範囲】 複数のチューブが並列状に配置されるとともに、隣接チ
ューブ間にコルゲートフィンが配置され、かつ各チュー
ブの両端が中空ヘッダーに連通接続された凝縮器であっ
て、前記チューブが、 チューブ幅:6〜16mm チューブ高さ:1.5〜5mm チューブ内冷媒通路高さ:1.0mm以上 に規制されるとともに、前記コルゲートフィンが、 フィン高さ:8〜16mm フィンピッチ:1.6〜3.2mm に規制されてなることを特徴とする凝縮器。
[Scope of Claims] A condenser in which a plurality of tubes are arranged in parallel, corrugated fins are arranged between adjacent tubes, and both ends of each tube are connected to a hollow header, wherein the tubes are arranged in parallel. , Tube width: 6 to 16 mm Tube height: 1.5 to 5 mm In-tube refrigerant passage height: regulated to 1.0 mm or more, and the corrugated fins: Fin height: 8 to 16 mm Fin pitch: 1. A condenser characterized by being regulated to 6 to 3.2 mm.
JP27791787A 1986-11-04 1987-11-02 Condenser Granted JPS63243688A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-263138 1986-11-04
JP26313886 1986-11-04

Publications (2)

Publication Number Publication Date
JPS63243688A true JPS63243688A (en) 1988-10-11
JPH0345302B2 JPH0345302B2 (en) 1991-07-10

Family

ID=17385338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27791787A Granted JPS63243688A (en) 1986-11-04 1987-11-02 Condenser

Country Status (1)

Country Link
JP (1) JPS63243688A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133797A (en) * 1988-11-15 1990-05-22 Matsushita Refrig Co Ltd Heat exchanger with fin
JPH02287094A (en) * 1989-04-26 1990-11-27 Zexel Corp Heat exchanger
JPH03204595A (en) * 1989-12-28 1991-09-06 Showa Alum Corp Condenser
US6880627B2 (en) 1999-12-09 2005-04-19 Denso Corporation Refrigerant condenser used for automotive air conditioner
JP2006170600A (en) * 2004-07-05 2006-06-29 Showa Denko Kk Heat exchanger
WO2012029542A1 (en) * 2010-09-01 2012-03-08 三菱重工業株式会社 Heat exchanger and vehicle air conditioner with same
JP2015518952A (en) * 2012-11-08 2015-07-06 ハラ ビステオン クライメイト コントロール コーポレイション Heat exchanger for refrigerant circuit
JP2019522769A (en) * 2016-06-21 2019-08-15 エバプコ・インコーポレイテッドEvapco, Inc. Small tube air-cooled industrial steam condenser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849054A (en) * 1971-10-22 1973-07-11
JPS56149295U (en) * 1980-04-09 1981-11-10
JPS6146756A (en) * 1984-08-11 1986-03-07 日立機電工業株式会社 Conveyor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849054A (en) * 1971-10-22 1973-07-11
JPS56149295U (en) * 1980-04-09 1981-11-10
JPS6146756A (en) * 1984-08-11 1986-03-07 日立機電工業株式会社 Conveyor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133797A (en) * 1988-11-15 1990-05-22 Matsushita Refrig Co Ltd Heat exchanger with fin
JPH02287094A (en) * 1989-04-26 1990-11-27 Zexel Corp Heat exchanger
JPH03204595A (en) * 1989-12-28 1991-09-06 Showa Alum Corp Condenser
US6880627B2 (en) 1999-12-09 2005-04-19 Denso Corporation Refrigerant condenser used for automotive air conditioner
US7140424B2 (en) 1999-12-09 2006-11-28 Denso Corporation Refrigerant condenser used for automotive air conditioner
JP2006170600A (en) * 2004-07-05 2006-06-29 Showa Denko Kk Heat exchanger
WO2012029542A1 (en) * 2010-09-01 2012-03-08 三菱重工業株式会社 Heat exchanger and vehicle air conditioner with same
JP2012052732A (en) * 2010-09-01 2012-03-15 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioning device for vehicle including the same
JP2015518952A (en) * 2012-11-08 2015-07-06 ハラ ビステオン クライメイト コントロール コーポレイション Heat exchanger for refrigerant circuit
US10017028B2 (en) 2012-11-08 2018-07-10 Hanon Systems Heat exchanger for refrigerant circuitry
JP2019522769A (en) * 2016-06-21 2019-08-15 エバプコ・インコーポレイテッドEvapco, Inc. Small tube air-cooled industrial steam condenser

Also Published As

Publication number Publication date
JPH0345302B2 (en) 1991-07-10

Similar Documents

Publication Publication Date Title
US6273184B1 (en) Parallel-disposed integral heat exchanger
JP3043050B2 (en) Heat exchanger
JPH04187990A (en) Heat exchanging device
JPS6334466A (en) Condenser
EP0415584A2 (en) Stack type evaporator
JPS63243688A (en) Condenser
JPH0245945B2 (en)
JPS63271099A (en) Heat exchanger
JPH0926278A (en) Heat exchanger refrigerant flow pipe and car air-conditioner condenser
JP2528121B2 (en) Heat exchanger
JP2901338B2 (en) Heat exchanger
JPS63161393A (en) Condenser
JP3214874B2 (en) Heat exchanger
JPH0833287B2 (en) Aluminum condenser for air conditioner
JPH0195288A (en) Heat exchanger
JPH03204595A (en) Condenser
JP3107159B2 (en) cooling tower
JPH03279763A (en) Multiple heat exchanger
JPS61114094A (en) Heat exchanger
JPS63131993A (en) Heat exchanger
JPH0624710Y2 (en) Heat exchanger
JPH0459425A (en) Heat exchanger
CN215810372U (en) Plate-fin heat exchanger capable of improving heat dissipation effect
JPH0722607Y2 (en) Heat exchanger
JPH02171591A (en) Laminated type heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 17