JPS63241923A - Apparatus for light irradiation - Google Patents

Apparatus for light irradiation

Info

Publication number
JPS63241923A
JPS63241923A JP62077033A JP7703387A JPS63241923A JP S63241923 A JPS63241923 A JP S63241923A JP 62077033 A JP62077033 A JP 62077033A JP 7703387 A JP7703387 A JP 7703387A JP S63241923 A JPS63241923 A JP S63241923A
Authority
JP
Japan
Prior art keywords
annular
wafer
light source
annular light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077033A
Other languages
Japanese (ja)
Inventor
Makoto Uehara
誠 上原
Hajime Ichikawa
元 市川
Masahiko Yomoto
与本 雅彦
Shigeru Kato
茂 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62077033A priority Critical patent/JPS63241923A/en
Priority to US07/092,125 priority patent/US4859832A/en
Publication of JPS63241923A publication Critical patent/JPS63241923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)

Abstract

PURPOSE:To control the whole wafer surface to a uniform temperature by providing, in addition to the direct irradiation by a plurality of concentrically placed annular light sources, irradiation of the reflected light, and an annular mirror for collecting the light to the outer periphery of a wafer to be treated. CONSTITUTION:In the center of a quartz chamber 2, a wafer 5 as an object to be irradiated is mounted on a supporting stand 6. On the upper surface and lower surface of the chamber 2, a plurality of annular light sources 1a, 1b, 1c are placed around a straight line corresponding to the normal line on the central position of the wafer 5, respectively. A gas supply port 4 is provided in the central upper part of the chamber 2, and an exhaust port 12 is provided in the central lower part thereof. A temperature measuring optical system provided under the center of the chamber guides the radiant energy of a black body from the wafer to a detector 11 by means of objective lenses 7, 8, a two-dimensional scanning mirror 9 and a condensing lens 10 for measuring the temperature distribution of the wafer. Further, reflecting members 20 are placed on the upper and lower surfaces of the chamber 2 for correcting the temperature reduction by heat dissipation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子の製造工程に用いられるランプア
ニール装置等の光照射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light irradiation device such as a lamp annealing device used in the manufacturing process of semiconductor devices.

〔従来の技術〕[Conventional technology]

近年、半導体素子の製造工程において光の熱作用及び化
学作用を利用する技術が採用されてきており、このため
の光照射装置の開発が進められてきている。この種の光
照射装置としては、高い照射エネルギーを持つと共に、
被照射物体としてのウェハ面の全面で均一に化学反応を
進行させるために均一な加熱を行う必要がある。このよ
うな光照射装置として、石英チャンバー内の被処理つ工
ハに対し、石英チャンバーの上方と下方に各10本程度
の加熱用棒状ハロゲン光源を配置したものが用いられて
いる。このような従来の装置は、被処理物体としてのウ
ェハ全面での照度を均一にするために、ウェハの上下面
の広い面積にわたり棒状光源を多数配置することが必要
である。
2. Description of the Related Art In recent years, technology that utilizes the thermal and chemical effects of light has been adopted in the manufacturing process of semiconductor devices, and the development of light irradiation devices for this purpose has been progressing. This type of light irradiation device has high irradiation energy and
It is necessary to perform uniform heating in order to cause the chemical reaction to proceed uniformly over the entire surface of the wafer, which is the object to be irradiated. As such a light irradiation device, one in which about 10 rod-shaped halogen light sources for heating are arranged each above and below the quartz chamber for the workpiece to be processed in the quartz chamber is used. In such a conventional apparatus, it is necessary to arrange a large number of rod-shaped light sources over a wide area on the upper and lower surfaces of the wafer in order to make the illuminance uniform over the entire surface of the wafer as an object to be processed.

そして、ウェハ中心部と周辺部では放熱条件が異なるた
め、均一に照明したとしても、第14図の破線の如く、
ウェハの中心部に比べ周辺部の温度が低くなる傾向にあ
り、ウェハの全面にわたって実質的に均一な加熱を行う
ことは容易なことではなかった。第14図の破線で示し
た温度分布の計算においては、6インチのシリコンウェ
ハを被照射物体とし、照度ムラのない状態で光照射がお
こなわれ、はぼ静止した空気へ放熱がなされていると仮
定し、数値解析を行った結果である。図示のようにウェ
ハ最周辺で急速に温度が低下することになる。このよう
に、被照射物体全面に均一な光エネルギーが与えられて
も、放熱の条件が被照射物体の中心と最周辺とでは大き
く異なり均一な温度分布が得られない。ウェハ面上での
このような温度カーブはウェハの絶対温度、経たプロセ
ス、チャンバー内雰囲気などにより異なるが、既成ラン
プアニール装置でも同様なデータが得られており改善を
せまられている。
Since the heat dissipation conditions are different between the center and the periphery of the wafer, even if the illumination is uniform, as shown by the broken line in Figure 14,
The temperature at the periphery of the wafer tends to be lower than that at the center, and it has not been easy to heat the wafer substantially uniformly over the entire surface. In calculating the temperature distribution shown by the broken line in Figure 14, a 6-inch silicon wafer is used as the object to be irradiated, light is irradiated with uniform illuminance, and heat is radiated into the still air. This is the result of numerical analysis based on the assumption. As shown in the figure, the temperature rapidly decreases at the outermost periphery of the wafer. In this way, even if uniform light energy is applied to the entire surface of the object to be irradiated, the heat dissipation conditions differ greatly between the center and the outermost periphery of the object to be irradiated, making it impossible to obtain a uniform temperature distribution. Although such a temperature curve on the wafer surface differs depending on the absolute temperature of the wafer, the process that has taken place, the atmosphere inside the chamber, etc., similar data has been obtained with existing lamp annealing equipment, and improvements are needed.

ウェハ面上で温度の均一性が維持できない状態において
アニールをおこなうと、スリップラインと呼ばれるヒビ
割れを生じ歩留りを劣下させる。
If annealing is performed in a state where temperature uniformity cannot be maintained on the wafer surface, cracks called slip lines will occur, reducing yield.

またスリップラインを生しないまでも温度ムラを持って
いれば、アニールの最適温度条件の許容範囲が狭くなり
、使いにくい装置になってしまっていた。
Furthermore, if there were temperature irregularities even without slip lines, the permissible range of the optimum temperature conditions for annealing would be narrowed, making the device difficult to use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このために例えば、特開昭58−194332号公報の
如く、ウェハ周辺部に補助加熱機構を持たせたものや、
特開昭60−247934号公報に開示される如く、ウ
ェハ周辺部の加熱を増すためにランプの配置密度を変え
たものなどが提案されている。しかしこれらの装置も、
均一照明条件を得るためウェハの面積をはるかに超える
大面積の面光源とするために数多くの棒状光源を設ける
必要があり、加熱効率は至って悪い、そして、チャンバ
ーの上下面に棒状ランプがしきつめられているため、本
来回転対称な形状の被処理ウェハに対して、前工程での
ウェハプロセスの固体差の補正や設定温度の変更等、ウ
ェハ全面にわたる温度の制御が非常に難しい。しかも、
被照射物体全面にわたる測温機構を持たないため、異な
る条件下における補助加熱量の設定が不可能であり、ま
た石英チャンバー内に補助加熱機構を配置したため、構
成が複雑になり、ガス雰囲気の実現やゴミ発生など多く
の難点があった。
For this purpose, for example, there is a device that has an auxiliary heating mechanism around the wafer, as in Japanese Patent Application Laid-open No. 58-194332,
As disclosed in Japanese Unexamined Patent Publication No. 60-247934, a method in which the arrangement density of lamps is changed in order to increase the heating of the wafer peripheral area has been proposed. However, these devices also
In order to obtain uniform illumination conditions, it is necessary to install many rod-shaped light sources to provide a large area light source that far exceeds the area of the wafer, and the heating efficiency is extremely poor, and the rod-shaped lamps are tightly packed on the top and bottom of the chamber. Therefore, it is extremely difficult to control the temperature over the entire surface of the wafer, such as correcting individual differences in the wafer process in the previous process or changing the set temperature, for a wafer to be processed that is originally rotationally symmetrical in shape. Moreover,
Since it does not have a temperature measurement mechanism that covers the entire surface of the irradiated object, it is impossible to set the amount of auxiliary heating under different conditions.Also, since the auxiliary heating mechanism is placed inside the quartz chamber, the configuration becomes complicated, and a gas atmosphere cannot be realized. There were many problems such as the generation of garbage and garbage.

そこで本発明は、上述の欠点を解消し、被照射物体とし
てのウェハの全面において効率良く均一な照明を可能と
するのみならず、ウェハの最周辺部の温度も容易に制御
することができ、ウェハ全面にわたって均一な加熱を行
うことのできる光照射装置の提供を目的としている。
Therefore, the present invention solves the above-mentioned drawbacks, and not only makes it possible to efficiently and uniformly illuminate the entire surface of a wafer as an object to be irradiated, but also makes it possible to easily control the temperature of the outermost part of the wafer. The purpose of the present invention is to provide a light irradiation device that can uniformly heat the entire surface of a wafer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、まず本願と同一出願人による特願昭61−2
11208にて開示した光照射装置を基本としている。
The present invention was originally filed in Japanese Patent Application No. 61-2 filed by the same applicant as the present application.
It is based on the light irradiation device disclosed in No. 11208.

すなわち、先の出願にて開示した装置では、被照射物体
の中心に対応する所定の軸を中心として同心状に配置さ
れた複数の環状光源を設け、これら同心状に配置された
環状光源によって被照射物体としてのウェハを照明し加
熱するものである。
That is, in the device disclosed in the previous application, a plurality of annular light sources are arranged concentrically around a predetermined axis corresponding to the center of the object to be irradiated, and the object is illuminated by the annular light sources arranged concentrically. It illuminates and heats a wafer as an irradiation object.

そして本発明においては、上記のごとき先願の発明の構
成において、さらに同心状に配置された環状光源の背後
に反射部材を配置し、同心状に配置された環状光源のう
ちの少なくとも最も外側に位置する環状光源に対しては
、凹面鏡により被照射物体面の周辺部において照度が高
くなるような照度分布を与えるような構成としたもので
ある。
In the present invention, in the configuration of the invention of the earlier application as described above, a reflective member is further arranged behind the annular light sources arranged concentrically, and at least the outermost part of the annular light sources arranged concentrically is provided. The annular light source is configured to provide an illuminance distribution using a concave mirror such that the illuminance is high in the periphery of the irradiated object surface.

具体的には、少なくとも最も外側の環状光源に対する環
状凹面鏡は、同心中心を通る平面での断面において環状
光源の発光部が凹面鏡の光軸外で光軸よりも内側に位置
するように構成されているものである。
Specifically, the annular concave mirror for at least the outermost annular light source is configured such that the light emitting part of the annular light source is located outside the optical axis of the concave mirror and inside the optical axis in a cross section taken on a plane passing through the concentric center. It is something that exists.

〔作用〕[Effect]

上記の如き本発明の構成においては、まず同心状に配置
された環状光源によって光照射をおこなう構成であるた
め、被照射物体の中心に関して回転対称な光源形状とな
り、はぼ回転対称のウェハに対して均一な照明が可能と
なり、光照射による加熱や化学反応の励起をウェハの全
面にわたって均一に行うことが可能である。そして、同
心状に配置された環状光源の背後に反射部材を配置する
ため、被照射物体面に直接到達しない光束をも反射部材
で反射することによって照明効率を高めることができる
。さらに、同心状に配置された環状光源のうちの少なく
とも最も外側に位置する環状光源に対しては、凹面鏡に
より被照射物体面の周辺部において照度が高くなるよう
な照度分布を与えるような構成とすることにより、被照
射物体の放熱により温度が低下する傾向にある周辺部の
温度を高めることができる。そして、各環状光源の発光
量を独立に制御することによって被照射物体面の全面に
わたって均一な温度を維持しつつ加熱することが可能と
なる。
In the configuration of the present invention as described above, first, light is irradiated by an annular light source arranged concentrically, so the shape of the light source is rotationally symmetrical with respect to the center of the irradiated object. This enables uniform illumination, and it is possible to uniformly heat and excite chemical reactions over the entire surface of the wafer by light irradiation. Since the reflecting member is disposed behind the concentrically arranged annular light sources, the illumination efficiency can be increased by reflecting the light flux that does not directly reach the surface of the object to be illuminated by the reflecting member. Furthermore, for at least the outermost annular light source among the annular light sources arranged concentrically, a concave mirror is used to provide an illuminance distribution such that the illuminance is high in the periphery of the irradiated object surface. By doing so, it is possible to increase the temperature of the peripheral area where the temperature tends to decrease due to heat radiation of the irradiated object. By independently controlling the amount of light emitted from each annular light source, it becomes possible to heat the irradiated object while maintaining a uniform temperature over the entire surface.

また、光源が被照射物体に面して同心状に配置された環
状光源からなる回転対称形状であるため、環状光源の中
心位置に被照射面を観測するための光学系を配置するこ
とができ、被照射物体を環状光源の中心軸上に配置する
ことによって被照射物体の中心軸上から被照射物体面の
観測或いは光学的な検査を行うことが可能となる。そし
て、被照射物体を特定のガス雰囲気中に置いて光照射す
るためのチャンバーを用いる場合には、チャンバー内に
ガスを供給及び排気する給排気口を環状光源の中心位置
を通して設けることができ、被照射物体の中心位置から
ガスの供給及び排気を行うことができるので、ガスによ
る化学反応の均一性を維持するにも極めて有利となる。
In addition, since the light source has a rotationally symmetrical shape consisting of an annular light source placed concentrically facing the irradiated object, an optical system for observing the irradiated surface can be placed at the center of the annular light source. By arranging the irradiated object on the central axis of the annular light source, it becomes possible to observe or optically inspect the surface of the irradiated object from the central axis of the irradiated object. When using a chamber for irradiating light while placing the irradiated object in a specific gas atmosphere, a supply/exhaust port for supplying and exhausting gas into the chamber can be provided through the center position of the annular light source, Since the gas can be supplied and exhausted from the center of the irradiated object, it is extremely advantageous to maintain the uniformity of the chemical reaction caused by the gas.

そして本発明では、複数の環状光源より直接被照射物体
に至る光束は、被照射物体全面にわたり均等な照度が与
えられるよう環状光源の配置が定められ、一方直接被照
射物体に向わない光束の大半は、後方に設けられた環状
ミラーにより、内周の環状光源では、被照射物体に均等
に、外周の環状光源では被照射物体の最外周部に比重の
かけられた照明が与えられ、これらの照明条件より与え
られた光エネルギーが被照射物体の全面にわたり等しい
温度に維持、加熱できるように構成されることが望まし
い。
In the present invention, the arrangement of the annular light sources is determined so that the light beams directly reaching the irradiated object from the plurality of annular light sources are given uniform illuminance over the entire surface of the irradiated object, while the light beams that do not directly reach the irradiated object are Most of the time, due to the annular mirror installed at the rear, the inner annular light source applies illumination evenly to the irradiated object, and the outer annular light source provides illumination with a specific gravity on the outermost part of the irradiated object. It is desirable that the illumination conditions are such that the light energy applied can maintain and heat the entire surface of the irradiated object at the same temperature.

〔実施例〕〔Example〕

以下に本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明による一実施例の構成を示す概略断面図
であり、第2図は本実施例に用いられている環状光源の
構成を示す平面図である。石英チャンバー2の中央に被
照射物体としてのウェハ5が支持台6上に載置されてい
る。チャンバー2の上面及び下面には、それぞれウェハ
5の中心位置上の法線Nに対応する直線を中心として同
芯状に複数の環状光源1a、1b、1cが配置されてい
る。
FIG. 1 is a schematic sectional view showing the structure of an embodiment of the present invention, and FIG. 2 is a plan view showing the structure of an annular light source used in this embodiment. A wafer 5 as an object to be irradiated is placed on a support table 6 in the center of the quartz chamber 2 . On the upper and lower surfaces of the chamber 2, a plurality of annular light sources 1a, 1b, and 1c are arranged concentrically about a straight line corresponding to the normal N on the center position of the wafer 5, respectively.

図示した3本の環状光源1a、lb、lcは、第2図に
示す如く、ウェハのほぼ中心に対応する法線Nを中心と
して同心状に配置されている。第2図中の各環状光源に
おいてその実質的発光部を破線にて示した。チャンバー
2の中央上方にはガス雰囲気を供給するための給気口4
、中央下方には排気口12が設けられ、被処理ウェハの
交換のための取り出し口3とともに、チャンバー内を真
空又は所望のガス雰囲気による一定圧力に維持できるよ
うに構成されている。チャンバーの中央下方に設けられ
た測温光学系は、ウェハからの黒体輻射エネルギーを対
物レンズ7.8及び2次元走査ミラー9、集光レンズ1
0によりディテクター11に導くもので、2次元走査ミ
ラー9によるウェハ面全体の走査により、ウェハの温度
分布を計測することができる。
The illustrated three annular light sources 1a, lb, and lc are arranged concentrically about a normal line N corresponding to approximately the center of the wafer, as shown in FIG. In each annular light source in FIG. 2, the substantial light emitting part is indicated by a broken line. At the upper center of the chamber 2 is an air supply port 4 for supplying a gas atmosphere.
An exhaust port 12 is provided at the lower center of the chamber, and together with an ejection port 3 for exchanging wafers to be processed, the chamber is configured to maintain a constant pressure in a vacuum or a desired gas atmosphere. A temperature measuring optical system installed at the lower center of the chamber collects blackbody radiation energy from the wafer through an objective lens 7.8, a two-dimensional scanning mirror 9, and a condenser lens 1.
By scanning the entire wafer surface with the two-dimensional scanning mirror 9, the temperature distribution of the wafer can be measured.

同心状に配置された環状光11a、lb、lcは例えば
ハロゲンランプで構成され、ハロゲンランプの発光スペ
クトルは1μm程度の波長にピークを持つ連続光である
ため、石英チャンバーを透過し、シリコンなどのウェハ
には比較的良く吸収され加熱作用を持つ。被照射物体と
しての半導体ウェハ5は、過去のプロセス、ロフト、ガ
ス雰囲気などにより、光エネルギーの熱変換や放熱条件
が異なるため、本実施例では、2次元走査可能な測温光
学系7〜11により常時被照射物体の全面が測温され、
その温度の絶対値及び均一性を制御するために各環状光
源の負荷がコントロールされる。
The annular lights 11a, lb, and lc arranged concentrically are composed of, for example, halogen lamps, and since the emission spectrum of the halogen lamp is continuous light with a peak at a wavelength of about 1 μm, it passes through a quartz chamber and It is relatively well absorbed by the wafer and has a heating effect. Since the semiconductor wafer 5 as the object to be irradiated has different heat conversion and heat radiation conditions for light energy depending on past processes, lofts, gas atmospheres, etc., in this embodiment, temperature measurement optical systems 7 to 11 capable of two-dimensional scanning are used. The temperature of the entire surface of the irradiated object is constantly measured.
The load of each annular light source is controlled to control the absolute value and uniformity of its temperature.

尚、ウェハの温度管理は、ウェハ近傍に設けられた熱電
対や、チャンバーの一部に測温用小窓を設け、熱放射温
度計でウェハの温度を測り、ランプによる加熱条件を定
めることも可能である。
The temperature of the wafer can also be controlled by using a thermocouple placed near the wafer or by installing a small window for temperature measurement in a part of the chamber, measuring the wafer temperature with a thermal radiation thermometer, and determining the heating conditions using a lamp. It is possible.

チャンバー上下面に各々同心状に配置された複数の環状
光源を設置し、各環状光源の発光ウェイトを等しくする
場合に、ウェハ全面をほぼ一様に照射することが可能で
ある。4つの環状光源から直接ウェハに至る光束による
照度は、表1に示す諸元により計算された値であり、表
2に示す如くほぼ一様な照度分布が得られる。
When a plurality of annular light sources are arranged concentrically on the upper and lower surfaces of the chamber and the light emission weight of each annular light source is made equal, it is possible to irradiate the entire wafer almost uniformly. The illuminance due to the light beams directly reaching the wafer from the four annular light sources is a value calculated based on the specifications shown in Table 1, and as shown in Table 2, a substantially uniform illuminance distribution is obtained.

1(4の1°、α− ウェハ中C娩相対照変 0.124 しかしながら、放熱の条件がウェハの中心部と周辺部で
は大きく異なり、第14図の破線で示したように周辺部
で急激に温度か低くなる傾向があるため、この放熱によ
る温度低下を補正する目的で、各環状光源の背面即ち、
チャンバー2と反対側の面に反射部材20を配置してい
る。反射部材20は第1図に示す如くチャンバーの−E
面と下面とに設けられた各環状光源の背後において同一
の構成のものが設けられている。各環状光源それぞれに
対して同じく同心状に配置された3つの環状ミラー21
a、21b、21Cを有している。この実施例では、環
状光源から直接ウェハに向かう光束によりウェハ面をほ
ぼ均一に照射し、直接ウェハ面に到達することなく反射
部材での反射によってウェハ面に導かれる光束について
は、内側の環状光源からの反射光束がウェハの全面をほ
ぼ均一に照明し、外側の環状光源からの光束がウェハの
周辺部をより強く照明するように構成されている。具体
的には、内側の環状光源1aからの光束のうち直接ウェ
ハ側に向かうことのない光束は、環状ミラー21aによ
ってウェハ全面をほぼ均一に照射し、中間の環状光源1
b及び外側の環状光源ICからの光束のうち直接ウェハ
面に向かうことのない光束は、環状ミラー21b及び2
1cによってウェハの周辺部に集中するように照射する
1 (1 degree of 4, α - C-relative change in wafer 0.124 However, the heat dissipation conditions are very different between the center and the periphery of the wafer, and as shown by the broken line in Figure 14, the heat dissipation conditions are very different in the wafer center and periphery. In order to compensate for the temperature drop due to heat radiation, the back surface of each annular light source, that is,
A reflecting member 20 is arranged on the opposite side of the chamber 2. The reflecting member 20 is located at -E of the chamber as shown in FIG.
An annular light source having the same configuration is provided behind each of the annular light sources provided on the top and bottom surfaces. Three annular mirrors 21 are arranged concentrically for each annular light source.
a, 21b, and 21C. In this embodiment, the wafer surface is almost uniformly irradiated with the light beam that goes directly toward the wafer from the annular light source, and the light beam that does not directly reach the wafer surface but is guided to the wafer surface by reflection from the reflective member is reflected from the inner annular light source. The light flux reflected from the annular light source illuminates the entire surface of the wafer almost uniformly, and the light flux from the outer annular light source illuminates the periphery of the wafer more intensely. Specifically, among the luminous fluxes from the inner annular light source 1a, the luminous fluxes that do not go directly to the wafer side are almost uniformly irradiated over the entire surface of the wafer by the annular mirror 21a, and the luminous flux from the inner annular light source 1a
Among the light fluxes from the annular light source ICs 21b and 2b, the light fluxes that do not go directly to the wafer surface are directed to the annular mirrors 21b and 2.
1c, the irradiation is concentrated on the periphery of the wafer.

上記実施例における外側の環状光源からの光束をウェハ
の周辺部でより集中するように反射するための環状ミラ
ーと環状光源の配置の原理について、第3図〜第6図を
用いて説明する。
The principle of arrangement of the annular mirror and the annular light source in order to reflect the light flux from the outer annular light source in the above embodiment so that it is more concentrated at the periphery of the wafer will be explained with reference to FIGS. 3 to 6.

第3図〜第G図においては、回転対称形状の環状光源及
び環状ミラーの同心中心を通る平面での断面形状を示し
ている。環状光源及び環状ミラーは共に回転対称である
から、図示した同心中心をとおる断面での光束の振る舞
いをみることで、実際の照射光束の様子を見積もること
が可能である。
3 to G show cross-sectional shapes taken on a plane passing through the concentric centers of the rotationally symmetrical annular light source and the annular mirror. Since both the annular light source and the annular mirror are rotationally symmetrical, it is possible to estimate the actual state of the irradiated light flux by looking at the behavior of the light flux in a cross section passing through the illustrated concentric center.

図中、縦軸Zは光軸を表し、Tは環状ミラーの頂点を表
すものとする。第3図及び第4図に示した構成は、共に
環状ミラーとして、断面が球面の凹面鏡の場合であり、
第3図は環状光源の発光中心Sが環状ミラーの軸Z上に
位置する場合であり、第4図は環状光源の発光中心Sが
環状ミラーの軸から外れた位置にある場合である。また
、第5図及び第6図は環状ミラーとして断面が楕円の凹
面鏡の場合であり、第5図は環状光源の発光中心Sが環
状ミラーの軸上に位置する場合であり、第4図は環状光
源の発光中心Sが環状ミラーの軸Zから外れた位置にあ
る場合である。
In the figure, the vertical axis Z represents the optical axis, and T represents the vertex of the annular mirror. The configurations shown in FIGS. 3 and 4 are both cases where the annular mirror is a concave mirror with a spherical cross section.
FIG. 3 shows a case where the light emission center S of the annular light source is located on the axis Z of the annular mirror, and FIG. 4 shows a case where the light emission center S of the annular light source is located off the axis of the annular mirror. 5 and 6 show the case where the annular mirror is a concave mirror with an elliptical cross section, FIG. 5 shows the case where the emission center S of the annular light source is located on the axis of the annular mirror, and FIG. This is a case where the emission center S of the annular light source is located off the axis Z of the annular mirror.

各図の場合の諸量は以下の表3に示す通りである。The various quantities for each figure are as shown in Table 3 below.

(尚、楕円面におけるKは円錐定数を表す。)上記の各
場合においては、環状光源の発光部を点光源とみなし、
断面内でこの点光源Sから5″の等角度で光線が完全拡
散発光しているものとし、これらの各光線の様子を光路
図として示した。光軸上に光源Sが置かれていると、第
3図では頂点Tより34.1ysm、第5図では頂点T
より13.3鶴の共役位置に光源像ができ、ウェハ面全
体をほぼ均一に照射する。光源Sを第4図のように31
、第6図のように21軸外にずらすと光束の大半が集光
する位置は、光Bsの偏芯方向とは逆の方向で軸外にず
れることとなる。
(K in the ellipsoid represents the conic constant.) In each of the above cases, the light emitting part of the annular light source is regarded as a point light source,
It is assumed that light rays are emitted completely diffusely at equal angles of 5'' from this point light source S within the cross section, and the state of each of these rays is shown as an optical path diagram.When the light source S is placed on the optical axis, , 34.1 ysm from the apex T in Fig. 3, and 34.1 ysm from the apex T in Fig. 5.
As a result, a light source image is formed at the conjugate position of 13.3 cranes, and the entire wafer surface is irradiated almost uniformly. Set the light source S to 31 as shown in Figure 4.
, as shown in FIG. 6, the position where most of the light beam is focused will be shifted off-axis in a direction opposite to the eccentric direction of the light Bs.

第4図及び第6図から、凹面鏡の光軸に対して発光点を
偏芯させることによって、凹面鏡の光軸から外れた周辺
部において光束を集中できるこ止が分かる。そして、第
3図と第5図の比較から、球面鏡の場合に比べて、円錐
定数Kが1より小さい楕円面鏡の場合の方が、軸上での
集光を高めることが可能であることも分かる。上記の如
く、本発明では外方の環状光源に対して、環状ミラーを
上記のごとく偏芯して配置することによって、ウェハの
外周部にこの集光領域がくるように構成しており、これ
によりウェハ外周部に対して放熱による温度低下を防止
するに足る照度分布を与え、ウェハ全面を均一に加熱す
ることが可能となる。
From FIG. 4 and FIG. 6, it can be seen that by decentering the light emitting point with respect to the optical axis of the concave mirror, it is possible to concentrate the luminous flux in the peripheral area away from the optical axis of the concave mirror. From the comparison between Figures 3 and 5, it is clear that ellipsoidal mirrors with a conic constant K smaller than 1 can improve light condensation on the axis compared to spherical mirrors. I also understand. As described above, in the present invention, the annular mirror is eccentrically arranged with respect to the outer annular light source as described above, so that the light condensing area is located on the outer periphery of the wafer. This provides an illuminance distribution sufficient to prevent a temperature drop due to heat radiation to the outer peripheral portion of the wafer, making it possible to uniformly heat the entire surface of the wafer.

第7図〜第11図は、4木の環状光[1a、lb。Figures 7 to 11 show four circular lights [1a, lb.

lc、ldを前記表1の諸量で配置し、各環状光源に対
し、断面が前記表3の第4図、第5図に相当する環状ミ
ラーと環状光源とを配置した光照射装置により、6イン
チ(150cIl+) ウェハを照射する状態における
光路図である。
With a light irradiation device in which lc and ld are arranged with the quantities shown in Table 1 above, and an annular mirror and an annular light source whose cross sections correspond to those shown in FIGS. 4 and 5 of Table 3 are arranged for each annular light source, It is an optical path diagram in a state where a 6 inch (150 cIl+) wafer is irradiated.

第7図は、最外周の環状光aidに対して、断面の曲率
半径が131の環状ミラーが配置されている。環状光源
1dはその断面外径が約10φでほぼ中心に発光部とし
ての抵抗線があり、環状ミラー断面の光軸Zに対し、内
側にy=3mmだけ偏芯して配置されている。第7図に
示されるとおり、ウェハの外周部に照度ウェイトの憂い
分布で照明される。
In FIG. 7, an annular mirror with a cross-sectional radius of curvature of 131 is arranged for the outermost annular light aid. The annular light source 1d has an outer diameter of about 10φ in cross section, has a resistance wire serving as a light emitting part almost at the center, and is arranged eccentrically inward by y=3 mm with respect to the optical axis Z of the annular mirror cross section. As shown in FIG. 7, the outer periphery of the wafer is illuminated with a poor distribution of illuminance weights.

また、第8図では1つ内側の光源1cの発光部Sに対し
て、断面の曲率半径13mmの環状ミラーが同じく内側
に、y=3mmだけ偏芯して配置されたもので、やはリ
ウエハ外周部に照度ウェイトの高い分布が与えられる。
In addition, in Fig. 8, an annular mirror with a cross-sectional radius of curvature of 13 mm is placed on the inside of the light emitting part S of the light source 1c, which is located one space inside, eccentrically by y = 3 mm. A distribution with a high illuminance weight is given to the outer periphery.

これらの環状ミラーを各環状光源に対してその背後にそ
れぞれ置いた場合、断面が球面であると比較的大きな曲
率半径を選ばなければ、ウェハ外周部への集光が不可能
であり、隣接する環状光源と環状ミラーの互いの光束の
干渉条件より、環状光源のピッチは大きくとる必要があ
る。従って複数の環状光源により形成される面光源とし
ての密度が低くなる。そこで、この欠点を解消するため
には、外方の環状ミラーの断面形状を球面ではなく楕円
とすることが行動である。
If these annular mirrors are placed behind each annular light source, if the cross section is spherical, it will be impossible to focus the light onto the outer periphery of the wafer unless a relatively large radius of curvature is chosen. The pitch of the annular light source needs to be large due to interference conditions between the light beams of the annular light source and the annular mirror. Therefore, the density of a surface light source formed by a plurality of annular light sources becomes low. Therefore, in order to eliminate this drawback, the action is to make the cross-sectional shape of the outer annular mirror not spherical but elliptical.

第9図と第10図は外方の環状光源1c及び1dに対し
て、頂点曲率半径が断面にてlQmsで、円錐定数に=
0.7の楕円面の環状ミラーを設定したものである。第
9図は最外方の環状光源から発し環状ミラーで反射され
る光線の様子を示し、第10図は外側から2番目の環状
光alcに対するこれらも発光部Sが環状ミラー断面の
光軸に対し内側にy=2mn+だけ偏芯して設定されて
いるため、ウェハ外周部に照度ウェイトの高い照明がな
されている。
9 and 10, for the outer annular light sources 1c and 1d, the radius of apex curvature is lQms in the cross section, and the conic constant =
An annular mirror with an elliptical surface of 0.7 is set. Fig. 9 shows the light rays emitted from the outermost annular light source and reflected by the annular mirror, and Fig. 10 shows the light emitting part S for the second annular light alc from the outside aligned with the optical axis of the annular mirror cross section. On the other hand, since it is set to be eccentric by y=2mn+ on the inside, the outer peripheral portion of the wafer is illuminated with a high illuminance weight.

環状ミラーの断面の曲率半径が第7図、第8図では13
 vssであるのに対し、第9図、第10図では楕円に
することにより頂点曲率半径をIonと小さくできるた
め、環状光源の配置間際を小さくでき、密度の高い光源
部が形成できる。断面が球面の方が加工は容易であるが
光源密度が低く、楕円の方が加工は難しく光源密度が高
くなる傾向があると言える。
The radius of curvature of the cross section of the annular mirror is 13 in Figures 7 and 8.
vss, whereas in FIGS. 9 and 10, by making it an ellipse, the apex radius of curvature can be made as small as Ion, so the arrangement of the annular light source can be made small, and a light source portion with high density can be formed. It can be said that a spherical cross section is easier to process but has a lower light source density, whereas an elliptical cross section is more difficult to process and tends to have a higher light source density.

同心状に配置された複数の環状光源のうち、外方の環状
光源においては、第7図〜第10図に示した如く、環状
ミラーでは、ウェハの周辺部が急激に照度が高くなる分
布となるように構成したが、内方の環状光源に対しては
、第11図に示した如く、ウェハ全面の照度が一様に近
くなるよう設定している。第11図に示す如く、最内周
の環状光源1aに対して、断面が曲率半径IQwmの凹
球面の環状ミラーを、環状光源1aの発光部Sが光軸上
に位置するように配置したものである。第11図の光路
図では環状光源の左側だけを図示しであるが、右側も加
え、同心中心としての法線Nを回転対称軸とした空間を
想定するとウェハ面ではむしろ中心で照度の高い分布に
する。
Among the plurality of annular light sources arranged concentrically, in the outer annular light sources, as shown in Figs. However, the inner annular light source is set so that the illuminance of the entire surface of the wafer is nearly uniform as shown in FIG. As shown in FIG. 11, an annular mirror having a concave spherical cross section with a radius of curvature IQwm is arranged for the innermost annular light source 1a so that the light emitting part S of the annular light source 1a is located on the optical axis. It is. In the optical path diagram in Fig. 11, only the left side of the annular light source is shown, but if we also include the right side and assume a space with the normal N as the concentric center as the axis of rotational symmetry, the wafer surface will have a distribution with high illuminance at the center. Make it.

以上の如く、上記本発明の実施例においては、複数の環
状光源の負荷を等しいとした場合、以下のように構成さ
れている。
As described above, in the embodiment of the present invention, when the loads of the plurality of annular light sources are assumed to be equal, the structure is as follows.

+11同心状に配置された4つの環状光fila、1b
、lc、ldから直接ウェハを照射する光束により、ウ
ェハ全面をほぼ一様に照射する。
+11 Four annular lights fila, 1b arranged concentrically
, lc, and ld directly irradiate the wafer, and the entire surface of the wafer is almost uniformly irradiated.

(2)内側の環状光[1a、lbでは、環状ミラー21
a、21bで反射された後にウェハに至る光束により、
ウェハの全面をほぼ一様に照射する。
(2) Inner annular light [1a, lb, annular mirror 21
Due to the light beam reaching the wafer after being reflected by a and 21b,
The entire surface of the wafer is irradiated almost uniformly.

(3)そして、外方の環状光[1c、ldでは、環状ミ
ラー21C,21dで反射された後にウエノ1に至る光
束により、ウェハの外周部で急激に照度分布が高くなる
ように照射する。特に、外方の環状光源としては、被照
射ウェハの外径よりも大きな径を有する環状光源によっ
てウェハの外周部の照度を高めることが好ましい。
(3) Then, the outer annular light [1c, ld] is a luminous flux that reaches the wafer 1 after being reflected by the annular mirrors 21C, 21d, and irradiates the wafer so that the illuminance distribution sharply increases at the outer periphery of the wafer. In particular, it is preferable that the outer annular light source has a diameter larger than the outer diameter of the wafer to be irradiated to increase the illuminance at the outer periphery of the wafer.

上記の如き構成によれば、ウェハ面状の温度分布を第1
4図に示した実線の如く、極めて均一な温度に維持する
ことが可能であり、この均一状態を維持したまま加熱し
ていくことが可能である。また、万一ウェハ周辺部の温
度低下が生じた場合には、同心状に配置された複数の環
状光源のうち外方の環状光源のパワーを相対的に高める
ことによって、瞬間的に例えば第14図の一点鎖線で示
す如く周辺部の温度が高くなるに制御することによって
均一な温度分布に戻すことが可能となる。
According to the above configuration, the temperature distribution on the wafer surface is
As shown by the solid line in Figure 4, it is possible to maintain an extremely uniform temperature, and it is possible to continue heating while maintaining this uniform state. In addition, in the event that the temperature around the wafer should drop, by relatively increasing the power of the outer annular light sources among the plurality of concentrically arranged annular light sources, for example, the 14th annular light source can be instantly As shown by the dashed line in the figure, by controlling the temperature in the peripheral area to be high, it is possible to return to a uniform temperature distribution.

尚、以上の他に設定した環状ミラーで反射せず、直接ウ
ェハに至らない光束や、ウェハ面で反射された光束など
が、チャンバーや、チャンバー外部壁などで再び反射さ
れウェハに至る光束が存在するため、これらの光束まで
含めてウェハ面の温度分布が一様になるように構成され
ることが望ましい。
In addition to the above, there are also light fluxes that are not reflected by the annular mirror set and do not reach the wafer directly, and light fluxes that are reflected on the wafer surface and are reflected again by the chamber or the outer walls of the chamber and reach the wafer. Therefore, it is desirable to configure the wafer surface so that the temperature distribution including these light beams is uniform.

同心状に配置された複数の環状光源からの光束を効率良
くウェハ面に向けるための反射部材としては、上記の如
き各環状ミラーをぼぼ同心状に配置することが必要であ
るが、複数の環状ミラーを組合せて一体とすることが可
能である。このような構成の反射部材30の断面図を第
12図に示す。反射部材30は、熱伝動の良好な銅やア
ルミニウムを基材とし、チャンバーに対向する反射面に
は加熱用光線の反射率を向上させるために金メッキを施
しである。また、反射部材が環状光源からの光線を受け
て高温になるのを防ぐために、図示なき空冷又は水冷等
の冷却手段が設けられている。第12図に示したように
、内側の環状光源1a及び1bに対しては、環状ミラー
21a、21bの断面形状は光軸上に発光部を置いた球
面で、外側の環状光源IC及び1dに対する環状ミラー
21C,21dは光軸外に発光部を置いた球面又は楕円
などの非球面である外方の環状ミラー21c、21dの
それぞれは、その外側の反射面のみが凹面に形成され、
内側の面は図中直線で示される如く、平面(実際には円
錐面)に形成されている。
As a reflecting member for efficiently directing the light beams from a plurality of concentrically arranged annular light sources toward the wafer surface, it is necessary to arrange each of the annular mirrors as described above in a more or less concentric manner. It is possible to combine mirrors into one piece. A cross-sectional view of the reflecting member 30 having such a configuration is shown in FIG. 12. The reflective member 30 is made of copper or aluminum, which has good heat conductivity, as a base material, and the reflective surface facing the chamber is plated with gold to improve the reflectance of the heating light beam. Further, in order to prevent the reflecting member from becoming high temperature due to receiving the light from the annular light source, a cooling means (not shown) such as air cooling or water cooling is provided. As shown in FIG. 12, for the inner annular light sources 1a and 1b, the cross-sectional shape of the annular mirrors 21a and 21b is a spherical surface with the light emitting part placed on the optical axis, and for the outer annular light sources IC and 1d. The annular mirrors 21C and 21d each have a spherical surface or an aspherical surface such as an ellipse with a light emitting portion placed outside the optical axis.Only the outer reflective surface of each of the outer annular mirrors 21C and 21d is formed into a concave surface.
The inner surface is formed into a flat surface (actually a conical surface) as shown by the straight line in the figure.

またウェハの放熱がガス雰囲気や、チャンハー形状によ
り異なり、外周部で余り大きくない場合には、ウェハ外
周部への集光もさほど必要ない場合には、第13図に示
す如き反射部材40の構成とすることもできる。この反
射部材40は、第13図に示すように最外周の環状光源
1dに対してだけ環状ミラーを形成し、他の環状光源に
対しては平面ミラーを置いた簡単な構成としたものであ
る。但し、この場合においても、最外周の環状光源1d
に対しては反射光がウェハの周辺部において高い強度と
なるようにするために、断面において凹球面の光軸Zに
対して発光源Sを内側に所定量だけ偏芯して配置するこ
とが必要である。
In addition, if the heat dissipation of the wafer differs depending on the gas atmosphere and the shape of the chamber, and if it is not so large at the outer periphery, and if it is not necessary to focus the light to the wafer outer periphery, the reflective member 40 may be configured as shown in FIG. It is also possible to do this. As shown in FIG. 13, this reflecting member 40 has a simple structure in which an annular mirror is formed only for the outermost annular light source 1d, and plane mirrors are placed for the other annular light sources. . However, even in this case, the outermost annular light source 1d
In order to make the reflected light have a high intensity at the periphery of the wafer, the light emitting source S can be arranged eccentrically inward by a predetermined amount with respect to the optical axis Z of the concave spherical surface in the cross section. is necessary.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、同心状に配置された複数の
環状光源による直接照射に加えて、反射部材による反射
光の照射によって、照明効率を高めると共に、被処理ウ
ェハの外周部に集光する環状ミラーを設けることにより
、ウェハの放熱も加味して、ウェハ全面を一様な温度に
制御することのできる光照射装置が実現できる。
As described above, according to the present invention, in addition to direct irradiation from a plurality of annular light sources arranged concentrically, the irradiation is performed with reflected light from a reflecting member, thereby increasing the illumination efficiency and focusing the light on the outer periphery of the wafer to be processed. By providing an annular mirror that emits light, it is possible to realize a light irradiation device that can control the entire surface of the wafer to a uniform temperature, taking into account heat dissipation from the wafer.

更にチャンバーの形状、ガス雰囲気、ウェハプロセス、
ロットなどにより条件が異なっても、測温光学系でウェ
ハ全面の温度を測定し、各環状光源の負荷を変えること
により、ウェハの適切な温度管理が可能になる。
Furthermore, the shape of the chamber, gas atmosphere, wafer process,
Even if the conditions differ depending on the lot, etc., the temperature of the wafer can be appropriately controlled by measuring the temperature of the entire surface of the wafer using the temperature measurement optical system and changing the load on each annular light source.

尚、上記の如き本発明における環状光源としては、第2
図に示した如く全円周に渡って発光部が連続する光源を
実現することは難しく、実用上は所望の角度の円弧状光
源を複数組み合わせて1つの環状光源を形成することが
好ましく、直線状の光源を複数環状に組み合わせること
も可能である。
Incidentally, as the annular light source in the present invention as described above, the second
As shown in the figure, it is difficult to realize a light source in which the light emitting part is continuous over the entire circumference.In practice, it is preferable to form a single annular light source by combining multiple arcuate light sources at desired angles, and It is also possible to combine multiple light sources into an annular shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示す概略断面図、第2
図は第1図の実施例の構成におい好環状光源の配置を示
す平面図、第3図乃至第6図は本発明における環状光源
からの光束を周辺部で強(姓 集光するように反射さ怜るための構成の光路図、第7図
及び第8図は外方の環状光源からの光束が凹球面の環状
ミラーによって反射される場合の光線の様子を示す光路
図、第9図及び第1O図は外方の環状光源からの光束が
凹楕円面の環状ミラーによって反射される場合の光線の
様子を示す光路図、第11図は内方の環状光源からの光
束が凹球面の環状ミラーによって反射される場合の光線
の様子を示す光路図、第12図及び第13図は環状ミラ
ーを一体的に構成した反射手段の構成を示す断面図、第
14図はウェハ面上での温度分布を示す図である。 〔主要部分の符号の説明〕 la、lb、lc、1cL・・環状光源20.30.4
0・・・反射部材 21a、21b、21c、21d=・環状ミラーN・・
・環状光源の同心中心(ウェハの中心での法線)出願人
  日本光学工業株式会社 代理人 弁理士 渡 辺 隆 男 i/、3図 □        3′7.5s@7gs+−*シリコ
ンウニ11イL 第74図 手続補正占(方式) %式% 1、事件の表示 特願昭62− 77033号 2、発明の名称                ・・
 ・。 、′。 光照射装置              □、 −ツノ
″3、補正をする者 事件との関係   特許出願人 住所  東京都千代田区丸の内3丁目2番3号名称  
(411)日本光学工業株式会社フク  才力  シケ
  クダ 代表者   取締役社長  福 岡 成 忠4、代理人 住所 ■140東京部品川区西大井1丁目6番3号日本
光学工業株式会社 天井製作所内ゎ 、氏名  (78
18)  弁理士  渡 辺 隆 男′電話 (773
)+111 (、代)−5、補正命令の日付
FIG. 1 is a schematic sectional view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a plan view showing the arrangement of the annular light source in the configuration of the embodiment shown in Fig. 1, and Figs. FIGS. 7 and 8 are optical path diagrams of the configuration for searching, and FIGS. Figure 1O is an optical path diagram showing the state of the light ray when the light beam from the outer annular light source is reflected by the concave ellipsoidal annular mirror, and Figure 11 is an optical path diagram showing the state of the light ray when the light beam from the inner annular light source is reflected by the concave ellipsoidal annular mirror. An optical path diagram showing the state of light rays when reflected by a mirror, Figures 12 and 13 are cross-sectional views showing the configuration of a reflecting means integrally constructed with an annular mirror, and Figure 14 shows the temperature on the wafer surface. It is a diagram showing the distribution. [Explanation of symbols of main parts] la, lb, lc, 1cL...Annular light source 20.30.4
0...Reflecting members 21a, 21b, 21c, 21d=-Annular mirror N...
・Concentric center of the annular light source (normal line at the center of the wafer) Applicant: Nippon Kogaku Kogyo Co., Ltd. Representative Patent Attorney Takashi Watanabe I/, 3 Figure □ 3'7.5s@7gs+-*Silicon Urchin 11iL Figure 74 Procedural amendment calculation (method) % formula % 1. Indication of the case Patent application No. 1987-77033 2. Title of the invention...
・. ,′. Light irradiation device □, -Tsuno''3, Relationship with the case of the person making the amendment Patent applicant address 3-2-3 Marunouchi, Chiyoda-ku, Tokyo Name
(411) Nippon Kogaku Kogyo Co., Ltd. Fuku Talents Shike Kuda Representative Director and President Narutada Fukuoka 4, Agent Address ■140 Nippon Kogaku Kogyo Co., Ltd. Ceiling Manufacturing, 1-6-3 Nishi-Oi, Honbunagawa-ku, Tokyo ゎ, Name (78
18) Patent Attorney Takashi Watanabe Telephone (773)
) + 111 (, 0) - 5, date of correction order

Claims (1)

【特許請求の範囲】 1)所定の軸を中心として同心状に配置された複数の環
状光源と、該同心状に配置された環状光源の背後に配置
された反射部材を有し、該反射部材は該同心状に配置さ
れた環状光源のうちの少なくとも最も外側に位置する環
状光源に対しては、被照射物体面の周辺部において照度
が高くなるような照度分布を与える環状の凹面鏡として
構成され、前記同心状に配置された複数の環状光源から
の直接光束と前記反射部材による反射光とによって被照
射物体を照明することを特徴とする光照射装置。 2)前記少なくとも最も外側の環状光源に対する環状凹
面鏡は、前記同心中心を通る面内での断面において該環
状光源の発光部が凹面鏡の光軸外で光軸よりも内側に位
置するように構成されていることを特徴とする特許請求
の範囲第1項記載の光照射装置。 3)前記同心状に配置された複数の環状光源のうち内側
に位置する環状光源に対しては、前記反射部材は該内側
の環状光源の発光部からの反射光が前記被照射物体面上
をほぼ均一に照明する構成であることを特徴とする特許
請求の範囲第2項記載の光照射装置。
[Scope of Claims] 1) A plurality of annular light sources arranged concentrically around a predetermined axis, and a reflecting member arranged behind the concentrically arranged annular light sources, the reflecting member is configured as an annular concave mirror that provides an illuminance distribution such that the illuminance is high in the periphery of the irradiated object surface for at least the outermost annular light source among the concentrically arranged annular light sources. A light irradiation device, characterized in that an object to be irradiated is illuminated by direct light beams from the plurality of concentrically arranged annular light sources and light reflected by the reflection member. 2) The annular concave mirror for at least the outermost annular light source is configured such that the light emitting part of the annular light source is located outside the optical axis of the concave mirror and inside the optical axis in a cross section in a plane passing through the concentric center. A light irradiation device according to claim 1, characterized in that: 3) For an annular light source located inside of the plurality of annular light sources arranged concentrically, the reflecting member prevents the reflected light from the light emitting part of the inside annular light source from passing onto the surface of the irradiated object. The light irradiation device according to claim 2, characterized in that the light irradiation device is configured to illuminate substantially uniformly.
JP62077033A 1986-09-08 1987-03-30 Apparatus for light irradiation Pending JPS63241923A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62077033A JPS63241923A (en) 1987-03-30 1987-03-30 Apparatus for light irradiation
US07/092,125 US4859832A (en) 1986-09-08 1987-09-02 Light radiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077033A JPS63241923A (en) 1987-03-30 1987-03-30 Apparatus for light irradiation

Publications (1)

Publication Number Publication Date
JPS63241923A true JPS63241923A (en) 1988-10-07

Family

ID=13622444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077033A Pending JPS63241923A (en) 1986-09-08 1987-03-30 Apparatus for light irradiation

Country Status (1)

Country Link
JP (1) JPS63241923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022982A (en) * 2001-07-09 2003-01-24 Tokyo Electron Ltd Heat treatment device
US7025831B1 (en) * 1995-12-21 2006-04-11 Fsi International, Inc. Apparatus for surface conditioning
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
JP2014514734A (en) * 2011-03-11 2014-06-19 アプライド マテリアルズ インコーポレイテッド Off-angle heating of the underside of the substrate using a lamp assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025831B1 (en) * 1995-12-21 2006-04-11 Fsi International, Inc. Apparatus for surface conditioning
JP2003022982A (en) * 2001-07-09 2003-01-24 Tokyo Electron Ltd Heat treatment device
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US8186077B2 (en) 2007-01-22 2012-05-29 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
JP2014514734A (en) * 2011-03-11 2014-06-19 アプライド マテリアルズ インコーポレイテッド Off-angle heating of the underside of the substrate using a lamp assembly

Similar Documents

Publication Publication Date Title
KR100729006B1 (en) Heating device for heating semiconductor wafers in thermal processing chambers
US5561735A (en) Rapid thermal processing apparatus and method
US4859832A (en) Light radiation apparatus
US7949237B2 (en) Heating configuration for use in thermal processing chambers
US6570134B2 (en) Heat treatment device of the light irradiation type and heat treatment process of the irradiation type
US5719991A (en) System for compensating against wafer edge heat loss in rapid thermal processing
TWI618151B (en) Heat treatment apparatus
US8005352B2 (en) Heat treating device
TW201842589A (en) Heat treatment apparatus
TW201909249A (en) Heat treatment apparatus
US7038173B2 (en) Thermal processing apparatus and thermal processing method
JPS63241923A (en) Apparatus for light irradiation
JP2014182061A (en) Temperature measuring device and thermal processing apparatus
JP2002064069A (en) Heat treatment device
JPS6366930A (en) Optical irradiator
JPS63144518A (en) Light irradiation device
US20220068675A1 (en) Epi chamber with full wafer laser heating
US7043148B1 (en) Wafer heating using edge-on illumination
JP2003234303A (en) Heat treatment device
JPS63260018A (en) Lamp annealer
JPS63241924A (en) Apparatus for light irradiation
JPS63243826A (en) Optical device for temperature measurement
JPS63274080A (en) Radiation ray illuminating furnace