JPS63241141A - Ferromagnetic alloy - Google Patents

Ferromagnetic alloy

Info

Publication number
JPS63241141A
JPS63241141A JP62329640A JP32964087A JPS63241141A JP S63241141 A JPS63241141 A JP S63241141A JP 62329640 A JP62329640 A JP 62329640A JP 32964087 A JP32964087 A JP 32964087A JP S63241141 A JPS63241141 A JP S63241141A
Authority
JP
Japan
Prior art keywords
alloy
ferromagnetic alloy
permanent magnet
elements
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62329640A
Other languages
Japanese (ja)
Other versions
JPH0535210B2 (en
Inventor
Masato Sagawa
眞人 佐川
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP62329640A priority Critical patent/JPS63241141A/en
Publication of JPS63241141A publication Critical patent/JPS63241141A/en
Publication of JPH0535210B2 publication Critical patent/JPH0535210B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a ferromagnetic alloy useful as permanent magnet material, by incorporating specific amounts of rare-earth elements, composed principally of Nd and Pr, and B into an iron base so as to increase coercive force, etc. CONSTITUTION:An Fe-B-R-M ferromagnetic alloy has a composition consisting of, by atomic percentage, 8-30% R (either or both of Nd and Pr), 2-28% B, one or more additive elements M among <=4.5% Ti, <=8% Ni, <=5% Bi, <=9.5% V, <=12.5% Nb, <=10.5% Ta, <=8.5% Cr, <=9.5% Mo, <=9.5% W, <=8% Mn, <=9.5% Al, <=2.5% Sb, <=7% Ge, <=3.5% Sn, <=5.5% Zr, and <=5.5% Hf, and the balance essentially Fe. Moreover, if necessary, Nd and Pr content in R is regulated to >=50% and one or more elements amaong Dy, Ho, Tb, La, Ce, Gd, and Y are incorporated.

Description

【発明の詳細な説明】 本発明はFe、希土類元素を主体とする強磁性合金、特
にFe−B−R系強磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ferromagnetic alloy mainly composed of Fe and rare earth elements, particularly to a Fe-BR-based ferromagnetic alloy.

従来から強磁性合金の一つとして永久磁石材料が知られ
ている。永久磁石材料は一般家庭の各種電気製品から、
大型コンピュータの周辺端末機まで2幅広い分野で使わ
れるきわめて重要な電気・電子材料の一つである。近年
の電気、電子機器の小型化、高効率化の要求にともない
、永久磁石材料はますます高性能化が求められるように
なった。
Permanent magnet materials have been known as one of the ferromagnetic alloys. Permanent magnet materials are used in various household electrical appliances.
It is one of the extremely important electrical and electronic materials used in a wide range of fields, including peripheral terminals for large computers. With the recent demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have even higher performance.

現在の代表的な永久磁石材料はアルニコ、ハードフェラ
イトおよび希土類コバルト系磁石材料である。最近のコ
バルトの原料事情の不安定化にともない、コバルトを2
0〜30重は%含むアルニコ磁石材料の需要は減り、鉄
の酸化物を主成分とする安価なハードフェライトが磁石
材料の主流を占めるようになった。一方、希土類コバル
ト系磁石材料はコバルトを50〜65重量%も含むうえ
、希土類鉱石中にあまり含まれていないSmを使用する
ため大変高価であるが、他の磁石材料に比べて。
Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt based magnet materials. Due to the recent instability in the raw material situation for cobalt,
The demand for alnico magnet materials containing 0 to 30% weight has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream of magnet materials. On the other hand, rare earth cobalt-based magnet materials contain 50 to 65% by weight of cobalt and use Sm, which is not included in rare earth ores, so they are very expensive compared to other magnet materials.

磁気特性が格段に高いため、主として小型で、付加価値
の高い磁気回路に多く使われるようになった。
Because of its extremely high magnetic properties, it has come to be used mainly in small, high-value-added magnetic circuits.

希」−類を用いた磁石材料がもっと広い分野で安価に、
かつ多ごに使イ〕れるようになるためには。
Magnet materials using rare-type materials can be used in a wider range of fields at low cost.
In order to be able to use it for many purposes.

高価なコバルトを含まず、かつ希土類金属として、鉱石
中に多量に含まれている軽希土類を主成分とすることが
必要である。このような永久磁石材料の一つの試みとし
て、RF e 2磁化合物(ただしRは希土類元素を示
す記号)が検討された。
It is necessary that it does not contain expensive cobalt and that the main component is a light rare earth metal, which is contained in large amounts in ores. As one attempt at such a permanent magnet material, an RF e 2 magnetic compound (where R is a symbol representing a rare earth element) was investigated.

フロート(J、 J、 Croat)はPr   Fe
   の超0.4  0.13 急冷リボンが295Kにてlie −2,8koeの保
磁力を示すことを報告している(J、 J、 Croa
t  Appl。
Float (J, J, Croat) is Pr Fe
reported that a super-0.4 0.13 quenched ribbon exhibits a coercive force of lie -2.8 koe at 295 K (J, J, Croa
t Appl.

Phys、 Lott、 37 (12) 15 De
cerAber 1980.1098〜1098頁)。
Phys, Lott, 37 (12) 15 De
cerAber 1980. pp. 1098-1098).

その後Nd   Fe   の超急冷リボ0.4  0
.8 ンにおいても295Kにてlie −7,45kOcの
保磁力を示すことを報告している(J、 J、 Cro
at  Appl。
After that, NdFe super-quenched ribo 0.40
.. It has been reported that a coercive force of -7.45 kOc is exhibited at 295 K even at 800 nm (J, J, Cro
at Appl.

Phys、 Lctt、 39 (4) 15 Aug
ust 1981.357〜358頁)。しかし、これ
らの超急冷リボンは、いずれも(Bll)waxが低い
(4MGOe未満)。
Phys, Lctt, 39 (4) 15 Aug
ust 1981. pp. 357-358). However, all of these ultra-quenched ribbons have low (Bll) wax (less than 4 MGOe).

さらに、クーン(N、 C,Koon)等は(F e 
o、82La   )   Tb   La   の超
急冷アモル0.18 0.9  0.05  0.05
フアスリボンを627℃で焼鈍すると、 lle −9
koeにも達することを見い出した(Br−5kG)。
Furthermore, Kuhn (N, C, Koon) et al.
o, 82La) Ultra-quenched amol of TbLa 0.18 0.9 0.05 0.05
When the fast ribbon is annealed at 627°C, lle -9
It was found that it reached even koe (Br-5kG).

但し、この場合、磁化曲線の角形性が悪いため(B I
f ) m a xは低い(N、 C,Koon他、 
 Appl、 Phys。
However, in this case, because the squareness of the magnetization curve is poor (BI
f) max is low (N, C, Koon et al.
Appl, Phys.

Lett、 39 (10)、 1981.840〜8
42頁)。
Lett, 39 (10), 1981.840-8
(page 42).

また、カバコツ(L、 Kabacofr)等は(F 
e o、sB   )    Pr   (x=o 〜
0.3原子比)の組0.2   1−x      x 成の超急冷アモルファスリボンを作製し、その非晶質合
金が50c程度のHeを有することを報告している。(
L、 Kabakof’[’他:  J、 Appl、
 Phys、 53 (3)Marcb 1982.2
255〜2257頁)。
In addition, Kabakotsu (L, Kabacofr) etc. are (F
e o, sB ) Pr (x=o ~
reported that an ultra-quenched amorphous ribbon with a composition of 0.2 1-x (
L, Kabakof'['et al.: J, Appl,
Phys, 53 (3) Marcb 1982.2
(pp. 255-2257).

以上に示す超急冷リボンのほとんどが希土類としては軽
希土類を主成分とするものであるが、いずれも従来から
慣用される永久磁石材料と比べて(Bit)maxが低
く、実用永久磁石材料として使用することは困難であっ
た。また、これらの超急冷リボンはそれ自体として一般
のスピーカやモータ等に使用可能な実用永久磁石(体)
ではなく、これらのリボンから1モ意の形状・寸法を有
する実用永久磁石を得ることができなかった。
Most of the ultra-quenched ribbons shown above have light rare earths as their main components, but all of them have lower (Bit)max than conventional permanent magnet materials and cannot be used as practical permanent magnet materials. It was difficult to do so. In addition, these ultra-quenched ribbons themselves can be used as practical permanent magnets (body) that can be used in general speakers, motors, etc.
However, it has not been possible to obtain a practical permanent magnet having a desired shape and dimensions from these ribbons.

本発明は、このような要請に応えるべき新規な実用強磁
性合金、特に永久磁石材料として有用なものを提供する
ことを基本目的とする。特に。
The basic object of the present invention is to provide a new practical ferromagnetic alloy that should meet such demands, particularly one useful as a permanent magnet material. especially.

Feを主体とし、Rとして資源的に豊富な軽希土類元素
を有効に使用できるものを得ることを目的とする。
The purpose is to obtain a material mainly composed of Fe and in which resource-rich light rare earth elements can be effectively used as R.

このような強磁性合金として1本発明者は、先に、Nd
、Prを特徴とする特定の希土類元素とFeとBとを特
定比をもって必須とする強磁性合金、特に磁気異方性な
いし磁界中配向能力を有する。全く新しい種類の実用強
磁性合金を開発し。
As such a ferromagnetic alloy, the present inventor previously developed Nd
, a ferromagnetic alloy that essentially includes a specific rare earth element characterized by Pr, and Fe and B in a specific ratio, and particularly has magnetic anisotropy or the ability to orient in a magnetic field. Developed a completely new type of practical ferromagnetic alloy.

本願と同一出願人により出願した(特願昭57−145
072の分割出願としての特願昭59−248897)
Filed by the same applicant as the present application (Japanese Patent Application No. 57-145
Patent application No. 59-248897 as a divisional application of No. 072)
.

尚、このFe−B−R三元系合金においてボロン(B)
は、従来の1例えば非晶質合金作成時の非晶質促進元素
又は粉末冶金法における焼結促進元素として添加される
ものではなく、Fe−B−R三元系合金のベースとなる
室温以上で磁気的に安定で高い磁気異方性を有するR−
Fe−8三元化合物の必須構成元素である。この合金は
実用上十分に高いキュリ一温度(約300℃以」−)を
有する。
In this Fe-B-R ternary alloy, boron (B)
is not added as an amorphous promoting element in the production of an amorphous alloy or as a sintering promoting element in powder metallurgy, but is added at room temperature or above, which is the base of the Fe-B-R ternary alloy. R- is magnetically stable and has high magnetic anisotropy.
Fe-8 is an essential constituent element of the ternary compound. This alloy has a Curie temperature (approximately 300° C. or higher) that is sufficiently high for practical use.

上述のFe−B−R三元系強磁性合金は必ずしもCoを
含む必要がなく、またRとしては資源的に豊富なNd、
Prを主体とする軽希土類を用いることができ、必ずし
もSmを必要とせず或いはSmを主体とする必要もない
ので原料が安価であり、きわめて有用である。しかも、
この強磁性合金を用いて得られるFe−B−R系磁気異
方性焼結永久磁石の磁気特性はハードフェライト磁石以
上の特性を有しく保磁力IHc≧1 kOe 、残留磁
束密度B「≧4 kG、最大エネルギ積(BH)wax
≧4MGOc)特に好ましい組成範囲においては希土類
コバルト磁石と同等以上の極めて高いエネルギ積を示す
ことができる。
The above-mentioned Fe-B-R ternary ferromagnetic alloy does not necessarily need to contain Co, and as R, Nd, which is abundant in resources,
A light rare earth element mainly composed of Pr can be used, and since it does not necessarily require Sm or mainly Sm, the raw material is inexpensive and extremely useful. Moreover,
The magnetic properties of the Fe-B-R magnetically anisotropic sintered permanent magnet obtained using this ferromagnetic alloy are better than those of hard ferrite magnets, with coercive force IHc≧1 kOe and residual magnetic flux density B≧4. kG, maximum energy product (BH) wax
≧4MGOc) In a particularly preferable composition range, it can exhibit an extremely high energy product equal to or higher than that of rare earth cobalt magnets.

本発明は、かかるFe−B−R三元系強磁性合金合金に
おいて、 Ti、 Ni、Bi、V、Nb。
The present invention provides such a Fe-B-R ternary ferromagnetic alloy comprising Ti, Ni, Bi, V, and Nb.

Ta、Cr、Mo、W、Mn、AJ、Sb。Ta, Cr, Mo, W, Mn, AJ, Sb.

Ge、Sn、Zr、Hfよりなる群から選択された特定
の添加元素M一種又は二種以上を所定%をもって加える
ことにより、先願(特願昭59−246897)に係る
Fe−B−R三元系合金と同様に、前述した目的を達成
するものである。即ち。
By adding one or more specific additive elements M selected from the group consisting of Ge, Sn, Zr, and Hf at a predetermined percentage, Fe-B-R three according to the earlier application (Japanese Patent Application No. 59-246897) can be obtained. Similar to the element-based alloys, it achieves the above-mentioned objectives. That is.

本発明の強磁性合金は次の通りである。The ferromagnetic alloy of the present invention is as follows.

本願の第1発明:原子百分比で、希土類元素R(RはN
dとPrの一種又は二種)8〜30%。
First invention of the present application: Rare earth element R (R is N
d and Pr) 8 to 30%.

82〜28%、下記所定%以下(0%を除く)の添加元
素Mの一種又は二種以上(但し添加元素Mが二種量J−
のときは2M合量は当該添加元素のうち最大所定%を有
するものの当該所定%以下)、及び残部実質的にFeか
ら成ることを特徴とする強磁性合金; T i  4.596.    N i  8  %。
82 to 28%, below the specified percentage (excluding 0%) of one or more of the additive elements M (however, if the additive elements M are two types J-
T i 4.596. ferromagnetic alloy characterized in that the total amount of 2M is the maximum predetermined % of the added elements but not more than the predetermined %), and the remainder substantially consists of Fe; T i 4.596. N i 8%.

B i5 9CV  9.5%。B i5 9CV 9.5%.

N b 12.5%、    T a 10.5%。Nb 12.5%, Ta 10.5%.

Cr8.5%、   Mo9.5%。Cr8.5%, Mo9.5%.

W  9.5%、   Mn  8  %。W 9.5%, Mn 8%.

Aで 9.5%、    Sb2.5%。A: 9.5%, Sb: 2.5%.

Ge  7  %、    Sn3.5%。Ge 7%, Sn 3.5%.

Zr5.5%、及びHf5.5%。Zr5.5%, and Hf5.5%.

本願の第2発明:原子百分比で、R(RはNd、Pr、
Dy、Ho、Tb、La、Ce。
Second invention of the present application: R (R is Nd, Pr,
Dy, Ho, Tb, La, Ce.

Gd、Yのうち少なくとも一種で、かつRの50%以に
はNdとPrの一種又は二種)8〜30%、82〜28
%、所定%以下(0%を除く)の添加元素Mの一種又は
二種以上(但し添加元素Mが二種以上のときは1M合量
は当該添加元素のうち最大所定%を存するものの当該所
定%以下)、及び残部実質的にFeから成ることを特徴
とする強磁性合金(添加元素Mの所定%は第1発明にお
けるものと同じ)。
At least one of Gd and Y, and 50% or more of R is one or two of Nd and Pr) 8-30%, 82-28
%, below a specified % (excluding 0%) of one or more types of additive elements M (however, when there are two or more types of additive elements M, the total amount of 1M is the specified amount of the maximum specified % of the added elements) % or less), and the remainder substantially consists of Fe (the predetermined % of the additive element M is the same as that in the first invention).

本発明者は、Fe−B−R系三元合金、特に8〜30%
のR,2〜28%のB、残部Feから成るFe−B−R
三元合金をベースとして、前述の目的達成を目標として
、放射性元素等を除くほとんどの元素についてその微量
域(0,005原子%、以下%は原子%を示す)から1
0数%に回る範囲において、その添加による保磁力その
他の磁気特性の変化を詳細に調べた。その結果前記添加
元素Mの添加によっても前述した要請に応え得る新規な
実用強磁性合金をSm、Co等を必須とせずに提供し得
ることを見出した。しかも、永久磁石材料として使用し
たときハードフェライト磁石材料と同等以上の優れた磁
気特性を有し、好ましい態様においてはFe−B−R三
元系合金に比してもより高保磁力を付与する効果を有す
ることを見出した。
The present inventor has developed an Fe-B-R ternary alloy, particularly 8 to 30%
Fe-B-R consisting of R, 2 to 28% B, and the balance Fe
Based on ternary alloys, with the aim of achieving the above-mentioned objectives, we aim to reduce the amount of most elements, excluding radioactive elements, from the trace amount range (0,005 atomic %, hereinafter % indicates atomic %) to 1.
Changes in coercive force and other magnetic properties due to its addition were investigated in detail in the range of about 0.0%. As a result, it has been found that by adding the additive element M, it is possible to provide a new practical ferromagnetic alloy that can meet the above-mentioned requirements without requiring Sm, Co, etc. Moreover, when used as a permanent magnet material, it has excellent magnetic properties equivalent to or better than hard ferrite magnet materials, and in a preferred embodiment, has the effect of imparting a higher coercive force than the Fe-B-R ternary alloy. It was found that

但し、これらの添加元素Mの添加は、夫々の態様におい
て、Fe−B−R三元系合金に比して永久磁石材料とし
て残留磁化Brの漸次の低下を招くことも明らかとなっ
た。従って、添加元素Mの含有量は、少くとも残留磁化
B「が、従来のハードフェライトの残留磁化B「と同等
以上の範囲で、かつ高保磁力を示すものが本発明の対象
として把握される。かくて本発明はFe−B−R三元系
合金において更に特定の添加元素Mを含をすることによ
り、Fe−B−R化合物をベースとした新規なFe−B
−R−M系強磁性合金を提供するものである。Fe−B
−R三元系合金と同様に本発明のFe−B−R−M系合
金も高い異方性磁界を示し磁界中配向能力を有するので
、特に異方性磁石用材料として有用である。
However, it has also become clear that the addition of these additive elements M, in each aspect, causes a gradual decrease in residual magnetization Br as a permanent magnet material compared to the Fe-B-R ternary alloy. Therefore, the content of the additive element M is understood to be one in which the residual magnetization B is at least equal to or higher than the residual magnetization B of conventional hard ferrite, and which exhibits a high coercive force. Thus, the present invention further includes a specific additive element M in the Fe-B-R ternary alloy, thereby creating a new Fe-B-R compound based on the Fe-B-R compound.
-RM type ferromagnetic alloy is provided. Fe-B
Like the -R ternary alloy, the Fe-BRM-based alloy of the present invention exhibits a high anisotropic magnetic field and has the ability to orient in a magnetic field, so it is particularly useful as a material for anisotropic magnets.

本発明によれば、従来ハードフェライトと同等以上の磁
気特性を有し、Sm−Co磁石材料に代替可能な高性能
磁石材料をも包含する工業上極めて有用な新規な実用強
磁性合金を提供可能とする。
According to the present invention, it is possible to provide a novel practical ferromagnetic alloy that is extremely useful industrially and includes a high-performance magnet material that has magnetic properties equivalent to or better than conventional hard ferrite and can be substituted for Sm-Co magnet materials. shall be.

本発明の強磁性合金はFe−B−R−M系であり、必ず
しもCOを含む必′要がなく、またRとしては資源的に
豊富なNd、Prを主体とする軽希土類を用いることが
でき、必ずしもSmを必要とせず或いはSmを主体とす
る必要もないので原料が安価であり、きわめてa用であ
る。実施例から明らかな通り1本発明の合金は磁界中配
向能力を有する。
The ferromagnetic alloy of the present invention is Fe-BRM-based and does not necessarily need to contain CO, and as R, light rare earths mainly consisting of Nd and Pr, which are abundant in resources, can be used. Since it does not necessarily require Sm or does not need to be made mainly of Sm, the raw material is inexpensive, and it is extremely suitable for A. As is clear from the examples, one of the alloys of the present invention has the ability to orient in a magnetic field.

最近、永久磁石材料はますます苛酷な環境1例えば磁石
の薄型化にともなう強い反磁界、コイルや他の磁石によ
って加えられる強い逆磁界、これらに加えて機器の高速
化、高負荷化による高温度の環境にさらされることが多
くなり、多くの用途における。特性安定化のためには、
一層の高保磁力化が必要とされる(一般に永久磁石材料
の1llcは温度上昇にともない低下する。そのため室
温における 111cが小さければ、永久磁石材料が高
温度に晒されると減磁が起こる。しかし、室温における
 l1lcが十分高ければ実質的ににこのような減磁は
起こらない)。従って、Fe−B−R系強磁性合金(特
に永久磁石材料)よりもさらに高い lHcを6する永
久磁石材料を提供し得るものを包含する本発明強磁性合
金はこうした苛酷な環境下で使用される永久磁石材料と
して特に好適である。
Recently, permanent magnet materials have been exposed to increasingly harsh environments 1, such as strong demagnetizing fields due to thinner magnets, strong reverse magnetic fields applied by coils and other magnets, and high temperatures due to higher speeds and higher loads of equipment. in many applications. In order to stabilize the characteristics,
An even higher coercive force is required (generally, the 1llc of a permanent magnet material decreases as the temperature rises. Therefore, if 111c at room temperature is small, demagnetization will occur when the permanent magnet material is exposed to high temperatures. If l1lc at room temperature is sufficiently high, such demagnetization will not occur substantially). Therefore, the ferromagnetic alloys of the present invention, including those capable of providing permanent magnet materials with higher lHc than Fe-B-R ferromagnetic alloys (particularly permanent magnet materials), cannot be used in such harsh environments. It is particularly suitable as a permanent magnet material.

本発明の強磁性合金はその形態は問わず、鋳塊あるいは
粉体等の公知の形態の永久磁石用の素材の他、任意の形
態からなる永久磁石材料をも包含する。
The ferromagnetic alloy of the present invention is not limited to its form, and includes not only materials for permanent magnets in known forms such as ingots or powders, but also permanent magnet materials in any form.

本発明の強磁性合金において希土類元素RはYを包含し
、軽希土類及び重希土類を包含する希土類元素でありそ
のうち所定の一種以上を用いる。
In the ferromagnetic alloy of the present invention, the rare earth element R includes Y, and is a rare earth element including light rare earths and heavy rare earths, and one or more of them is used.

即ちこのRとしては、Nd、Pr、La、Ce。That is, this R includes Nd, Pr, La, and Ce.

Tb、Dy、Ho、Er、Eu、Sm、Gd。Tb, Dy, Ho, Er, Eu, Sm, Gd.

Pm、Tm、Yb、Lu及びYが包含される。Rとして
は1通常Nd、Prの一種又は二種をもって足りるが、
これらNd、PrをRの5096以上として他のDy、
Ho、Tb、La、Ce、Gd。
Pm, Tm, Yb, Lu and Y are included. As R, one or both of Nd and Pr are usually sufficient.
These Nd and Pr are R5096 or more, and other Dy,
Ho, Tb, La, Ce, Gd.

Yのうち少なくとも一種を混合して用いることができる
。実用上は二種以上の混合物(ミツシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができる
。なお、これらのRは純希土類元索でなくともよく、工
業上入手可能な範囲で製造上不可避な不純物(他の希土
類元素、Ca。
At least one type of Y can be mixed and used. Practically speaking, a mixture of two or more types (Mitsuhmetal, Didim, etc.) can be used for reasons such as availability. Note that these R do not have to be pure rare earth elements, but may contain impurities (other rare earth elements, Ca, etc.) that are unavoidable during production within the industrially available range.

Mg、Fe、Ti、C,O等)を含有するもので差支え
ない。このようにRとしては工業上入手し易いものを主
体として用いることができる点で本発明は極めて有利で
ある。
Mg, Fe, Ti, C, O, etc.) may be used. As described above, the present invention is extremely advantageous in that R that is industrially easily available can be mainly used.

B(ホウ素)としては、純ボロン又はフェロボロンを用
いることができ、不純物としてAJ。
Pure boron or ferroboron can be used as B (boron), and AJ as an impurity.

31、C等を含むものも用いることができる。31, C, etc. can also be used.

本発明の強磁性合金の組成範囲の限定理由は後述する実
施例によって詳細に説明するが、特に本発明を最も効果
的に用いた場合、すなわち、磁気異方性焼結永久磁石と
して用いた場合にノ1−ドフェライトと同等以上の磁気
特性を得ることが可能な組成範囲を選定した。すなわち
本発明の強磁性合金は、8〜30%R,2〜28%B、
所定%以下M、残部Fe(原子百分率)において、保磁
力IHc≧1 koc 、残留磁束密度B「≧4 kG
、最大エネルギ積(BH)waxはハードフェライト(
〜4 MGOe程度)と同等以上の異方性焼結磁石とす
ることができる。
The reasons for limiting the composition range of the ferromagnetic alloy of the present invention will be explained in detail in the Examples described below, but especially when the present invention is used most effectively, that is, when used as a magnetically anisotropic sintered permanent magnet. A composition range was selected in which it was possible to obtain magnetic properties equivalent to or better than that of Nord ferrite. That is, the ferromagnetic alloy of the present invention has 8 to 30% R, 2 to 28% B,
At a predetermined % or less M, balance Fe (atomic percentage), coercive force IHc≧1 koc, residual magnetic flux density B “≧4 kG
, the maximum energy product (BH) wax is hard ferrite (
The anisotropic sintered magnet can be made into an anisotropic sintered magnet that is equivalent to or more than 4 MGOe.

本発明のFe−B−R−M系強磁性合金において、R,
Bの組成範囲は、基本的にFe−B−R三元系合金と同
様(8〜30%R,2〜28%B)である。即ち、異方
性焼結体磁石として、保磁力 111c≧1 kooを
満たすためBは2%以上とし、ハードフェライトの残留
磁束密度B「約4kG以上とするためにBは2896以
下とし、Rは保磁力を1 koo以上とするため8%以
上必要であり、また燃え易く工業的取扱、製造上の困難
のため(かつまた高価であるため) 、 3096以下
とする。このB、R範囲において異方性焼結磁石の最大
エネルギ積(13tl)maxはハードフェライト(〜
4 MGOe程度)と同等以上となる。
In the Fe-BRM-based ferromagnetic alloy of the present invention, R,
The composition range of B is basically the same as that of the Fe-B-R ternary alloy (8 to 30% R, 2 to 28% B). That is, as an anisotropic sintered magnet, B is set to 2% or more to satisfy the coercive force 111c≧1koo, B is set to 2896 or less to make the residual magnetic flux density of hard ferrite B "approximately 4 kG or more, and R is set to 2% or more. In order to have a coercive force of 1 koo or more, 8% or more is required, and because it is easily flammable and difficult to handle and manufacture industrially (and is expensive), it is set to 3096 or less. The maximum energy product (13 tl) max of a directional sintered magnet is hard ferrite (~
4 MGOe level).

Nd、PrをRの主成分(即ち全R中Nd。Nd and Pr are the main components of R (i.e. Nd in all R).

Prの1種以上が50%以上)とし、11〜24%R9
3〜27%B、残部(Fe+M)の組成は、異方性焼結
体としたとき最大エネルギ積(Bll)wax≧7MG
Oeとするために好ましい範囲である。
50% or more of Pr) and 11 to 24% R9
The composition of 3 to 27% B and the balance (Fe+M) is the maximum energy product (Bll) wax≧7MG when made into an anisotropic sintered body.
This is a preferable range for achieving Oe.

さらに好ましくは、Nd、PrをRの主成分(同上)と
し、12〜20%R,4〜24%B、残部(Fe+M)
の組成であり、異方性焼結体としたとき最大エネルギ積
(B tl ) Ila x≧lOMGOeを可能とし
、 (Bll)o+axは最高35MGOc以上に達す
る。なお所定の最大エネルギ積を得るための所望のB「
に対応するMの範囲は第1図〜第3図を参照して定めら
れる。
More preferably, Nd and Pr are the main components of R (same as above), 12 to 20% R, 4 to 24% B, and the balance (Fe + M).
When made into an anisotropic sintered body, the maximum energy product (B tl ) Ila x≧lOMGOe can be achieved, and (Bll)o+ax reaches a maximum of 35MGOc or more. Note that the desired B'' to obtain a predetermined maximum energy product is
The range of M corresponding to is determined with reference to FIGS. 1-3.

本発明の強磁性合金は、新規なF ’e −B −R化
合物をベースとするFe−B−R−M系合金であるが、
Feの一部をCOで置換することによりキュリ一温度T
cを上昇できる。また、Bの一部をC,P、St等によ
り置換することも可能であり、製造性改善、低価格化が
可能となる。なお。
The ferromagnetic alloy of the present invention is a Fe-B-R-M alloy based on a novel F'e-B-R compound.
By replacing part of Fe with CO, the Curie temperature T
c can be increased. Furthermore, it is also possible to replace a part of B with C, P, St, etc., which makes it possible to improve manufacturability and reduce costs. In addition.

本発明の強磁性合金は、Fe、B、R,Mの外。The ferromagnetic alloy of the present invention is other than Fe, B, R, and M.

C,S、P、Ca、Mg、0.Si等工業的に製造上不
可避な不純物の存在を許容できる。これらの不純物は、
原料或いは製造工程から混入することが多く1合計5%
以下とすることが好ましい。
C, S, P, Ca, Mg, 0. The presence of industrially unavoidable impurities such as Si can be tolerated. These impurities are
Often mixed in from raw materials or manufacturing processes 1 total 5%
The following is preferable.

なお2本発明のFe−B−R−M系合金を用いて、先に
出願したFe−B−R系合金と同様に実用永久磁石を製
造できる。例えば1合金を溶成。
Note that using the Fe-B-R-M alloy of the present invention, practical permanent magnets can be manufactured in the same manner as the Fe-B-R alloy that was previously filed. For example, one alloy is melted.

冷却1例えば鋳造し生成合金を粉末化した後、成形焼結
することにより適当なミクロ組織を形成することによっ
て、最も効果的に実用高性能永久磁石を得ることができ
る。
Cooling 1 For example, a practical high-performance permanent magnet can be obtained most effectively by forming an appropriate microstructure by casting, pulverizing the resulting alloy, and then shaping and sintering it.

〈実施例〉 以下本発明について、実験例及び実施例を引照しつつ詳
述する。
<Example> The present invention will be described in detail below with reference to Experimental Examples and Examples.

種々の添加元素を含むFe−B−R−M合金を次の方法
で作成した。
Fe-BRM alloys containing various additive elements were created by the following method.

合金を高周波溶成し、水冷銅鋳型に鋳造出発原料はFe
として純度99.9%の電解鉄、Bとしてフェロボロン
合金及び99%の純度のボロンを用い、Rとして純度9
9.7%以上のもの(不純物は主として他の希土類元素
)を使用、添加元素として、純度99%のTi、Mo、
Bi、Mn、Sb。
The alloy is high-frequency melted and cast into a water-cooled copper mold.The starting material is Fe.
Electrolytic iron with a purity of 99.9% is used as B, ferroboron alloy and boron with a purity of 99% are used as R, and purity 9 is used as R.
Uses 9.7% or more (impurities are mainly other rare earth elements), and 99% purity Ti, Mo,
Bi, Mn, Sb.

Ni、Ta、98%のW、 99.9%のAi!、95
%のHf 、 99.996のGe、Sn、またVとし
て81.2%のVを含むフェロバナジウム、Nbとして
87.6%のNbを含むフェロニオブ、Crとして61
,9%のCrを含むフェロクロム、及びZrとして75
.5%のZrを含むフェロジルコニウムを使用した(な
お純度は重Q 96で示す) この合金を用いて永久磁石試料を次のように作成 (1)粉砕 スタンプミルにより35メツシユスルーま
で粗粉砕し2次いでボールミルにより3時間磁界中配向
可能な結晶粒子に微粉砕(3〜10μ”)  ;(2)
磁界(10kOc)中配向・成形(1,5ton/cシ
にて加圧); (3)焼結 tooo 〜1200℃1時間Ar中、焼
結後放冷。
Ni, Ta, 98% W, 99.9% Ai! , 95
% Hf, 99.996 Ge, Sn, also ferrovanadium with 81.2% V as V, ferroniobium with 87.6% Nb as Nb, 61 as Cr
, ferrochrome containing 9% Cr, and 75 as Zr.
.. Ferrozirconium containing 5% Zr was used (purity is indicated by weight Q 96). A permanent magnet sample was prepared using this alloy as follows: Finely pulverized into crystal grains (3-10 μ”) that can be oriented in a magnetic field for 3 hours using a ball mill; (2)
Orientation and forming in a magnetic field (10 kOc) (pressurized at 1.5 ton/c); (3) Sintering ~1200°C for 1 hour in Ar, then allowed to cool.

上記試料について、  file、 Br、 ([31
1)saxを夫々測定し、そのうちの代表的な試料につ
いての結果を第1表(1)〜(4)に示す。又上記と同
様な方法にて作成した本発明試料との比較例を第2表に
示す。なお、第2表の符号Cは比較例であることを示す
。また第1.2表中Feは数値を挙げていないが残部を
示す。なお前記永久磁石試料の作成工程において微粉砕
後の合金(粉末状態)での特性を調べたところ、  1
11clkOe以上の高い値を示していた。
For the above sample, file, Br, ([31
1) Sax was measured, and the results for representative samples are shown in Tables 1 (1) to (4). Comparative examples with samples of the present invention prepared in the same manner as above are shown in Table 2. Note that the code C in Table 2 indicates a comparative example. Further, although Fe in Table 1.2 does not have a numerical value, it shows the remainder. In addition, when we investigated the properties of the alloy (powder state) after fine pulverization in the process of creating the permanent magnet sample, we found that 1
It showed a high value of 11 clkOe or more.

上記の結果から1次のことが明らかとなった。The above results revealed the following.

第1表試料1〜36及び試料48〜50は、希土類元素
として軽希土類の代表的なものであるNdを中心として
、  F e −8B −15N d系(試料1〜2B
)。
Samples 1 to 36 and 48 to 50 in Table 1 are composed of Fe-8B-15N d system (Samples 1-2B
).

F e−17B−15N d系(:i料27〜3B)及
びFe−12B −2ON d系(試料48〜50)に
おける添加元素Mの効果を調べたものである。その結果
、第2表の試料C1のl1lc 7.3kOeに比べて
、上記全ての試料(Nα1〜36及びNo、48〜50
)についてより高い保磁力を示し、最大15kOc以上
に達している( No。
The effect of the additive element M in the Fe-17B-15N d system (i-materials 27 to 3B) and the Fe-12B-2ON d system (samples 48 to 50) was investigated. As a result, compared to the l1lc 7.3 kOe of sample C1 in Table 2, all the above samples (Nα1-36 and No. 48-50
) shows a higher coercive force, reaching a maximum of 15 kOc or more (No.

31、36) O一方、残留磁化BrはCIの12.1
kGに比べて同等程度(No、1.4等)から添加元素
Mの増大に従い一般に徐々に低下を示している。しかし
上記いずれの本発明試料も従来のハードフェライトのレ
ベルの残留磁化的4 kGよりも十分に高い。
31, 36) O On the other hand, the residual magnetization Br is 12.1 of CI
Compared to kG, it generally shows a gradual decrease as the added element M increases from the same level (No, 1.4, etc.). However, the residual magnetization of any of the above-mentioned samples of the present invention is sufficiently higher than the level of conventional hard ferrite, which is 4 kG.

第1表試料37〜39.41.51.52は希土類元素
として軽希土類であるPrを用いたFe−B−Pr系に
おける添加元素Mの効果を調べたものである。第1表試
料43.44.53〜5g、 83.84は希土類元素
としてNdを用いるとともに添加元素Mとして2種以上
のものを用いた場合、同じく第1表試料40.42.6
5は希土類元素としてP「を用いるとともに添加元素M
として2種以上のものを用いた場合を示し、いずれも良
好な結果が得られることを示している。さらに第1表試
料45〜47.59〜62は希土類元素として2種以上
のものを用いた場合の添加元素Mの効果を調べたもので
ある。これら第1表試料37〜47及び試料51〜65
も前記第1表試料1〜3B及び試料48〜50と同様、
添加元素Mによる良好な結果を得ることが可能である。
Samples 37 to 39.41.51.52 in Table 1 were used to investigate the effect of the additive element M in the Fe-B-Pr system using Pr, a light rare earth element, as the rare earth element. Samples 43.44.53 to 5g and 83.84 in Table 1 use Nd as the rare earth element and two or more types of additive elements M, and the same samples 40.42.6 in Table 1
5 uses P as the rare earth element and also uses the additive element M.
The results show cases in which two or more types of compounds are used, and good results can be obtained in both cases. Furthermore, Samples 45 to 47 and 59 to 62 in Table 1 were used to investigate the effect of the additive element M when two or more rare earth elements were used. These Table 1 Samples 37-47 and Samples 51-65
Similarly to Samples 1 to 3B and Samples 48 to 50 in Table 1,
It is possible to obtain good results with the additive element M.

なお、比較例C5,C6の l1lcの値が12.4゜
13.9kOOと高いのは、Ndの高含有量によるもの
であり、これらに対しては、試料48〜50.53〜5
5及び試料83.84により夫々M添加の効果が明らか
である。
Note that the high value of l1lc of Comparative Examples C5 and C6 of 12.4°13.9kOO is due to the high content of Nd.
The effect of M addition is evident in Samples 5 and 83.84, respectively.

試料Na56はl1lc 4.3kOeであるが、比較
例C113(Illc 2.8kOe)と、また試料N
o、59の 111c 7.3kOcはC7(illc
 5.1kOe)と比較すると1M添加の効果が認めら
れる。
Sample Na56 has l1lc 4.3 kOe, but Comparative Example C113 (Illc 2.8 kOe) and sample N
o, 59 111c 7.3kOc is C7 (illc
5.1 kOe), the effect of 1M addition is recognized.

また試料1.4.20の如く、高(Bll)IIlax
を保持しつつ高保磁力化を実現することも可能である。
Also, as in sample 1.4.20, high (Bll) II lax
It is also possible to achieve a high coercive force while maintaining the same.

(以下余白) 第  1  表 (1) 第  1  表 (2) 第  1  表 (3) 第  1  表 (4) 第  2  表 本発明の強磁性合金は、そのベースとなるFe−B−R
三元系において、既述の8〜30%R,2〜28%B、
残部Fe(原子百分率)の全範囲において、添加元素M
のを幼性が認められており、このFe−B−Rの各組成
範囲外では、有効ではない(比較例C12,C13,C
17はR過少;C14はB過多;C15はR過多;C8
〜C1lはB不含有等参照)。
(The following are blank spaces) Table 1 (1) Table 1 (2) Table 1 (3) Table 1 (4) Table 2 The ferromagnetic alloy of the present invention has a base material of Fe-B-R.
In the ternary system, the already mentioned 8 to 30% R, 2 to 28% B,
In the entire range of the remaining Fe (atomic percentage), the additive element M
It is recognized that Fe-B-R is immature and is not effective outside the respective composition ranges of Fe-B-R (Comparative Examples C12, C13, C
17 has too little R; C14 has too much B; C15 has too much R; C8
~C1l does not contain B, etc.).

次に添加元素Mの夫々の添加の効果を明らかにするため
その添加量を変化させて実験によりB「の変化を測定し
、その結果を第1図〜第3図に示す。Bi、Mn、Ni
を除く添加元素M(Ti。
Next, in order to clarify the effects of adding each of the additive elements M, we measured the changes in B by experiment by changing the amount added, and the results are shown in Figures 1 to 3.Bi, Mn, Ni
Additional elements M (Ti.

Zr、Hf、V、Ta、Nb、Cr、W、Mo。Zr, Hf, V, Ta, Nb, Cr, W, Mo.

Sb、Sn、Ge、Af)の添加量の上限は、第1図〜
第3図に示す通り、異方性焼結体としたときハードフェ
ライトのB「約4 kGと同等以上の範囲として定めら
れる。さらに、好ましい範囲は、B「を6. 8. l
0kG等の段階をもって区画することにより夫々第1図
〜第3図から明らかに読むことができる。
The upper limit of the addition amount of Sb, Sn, Ge, Af) is shown in Figure 1~
As shown in Fig. 3, when made into an anisotropic sintered body, the B value of hard ferrite is determined to be equal to or higher than approximately 4 kG.Furthermore, the preferable range is that B is approximately 6.8 kG.
By dividing it into stages such as 0 kG, it can be clearly read from FIGS. 1 to 3, respectively.

Mn、Niは多量に添加すると+  IHcが減少する
。即ち、  1lleを1  koe以上とするためM
 n 。
When large amounts of Mn and Ni are added, +IHc decreases. That is, in order to make 1lle more than 1koe, M
n.

Niの上限は夫々8%とする。Mn3.5%、Ni4.
5%を夫々越えると、  IHcが無添加の場合よりも
低くなってしまうため、これをもって好ましい範囲の上
限とする。
The upper limit of Ni is 8%. Mn3.5%, Ni4.
If each exceeds 5%, the IHc will be lower than that without the addition, so this is taken as the upper limit of the preferred range.

Biについては、その蒸気圧が極めて高くBi5%を超
える合金の製造が、事実上不可能であり5%以下とする
。2種以上の添加元素Mを含む合金の場合、異方性焼結
体としたときB「が4kG以上の条件を満たすためには
、その含量が上述の各元素の添加量の上限のうち最大の
所定値(%)以下であることが必要である。
As for Bi, its vapor pressure is extremely high, and it is virtually impossible to manufacture an alloy containing more than 5% Bi, so it is set at 5% or less. In the case of an alloy containing two or more types of additive elements M, in order to satisfy the condition that B is 4 kG or more when made into an anisotropic sintered body, the content must be the maximum of the upper limits of the amounts of each element added above. must be less than or equal to a predetermined value (%).

第1図〜第3図から明らかな通り、添加元素Mの添加は
その添加量の増大と共に、はとんどの場合Brが減少し
ており、また(Bll)mBxも第1表に示す通り一部
の範囲を除き基本的に減少する傾向を示す。しかし、保
磁力IHCの増大は、極めて強い逆磁場や、高温の苛酷
な環境にさらされる場合。
As is clear from Figures 1 to 3, as the amount of addition of the additive element M increases, Br decreases in most cases, and (Bll)mBx also remains constant as shown in Table 1. It basically shows a decreasing trend except in the range of 1. However, the coercive force IHC increases when exposed to an extremely strong reverse magnetic field or a harsh high temperature environment.

永久磁石材料にとって重要な特性であり、高(III)
wax型の永久磁石と同様工業的に有用性が大である。
This is an important property for permanent magnet materials, and high (III)
Like wax type permanent magnets, it is highly useful industrially.

Mとして2種以上含む場合には、夫々の添加元素の特性
曲線を合成したものとほぼ同様なり「曲線を示す。なお
Mの添加量はl1lcの増大効果、 Br減少傾向、 
(1311)waxへの影響を考慮すると0.1〜3%
が最も望ましく、Mとしては第1図〜第3図から明らか
な様にV、Nb、Ta、Mo。
When two or more types of M are included, the curve is almost the same as that obtained by combining the characteristic curves of each additive element.The amount of M added has an increasing effect on l1lc, a decreasing tendency for Br,
(1311) 0.1-3% considering the impact on wax
The most desirable M is V, Nb, Ta, and Mo, as is clear from FIGS. 1 to 3.

W、 Cr、 A ll、 Mn、 N iは比較的多
量に添加してもBrを著しく低下させることなく (例
えば8%添加してもB「は4 kG以上)、特にMn、
NLを除(V、Ta、Nb、Cr、W、Mo、A1は広
い範囲においてIHc向上に寄与する。
Even if W, Cr, All, Mn, and Ni are added in relatively large amounts, they do not significantly reduce Br (for example, even when added at 8%, B' is 4 kG or more), and especially Mn,
Except for NL, (V, Ta, Nb, Cr, W, Mo, and A1 contribute to improving IHc in a wide range.

第4図に代表例として(1)77Fe−8B −15N
 d 、 (2) 76F e −8B −15N d
 −I N b 。
Figure 4 shows a typical example (1) 77Fe-8B-15N
d, (2) 76F e -8B -15N d
-INb.

(3) 75Fe−8B−15Nd−2A1の3種の合
金から成る焼結磁石の防磁化曲線及び減磁曲線(1〜3
)を示す。
(3) Magnetization curve and demagnetization curve (1 to 3
) is shown.

試料(1)(曲線1)は比較例CI(第2表)と同じも
の、試料(2)(曲線2)は実施例試料FJ0.5と同
じもの、試料(3)(曲線3)は実施例試料随2Iと同
じものについて測定したものである。曲線2.3とも永
久磁石材料として有用な高い角形性を示している。
Sample (1) (Curve 1) is the same as Comparative Example CI (Table 2), Sample (2) (Curve 2) is the same as Example Sample FJ0.5, Sample (3) (Curve 3) is the same as Comparative Example CI (Table 2). This was measured on the same sample as Example Sample No. 2I. Both curves 2.3 show high squareness useful as a permanent magnet material.

以上詳述の通り1本発明は、新規なFe−B−R−M系
強磁性合金、即ちFeを主体とじCoを必須とせず、ま
たRとしても資源的に豊富であり工業上人手し晶い希土
類元素(Nd、Pr)を主体としたFe−B−R化合物
をベースとした強磁性合金であり、特に永久磁石材料と
して有用である。これを用いることによりハードフェラ
イト以、にの磁気特性をりし、Sm−Co系材料にも代
替し得るFe−B−R−M系磁気異方性焼結体永久磁石
の提供も可能としたもので、工業的に極めて高い価値を
もつものである。特に永久磁石材料としての利点は、従
来のSm−Co系と対比するとその主成分元素の点で極
めて顕著になる。加えて、Fe−B−R三元系強磁性合
金と対比してみても、特定の添加元素Mの含有によって
焼結磁石の保磁力の増大も可能ならしめ、応用範囲を拡
げ実用的価値を高めることにも寄与し得る。
As detailed above, the present invention is a novel Fe-BRM-based ferromagnetic alloy, that is, it mainly consists of Fe and does not require Co, and R is also abundant in resources and can be easily crystallized from an industrial perspective. It is a ferromagnetic alloy based on a Fe-B-R compound mainly containing rare earth elements (Nd, Pr), and is particularly useful as a permanent magnet material. By using this, it has become possible to improve the magnetic properties of hard ferrite and to provide Fe-BRM-based magnetically anisotropic sintered permanent magnets that can be substituted for Sm-Co-based materials. It has extremely high industrial value. In particular, its advantages as a permanent magnet material are extremely significant when compared with conventional Sm--Co based elements. In addition, when compared with the Fe-B-R ternary ferromagnetic alloy, it is possible to increase the coercive force of the sintered magnet by including a specific additive element M, which expands the range of applications and has practical value. It can also contribute to increasing

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は2本発明の実施例(77−x)Fe−
8B−15Nd−xM系の合金から成る異方性焼結磁石
について添加金属Mの量(x%)と残留磁化Br(kG
)との関係を示すグラフ。 第4図は代表的な実施例試料1’h5(76Fe −8
B−15Nd −I Nb) 、 N[L21 (75
F e −8B −15N d −2A J )につい
ての防磁化曲線及び減磁曲線を、試料NaC1(77F
e−8B−15Nd)と共に示すグラフ(縦軸は磁化4
π1 (kG) 、横軸は磁界H(kOQ)) 、を夫
々示す。 出願人  住友特殊金属株式会社 代理人   弁理士 加 藤 朝 道 (他1名)
Figures 1 to 3 show two embodiments of the present invention (77-x) Fe-
The amount of additive metal M (x%) and residual magnetization Br (kG
) is a graph showing the relationship between Figure 4 shows a typical example sample 1'h5 (76Fe-8
B-15Nd-I Nb), N[L21 (75
The demagnetization curve and demagnetization curve for sample NaC1 (77F
e-8B-15Nd) (vertical axis is magnetization 4
π1 (kG), and the horizontal axis represents the magnetic field H (kOQ)). Applicant Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Asami Kato (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)原子百分比でR(RはNdとPrの一種又は二種
)8〜30%、B2〜28%、下記所定%以下(0%を
除く)の添加元素Mの一種又は二種以上(但し添加元素
Mが二種以上のときは、M合量は当該添加元素のうち最
大所定%を有するものの当該所定%以下)、及び残部実
質的にFeから成ることを特徴とする強磁性合金; Ti4.5%、Ni8%、 Bi5%、V9.5%、 Nb12.5%、Ta10.5%、 Cr8.5%、Mo9.5%、 W9.5%、Mn8%、 Al9.5%、Sb2.5%、 Ge7%、Sn3.5%、 Zr5.5%、及びHf5.5%。
(1) In atomic percentage, R (R is one or two of Nd and Pr) 8-30%, B2-28%, and one or more additive elements M (excluding 0%) below the specified percentage below ( However, when there are two or more types of additive elements M, the total amount of M is the maximum predetermined percentage of the additive elements, but not more than the predetermined percentage), and the remainder substantially consists of Fe; Ti4.5%, Ni8%, Bi5%, V9.5%, Nb12.5%, Ta10.5%, Cr8.5%, Mo9.5%, W9.5%, Mn8%, Al9.5%, Sb2 .5%, Ge7%, Sn3.5%, Zr5.5%, and Hf5.5%.
(2)原子百分比でR(RはNd、Pr、Dy、Ho、
Tb、La、Ce、Gd、Yのうち少なくとも一種で、
かつRの50%以上はNdとPrの一種又は二種)8〜
30%、B2〜28%、下記所定%以下(0%を除く)
の添加元素Mの一種又は二種以上(但し添加元素Mが二
種以上のときは、M合量は当該添加元素のうち最大所定
%を有するものの当該所定%以下)、及び残部実質的に
Feから成ることを特徴とする強磁性合金; Ti4.5%、Ni8%、 Bi5%、V9.5%、 Nb12.5%、Ta10.5%、 Cr8.5%、Mo9.5%、 W9.5%、Mn8%、 Al9.5%、Sb2.5%、 Ge7%、Sn3.5%、 Zr5.5%、及びHf5.5%。
(2) R in atomic percentage (R is Nd, Pr, Dy, Ho,
At least one of Tb, La, Ce, Gd, Y,
and 50% or more of R is one or two of Nd and Pr)8~
30%, B2-28%, below specified % (excluding 0%)
(However, when there are two or more types of additive elements M, the total amount of M is not more than the specified % of the maximum specified % of the added elements), and the remainder is substantially Fe. Ferromagnetic alloy characterized by consisting of; Ti4.5%, Ni8%, Bi5%, V9.5%, Nb12.5%, Ta10.5%, Cr8.5%, Mo9.5%, W9.5 %, Mn 8%, Al 9.5%, Sb 2.5%, Ge 7%, Sn 3.5%, Zr 5.5%, and Hf 5.5%.
JP62329640A 1987-12-28 1987-12-28 Ferromagnetic alloy Granted JPS63241141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329640A JPS63241141A (en) 1987-12-28 1987-12-28 Ferromagnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329640A JPS63241141A (en) 1987-12-28 1987-12-28 Ferromagnetic alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57200204A Division JPS5989401A (en) 1982-08-21 1982-11-15 Permanent magnet

Publications (2)

Publication Number Publication Date
JPS63241141A true JPS63241141A (en) 1988-10-06
JPH0535210B2 JPH0535210B2 (en) 1993-05-26

Family

ID=18223600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329640A Granted JPS63241141A (en) 1987-12-28 1987-12-28 Ferromagnetic alloy

Country Status (1)

Country Link
JP (1) JPS63241141A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
WO2007010860A1 (en) * 2005-07-15 2007-01-25 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
JP2007049010A (en) * 2005-08-11 2007-02-22 Neomax Co Ltd Rear earth sintered magnet and manufacturing method thereof
JP2007134417A (en) * 2005-11-08 2007-05-31 Neomax Co Ltd Manufacturing method of rare earth sintered magnet
JP2007154241A (en) * 2005-12-02 2007-06-21 Neomax Co Ltd Rare-earth sintered magnet and producing method thereof
JP2010114371A (en) * 2008-11-10 2010-05-20 Shin-Etsu Chemical Co Ltd Sm-R-T-B(-M)-BASED SINTERED MAGNET

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
WO2007010860A1 (en) * 2005-07-15 2007-01-25 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
US9551052B2 (en) 2005-07-15 2017-01-24 Hitachi Metals, Ltd. Rare earth sintered magnet and method for production thereof
JP2007049010A (en) * 2005-08-11 2007-02-22 Neomax Co Ltd Rear earth sintered magnet and manufacturing method thereof
JP2007134417A (en) * 2005-11-08 2007-05-31 Neomax Co Ltd Manufacturing method of rare earth sintered magnet
JP4635832B2 (en) * 2005-11-08 2011-02-23 日立金属株式会社 Manufacturing method of rare earth sintered magnet
JP2007154241A (en) * 2005-12-02 2007-06-21 Neomax Co Ltd Rare-earth sintered magnet and producing method thereof
JP2010114371A (en) * 2008-11-10 2010-05-20 Shin-Etsu Chemical Co Ltd Sm-R-T-B(-M)-BASED SINTERED MAGNET

Also Published As

Publication number Publication date
JPH0535210B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JPS6134242B2 (en)
JPH0510807B2 (en)
JPH0319296B2 (en)
JPH0232761B2 (en)
JPH0316761B2 (en)
JPH0518242B2 (en)
JPH0316762B2 (en)
US5230749A (en) Permanent magnets
JPS63241141A (en) Ferromagnetic alloy
JPH0474426B2 (en)
JPS63241142A (en) Ferromagnetic alloy
JPS6077959A (en) Permanent magnet material and its manufacture
JPH03170643A (en) Alloy for permanent magnet
JPH052735B2 (en)
JPS6365742B2 (en)
JPH0316763B2 (en)
JPH044386B2 (en)
JPS62101004A (en) Rare earth-iron group permanent magnet
JPH0467324B2 (en)
JPH0474425B2 (en)
JPH0316764B2 (en)
JPS59219452A (en) Permanent magnet material and its production
JPS59215466A (en) Permanent magnet material and its production
JPH031502A (en) Permanent magnet
JPH0151536B2 (en)