JPS63241116A - Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance - Google Patents

Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance

Info

Publication number
JPS63241116A
JPS63241116A JP7474987A JP7474987A JPS63241116A JP S63241116 A JPS63241116 A JP S63241116A JP 7474987 A JP7474987 A JP 7474987A JP 7474987 A JP7474987 A JP 7474987A JP S63241116 A JPS63241116 A JP S63241116A
Authority
JP
Japan
Prior art keywords
resistance
less
steel pipe
welded
ssc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7474987A
Other languages
Japanese (ja)
Inventor
Teruo Kaneko
金子 輝雄
Akio Ikeda
昭夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7474987A priority Critical patent/JPS63241116A/en
Publication of JPS63241116A publication Critical patent/JPS63241116A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled steel tube having superior sulfide cracking resistance by heating the joining edges of a steel strip having a specified compsn. under specified conditions, carrying out resistance welding to form a steel tube, hardening the tube by heating to a specified temp. and tempering it. CONSTITUTION:The joining edges of a steel strip consisting of, by weight, 0.15-0.35% C, 0.1-0.8% Si, 0.2-0.5% Mn, 0.2-0.6% Cr, 0.05-0.25% Mo [0.2<=Mo(%)/Cr(%)<=0.4], 0.01-0.06% sol.Al, 0.01-0.15% Zr and/or 0.001-0.150% Hf, 0.01-0.15% each of one or more among Nb, V and Ti and the balance Fe with inevitable impurities including <=0.02% P and <=0.005% S are heated in a nonoxidizing atmosphere and resistance welding is carried out so that the amt. of upset is regulated to 25-125% of the thickness. The resulting steel tube is hardened by heating to 920-1,020 deg.C and tempered at about 670-710 deg.C for about 1min-1hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、湿潤な硫化水素を含むいわゆるサワー環境下
で発生する硫化物割れに対して大きな抵抗力を持つ高強
度電縫鋼管の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for manufacturing high-strength electric resistance welded steel pipes that have high resistance to sulfide cracking that occurs in so-called sour environments containing moist hydrogen sulfide. Regarding.

(従来の技術とその問題点) 油田、ガス田の開発に使用されるいわゆる油井管として
、古くから貫層されているシームレス管に代わって、電
縫鋼管が一部に使用されるようになった。電縫油井管は
形状や寸法精度が良く、耐圧壊強度に優れる等の利点が
あるが、反面、溶接部の硫化物割れ(以下、SSCと略
記する)抵抗性が小さいため、サワー環境下での使用が
制限される。
(Conventional technology and its problems) As so-called oil country tubular goods used for the development of oil and gas fields, ERW steel pipes have come to be used in some parts instead of seamless pipes that have been layered for a long time. Ta. ERW oil country tubular goods have advantages such as good shape and dimensional accuracy and excellent crush strength, but on the other hand, they have low resistance to sulfide cracking (hereinafter abbreviated as SSC) in welded parts, so they cannot be used in sour environments. The use of is restricted.

SSCは、鋼材がIbSを含む湿潤雰囲気下で腐食する
とき発生した水素によって惹起される割れであるが、特
に電縫鋼管においては、その溶接部の耐SSC性が問題
になる。
SSC is a crack caused by hydrogen generated when steel corrodes in a humid atmosphere containing IbS, but especially in electric resistance welded steel pipes, the SSC resistance of the welded portion becomes a problem.

電縫鋼管の素材(ホットコイル)そのものの耐SSC性
改善については、すでにいくつかの提案がなされている
。たとえば、■特開昭58−221260号公報■同6
0−86216号公報■同60−86217号公報に記
載されている発明がそれであって、■はSSCの起点と
なる非金属介在物をできるだけ少なくすること、■、■
は素材となるホットコイルの冷却速度を調整して不均一
組織の生成を防ぐこと、をそれぞれ主たる特徴としてい
る。しかし、これらの提案では、電縫管とした後の溶接
部の耐SSCに関しては特に述べるところがない。
Several proposals have already been made for improving the SSC resistance of the material (hot coil) of the ERW steel pipe itself. For example, ■Japanese Unexamined Patent Publication No. 58-221260 ■No. 6
Publication No. 0-86216 ■ The invention described in Publication No. 60-86217 is that, ■ is to reduce as much as possible nonmetallic inclusions that become the starting point of SSC, ■,
Their main feature is to prevent the formation of non-uniform structures by adjusting the cooling rate of the hot coil material. However, these proposals do not specifically mention the SSC resistance of the welded portion after it is made into an electric resistance welded pipe.

溶接部のSSCを支配する要因は、溶接時に発生する低
温割れやペネトレーシヨンなどの欠陥の存在と溶接部の
組織の不均一である。まず、溶接欠陥の防止策としては
、溶接入熱量やアプセット量の調整、或いは不活性ガス
シールド溶接等が適用され、それ相応の効果をあげてい
る。また、溶接部の組織の均一化についてもシーム部の
後熱処理が種々行われている。しかしながら油井管用の
如き高強度鋼になると上記のような溶接条件の改善だけ
では、溶接欠陥の完全防止は困難であり、また、従来の
後熱処理で溶接部の耐SSC性を母材と同一レベルまで
改善することも難しい、サワーガス田、サワー油田を安
全かつ経済的に開発するには、高強度で耐SSC性に優
れた鋼管が必要であるが、強度と耐SSC性は一般的に
相反する特性であるから、その両者を満足する電縫鋼管
を製造するためには素材鋼帯の化学組成から、製管工程
および得られた電縫管の熱処理まで一貫した綿密な条件
設定が必須である。
The factors that govern the SSC of a weld are the presence of defects such as cold cracks and penetration that occur during welding, and the non-uniform structure of the weld. First, as measures to prevent welding defects, adjustment of welding heat input and upset amount, inert gas shield welding, etc., have been applied, and have achieved corresponding effects. In addition, various post-heat treatments of the seam portion are performed to make the structure of the weld portion uniform. However, when it comes to high-strength steels such as those used for oil country tubing, it is difficult to completely prevent weld defects by simply improving the welding conditions as described above, and conventional post-heat treatment can improve the SSC resistance of the welded part to the same level as the base metal. In order to safely and economically develop sour gas fields and sour oil fields, which are difficult to improve, steel pipes with high strength and excellent SSC resistance are required, but strength and SSC resistance are generally contradictory. In order to manufacture ERW steel pipe that satisfies both of these characteristics, it is essential to set consistent and detailed conditions from the chemical composition of the raw steel strip to the pipe manufacturing process and heat treatment of the resulting ERW pipe. .

本発明は、特に油井管として用いるのに好適な高強度電
縫鋼管であって、溶接部の耐SSCが母材と同程度に優
れたものを製造する新しい方法を提供することを目的と
する。
An object of the present invention is to provide a new method for manufacturing high-strength electric resistance welded steel pipes that are particularly suitable for use as oil country tubular goods and whose SSC resistance at welded parts is as excellent as that of the base material. .

(問題点を解決するための手段) 前記目的を達成するための手段としての本発明の要旨は
下記の電縫鋼管の製造方法にある。
(Means for Solving the Problems) The gist of the present invention as a means for achieving the above object lies in the following method for manufacturing an electric resistance welded steel pipe.

重量%で、C:0.15〜0.35%、Si : 0.
1〜0.8%、Mn : 0.2 〜0.5  %、C
r : 0.2 〜0.6  %、MO:0.05〜0
.25%、sol、 Aj! : 0.01〜0.06
%、 並びにZr : 0.01〜0.15%とHf 
: 0.001〜0.150%の1種または2種、およ
びNb : 0.01〜0.15%、V:0゜O2N2
.15%、Ti : 0.01〜0.15%のうちの1
種以上、残部Feと不可避不純物から成り、不純物とし
てのPが0.02%以下、Sが0.005%以下であり
、かつ0.2≦Mo (χ)/Cr (X)≦0.4で
ある鋼帯を、その接合端部を非酸化性雰囲気で加熱し、
アプセット量が肉厚の25〜125%となるように電縫
溶接し、得られた鋼管を920〜1020℃に加熱した
後焼入れし、次いで焼もどしを行う耐硫化物割れ性に優
れた高強度電縫鋼管の製造方法。
In weight%, C: 0.15-0.35%, Si: 0.
1-0.8%, Mn: 0.2-0.5%, C
r: 0.2-0.6%, MO: 0.05-0
.. 25%, sol, Aj! : 0.01~0.06
%, and Zr: 0.01-0.15% and Hf
: 0.001~0.150% of one or two types, and Nb: 0.01~0.15%, V: 0°O2N2
.. 15%, Ti: 1 of 0.01-0.15%
0.02% or less of P as impurities, 0.005% or less of S, and 0.2≦Mo (χ)/Cr (X)≦0.4 The joint end of the steel strip is heated in a non-oxidizing atmosphere,
Electric resistance welding is performed so that the upset amount is 25-125% of the wall thickness, and the resulting steel pipe is heated to 920-1020°C, quenched, and then tempered. High strength with excellent sulfide cracking resistance. Manufacturing method of ERW steel pipe.

上記本発明の方法において、電縫鋼管の素材となる鋼帯
には、上記各成分のばか更に、0.0001〜0.00
30%のB、0.001〜0.010%のCaの1種ま
たは2種を含有させてもよい。
In the method of the present invention, the steel strip used as the raw material for the electric resistance welded steel pipe contains 0.0001 to 0.00 of the above-mentioned components.
One or both of 30% B and 0.001 to 0.010% Ca may be contained.

かかる本発明方法の特徴は、素材となる鋼帯の化学組成
から製品電縫管の熱処理までの一貫した条件設定にある
が、特にその骨子は0強度と耐SSC性とを両立させる
ために合金成分とその含有量を総合的に調整したこと、
■溶接欠陥の発生を防ぐため合金元素、特にMn、 C
r、およびMoの含有量を規制するとともに溶接条件を
適正化したこと、■溶接部の耐SSC性を母材と同等に
するため管の熱処理条件を特定したこと、である。
The feature of the method of the present invention is the consistent setting of conditions from the chemical composition of the steel strip used as the raw material to the heat treatment of the product ERW pipe. Comprehensive adjustment of ingredients and their contents,
■To prevent welding defects, alloying elements, especially Mn, C
(2) The welding conditions were optimized while regulating the contents of r, and Mo. (2) The heat treatment conditions for the tube were specified in order to make the SSC resistance of the welded part equivalent to that of the base material.

(作用) 以下、本発明の電縫管製造方法における各条件の限定理
由をその作用効果とともに説明する。
(Function) Hereinafter, the reason for limiting each condition in the electric resistance welded tube manufacturing method of the present invention will be explained together with its function and effect.

まず、素材鋼帯の化学組成について述べる。First, the chemical composition of the raw steel strip will be described.

C:強度確保の必要上、0.15%以上の含有量とする
。しかしC含有量が多すぎると靭性、溶接性が劣化し、
熱処理時に焼割れが発生するおそれもあるので、上限を
0.35%とする。望ましい範囲は0.20〜0.30
%である。
C: In order to ensure strength, the content should be 0.15% or more. However, if the C content is too high, toughness and weldability will deteriorate,
Since there is a risk of quench cracking occurring during heat treatment, the upper limit is set at 0.35%. Desirable range is 0.20-0.30
%.

Sl:脱酸効果と焼入れ性向上のため、0.1%以上の
含有を必要とする。しかし、0.8%を超えると結晶粒
の粗大化による耐SSC性の低下や靭性劣化を招く、望
ましい範囲は0.2〜0.4%である。
Sl: Requires content of 0.1% or more for deoxidizing effect and improving hardenability. However, if it exceeds 0.8%, it causes a decrease in SSC resistance and toughness due to coarsening of crystal grains, so the desirable range is 0.2 to 0.4%.

Mn:焼入れ性を高めて強度向上に寄与する成分であり
、通常この種の鋼には0.5%以上含有されている。し
かし、本発明では溶接部の耐SSC性改善を重視するの
で、その含有量を必要最小限にする。即ち、上記の効果
を得るため下限を0.2%とし、上限は硫化物系介在物
をできるだけ少なくするため0.5%とする。
Mn: A component that enhances hardenability and contributes to improved strength, and is normally contained in this type of steel in an amount of 0.5% or more. However, in the present invention, since emphasis is placed on improving the SSC resistance of the welded part, its content is kept to the minimum necessary. That is, the lower limit is set to 0.2% in order to obtain the above effects, and the upper limit is set to 0.5% in order to minimize the amount of sulfide inclusions.

Cr : Mnと同じく焼入れ性を高めて強度向上に寄
与する成分である。しかし、Crの量がふえると溶接時
にCr酸化物が増加するために溶接欠陥が増加し、溶接
部の耐SSC性が劣化する。従ってCrの含有量も必要
最小限の0.2〜0.6%とする。なお、Cr含有量は
次に述べるMoの含有量と関係づけて調整する必要があ
る。
Cr: Like Mn, it is a component that enhances hardenability and contributes to improving strength. However, when the amount of Cr increases, Cr oxide increases during welding, which increases weld defects and deteriorates the SSC resistance of the weld. Therefore, the Cr content is also set to the necessary minimum of 0.2 to 0.6%. Note that the Cr content needs to be adjusted in relation to the Mo content described below.

Mo:焼入れ性を高めて強度を確保するために0゜05
%以上の含有量が必要である。一方、MOは粒界炭化物
を粗大化して耐SSC性を劣化させるのでその含有量の
上限を0.25%とする。
Mo: 0°05 to improve hardenability and ensure strength
% or more content is required. On the other hand, since MO coarsens grain boundary carbides and deteriorates SSC resistance, the upper limit of its content is set to 0.25%.

MoとCrの比(Mo (%) /Cr (%)):第
1図はMo (%) /Cr (%)とSSC発生率と
の関係を調べた結果である。
Ratio of Mo and Cr (Mo (%) /Cr (%)): Figure 1 shows the results of investigating the relationship between Mo (%) /Cr (%) and the SSC incidence rate.

なお、この結果は、No (%) /Cr (%)を様
々に変えた銅帯について、後述する実施例1同じ鋼帯製
造条件、製管条件、熱処理条件で試験片を作り、実施例
1と同じSSC試験条件で割れ率をみたものである。
Note that this result is based on the test specimens made under the same steel strip manufacturing conditions, pipe manufacturing conditions, and heat treatment conditions as in Example 1, which will be described later, for copper strips with various No (%) / Cr (%) changes. The cracking rate was observed under the same SSC test conditions.

第1図の結果をみれば、母材、溶接部の両方ともに割れ
が発生しないのはMo (%)/Cr(%)が0.2〜
0.4の範囲である。かかる現象が現れる理由は次のよ
うに考えられる。即ち、Mo (%)/Cr(%)が0
.2未満では、高温焼戻し時の炭化物分布の均一性が不
十分で母材および溶接部の耐SSC性が劣る。一方、M
o (%) /Cr (%)が0.4を超えると溶接時
に溶接部に粗大な炭化物が形成され、焼入れの加熱時に
も固溶しないため、溶接部の耐SSC性が劣るのである
Looking at the results in Figure 1, it is clear that cracks do not occur in both the base metal and the welded part when Mo (%)/Cr (%) is 0.2 or more.
It is in the range of 0.4. The reason why such a phenomenon appears is considered as follows. That is, Mo (%)/Cr (%) is 0
.. If it is less than 2, the uniformity of carbide distribution during high-temperature tempering is insufficient and the SSC resistance of the base metal and welded part is poor. On the other hand, M
If o (%) /Cr (%) exceeds 0.4, coarse carbides are formed in the weld during welding and do not form a solid solution during heating for quenching, resulting in poor SSC resistance of the weld.

ZrおよびHf:それぞれ0.01%以上、0.001
%以上で微細窒化物形成により粒界炭化物の粗大化を防
止する効果がある。いずれも0.15%をこえる含有量
では上記の効果は飽和するのみならず、靭性に悪影響が
ある。
Zr and Hf: 0.01% or more, 0.001 respectively
% or more, the formation of fine nitrides has the effect of preventing coarsening of grain boundary carbides. In any case, if the content exceeds 0.15%, not only the above effects are saturated, but also the toughness is adversely affected.

Nb、 Vおよびτl:それぞれ0.01%以上で組織
の微細化と強度向上に寄与する。しかしいずれも0゜1
5%を超えると靭性を劣化させる。
Nb, V and τl: each contributes to finer structure and improved strength at 0.01% or more. However, both are 0゜1
If it exceeds 5%, toughness deteriorates.

B:焼入れ性を上げ強度の向上に効果の大きい成分゛で
ある。特に高強度を必要とするとき0.0001%以上
含有させる。ただし、0.0030%を超えると耐SS
C性と靭性に悪影響がある。
B: A component that is highly effective in increasing hardenability and strength. Particularly when high strength is required, the content is 0.0001% or more. However, if it exceeds 0.0030%, SS resistance
It has a negative effect on carbon properties and toughness.

Ca:Bと同じく必要に応じて添加される。 Caの効
果は硫化物系介在物の球状化による耐SSC性と耐1)
1C(水素誘起割れ)性の向上である。この効果が現れ
るのは0.001%以上である。 0.010%を超え
ると靭性に悪影響がある。
Ca: Like B, it is added as necessary. The effect of Ca is on SSC resistance and resistance 1) due to the spheroidization of sulfide inclusions.
This is an improvement in 1C (hydrogen-induced cracking) property. This effect appears at 0.001% or more. If it exceeds 0.010%, toughness will be adversely affected.

上記のBとCaは、それぞれ単独で添加してもよく、ま
た複合添加してもよい。
The above B and Ca may be added individually or in combination.

次に電縫鋼管の製造工程について説明する。Next, the manufacturing process of the electric resistance welded steel pipe will be explained.

記述のとおり、電縫鋼管溶接部のSSCの一因は酸化物
による溶接欠陥である。その酸化物の生成を防止するた
め、非酸化性雰囲気中で、溶接すべき鋼帯の端部を加熱
し溶接する。雰囲気ガスとしては窒素、アルゴンを使用
し、シールボックスを設けて溶接部を非酸化性に保つ。
As described, one cause of SSC in ERW steel pipe welds is weld defects caused by oxides. To prevent the formation of oxides, the ends of the steel strip to be welded are heated and welded in a non-oxidizing atmosphere. Nitrogen or argon is used as the atmospheric gas, and a seal box is provided to keep the welded area non-oxidizing.

接合時のアプセット量を適正な範囲に選ぶことも重要で
ある0本発明者の多数の実験結果によれば、アプセット
量(溶接前後の管外周長の差)が肉厚の25〜125%
のとき、優れた耐SSC性が確保される。これが25%
未満のときは、接合不良が生じることがあり、125%
を超えると溶接部のメタルフローが大きくなり非金属介
在物が溶接部の表面に現われ、靭性、耐SSC性ともに
劣化する。なお、溶接入熱は通常の400KVA付近で
制御すればよい。
It is also important to select the amount of upset during welding within an appropriate range.According to the inventor's numerous experimental results, the amount of upset (difference in the outer circumference of the pipe before and after welding) is 25 to 125% of the wall thickness.
When , excellent SSC resistance is ensured. This is 25%
If it is less than 125%, poor bonding may occur.
If it exceeds this, the metal flow in the weld will increase, non-metallic inclusions will appear on the surface of the weld, and both toughness and SSC resistance will deteriorate. Note that the welding heat input may be controlled at around 400 KVA.

溶接後の熱処理は、溶接部の性能を母材と同等にするた
めの焼入れ焼もどしくQT)処理である。
The heat treatment after welding is quenching and tempering (QT) treatment to make the performance of the welded part equivalent to that of the base metal.

焼入れの加熱温度は920〜1020℃とする0通常の
QT処理では、焼入れ前の加熱は鋼のオーステナイト変
態点(Ars点、本発明の素材鋼帯の場合約810〜8
50℃)以上であればよいとされるが、これを920℃
以上とすることによって、溶接部の化学組成が均一化さ
れ、焼入れ後の組織が母材部となり、ひいては焼もどし
後の溶接部の性能も母材と同等のものとなる。しかし、
焼入れ前の加熱温度が1020℃を超える高温になると
、溶接部のみならず、母材側もオーステナイト結晶粒が
粗大化し、靭性、耐SSC性とも劣化する。焼入れ前の
加熱は、通常のバッチ炉、或いは連続誘導加熱方式を用
いる。また均熱時間は組織均一化のため1分以上とし、
経済性から1時間以内が適当である。
The heating temperature for quenching is 920 to 1020°C. In normal QT treatment, the heating before quenching is the austenite transformation point of the steel (Ars point, approximately 810 to 8
50℃) or higher is considered acceptable;
By doing the above, the chemical composition of the welded part is made uniform, the structure after quenching becomes that of the base metal, and the performance of the welded part after tempering becomes equivalent to that of the base metal. but,
When the heating temperature before quenching reaches a high temperature exceeding 1020° C., austenite crystal grains become coarse not only in the weld but also on the base metal side, and both toughness and SSC resistance deteriorate. For heating before quenching, a normal batch furnace or continuous induction heating method is used. In addition, the soaking time should be at least 1 minute to homogenize the structure.
From an economic point of view, it is appropriate to set the time within one hour.

焼入れは、水ジェツトによる連続冷却方式、或いは水槽
への浸漬で行う、焼もどしも、通常のバッチ炉、或いは
連続誘導加熱方式を用いればよい。
Quenching may be carried out by continuous cooling using a water jet or by immersion in a water tank, and tempering may be performed using a conventional batch furnace or continuous induction heating method.

温度はA1変態点以下でなるべく高温が望ましく、67
0〜710℃が推奨される。均熱時間は焼入れ前の加熱
と同じく1分〜1時間が適当である。
The temperature is preferably as high as possible below the A1 transformation point, and 67
A temperature of 0 to 710°C is recommended. The appropriate soaking time is 1 minute to 1 hour, as is the case with heating before quenching.

以上のとおり、鋼帯の化学組成と製管および熱処理工程
を総合して適正な条件とした本発明方法によって製造さ
れる電縫鋼管は、高強度であると同時に優れた耐SSC
性を有し、特に腐食条件の厳しい環境下で使用する油井
管用として極めて好適なものとなる。
As described above, the electric resistance welded steel pipe manufactured by the method of the present invention under appropriate conditions combining the chemical composition of the steel strip, the pipe manufacturing process, and the heat treatment process has high strength and excellent SSC resistance.
This makes it extremely suitable for oil country tubular goods used particularly in environments with severe corrosive conditions.

(実施例1) 第1表に示す化学組成をもつ20種の鋼を素材として、
電縫鋼管を製造し、耐SSC性を試験した。
(Example 1) Using 20 types of steel with the chemical composition shown in Table 1 as raw materials,
Electric resistance welded steel pipes were manufactured and tested for SSC resistance.

素材鋼帯の製造条件、鋼管の製造条件、およびSSC試
験の条件は次のとおりである。
The manufacturing conditions of the raw material steel strip, the manufacturing conditions of the steel pipe, and the conditions of the SSC test are as follows.

(1)鋼帯の製造条件:加熱温度1250℃、仕上温度
850℃で5腸−厚に熱間圧延し、圧延後600℃まで
15℃/秒で冷却、以後炉冷。
(1) Manufacturing conditions for steel strip: hot rolling to a thickness of 5 mm at a heating temperature of 1250°C and a finishing temperature of 850°C, cooling at a rate of 15°C/sec to 600°C after rolling, and then cooling in a furnace.

(ii )製管条件:窒素ガス雰囲気中で入熱量400
KVAの直流通電方式を用いて、アプセット量4mm(
肉厚の80%)で溶接し、外径60+smの管とした。
(ii) Pipe making conditions: heat input 400 in nitrogen gas atmosphere
Using KVA's direct current method, the upset amount is 4mm (
80% of the wall thickness) to form a tube with an outer diameter of 60+sm.

(iti )熱処理条件:950℃×30分加熱、水中
焼入れ0次いで、700℃X30分の焼もどしを行った
(iti) Heat treatment conditions: heating at 950°C for 30 minutes, no quenching in water, then tempering at 700°C for 30 minutes.

(iv)35(:試験条件:第2図に示すように、5+
i+m厚の試験片に応力集中係数2.5のノツチをつけ
、60an+径のCリングとして外表面に引張応力を付
加し、1)3 飽和の0.5%酢酸+5%食塩の水溶液
に500時間浸漬し、割れの発生状況を観察した。
(iv) 35 (: Test conditions: 5+ as shown in Figure 2)
A notch with a stress concentration factor of 2.5 was made on a test piece with a thickness of i+m, and tensile stress was applied to the outer surface as a C ring with a diameter of 60 an+. The specimen was immersed in water to observe the occurrence of cracks.

試験結果を母材部の引張り試験結果とともに第2表に示
す、なお、耐SSC性は、母材部と溶接部に分けて評価
し、数字は各10ケの試験片のうち割れのあった試験片
の数を示している。
The test results are shown in Table 2 together with the tensile test results for the base metal part. The SSC resistance was evaluated separately for the base metal part and the welded part, and the numbers indicate the number of cracks among each 10 test pieces. Indicates the number of test pieces.

第2表に示される如く、本発明で規定する範囲の化学組
成をもつ鋼管(鋼種1〜10)では、母材、溶接部とも
降伏点を超える応力付加にも関わらず全< SSCは発
生していない、これに対して、Mn。
As shown in Table 2, in steel pipes (steel types 1 to 10) with chemical compositions within the range specified by the present invention, total < SSC did not occur despite the stress applied to both the base metal and the welded part in excess of the yield point. In contrast, Mn.

Cr、P s Sの高すぎる12.13.17.18の
鋼管およびZrとI(fのいずれも含まない16の鋼管
では母材、溶接部双方にSSCが多発している。1).
14.15.20の鋼管は母材側のSSCは殆んどない
がいずれも溶接部のSSCがはげしい、これらはMn量
又はAQ量の過多、Mo (%) /Cr (%)の不
通正によるものである。19の鋼管は溶接部にはSSC
が見られないが母材側の耐SSC性が劣る。これは、前
述の第1図の試験結果と同じ<Mo(%) /Cr (
%)が小さすぎて、炭化物の分布が不均一になっている
ものと思われる。
In steel pipes 12, 13, 17, and 18 with too high Cr, P s S, and 16 steel pipes containing neither Zr nor I (f), SSC occurs frequently in both the base metal and the weld. 1).
The steel pipes of 14.15.20 have almost no SSC on the base metal side, but all have severe SSC in the welded parts.These are caused by excessive Mn content or AQ content, and failure of Mo (%) / Cr (%). This is due to 19 steel pipes have SSC on welded parts
is not observed, but the SSC resistance of the base metal side is poor. This is the same as the test result shown in Fig. 1 above <Mo (%) /Cr (
%) is too small, and the distribution of carbides is considered to be uneven.

(実施例2) 第1表の3の鋼管を用いて、溶接条件が耐SSC性に及
ぼす°影響を調べた。溶接条件以外の製管条件、熱処理
条件および試験条件は、実施例1と同じである。
(Example 2) The influence of welding conditions on SSC resistance was investigated using the steel pipe shown in 3 in Table 1. Pipe-making conditions, heat treatment conditions, and test conditions other than welding conditions are the same as in Example 1.

第3表に溶接条件と溶接部の耐SSC性とを示す。Table 3 shows the welding conditions and the SSC resistance of the welded parts.

窒素ガス雰囲気中で溶接され、かつアプセット量が本発
明で定める範囲内にある時にだけ、溶接部の耐SSCが
完全である。
The SSC resistance of the welded portion is perfect only when welding is performed in a nitrogen gas atmosphere and the amount of upset is within the range defined by the present invention.

同じく第1表の3の鋼帯から製造した電縫鋼管を用い、
焼入れ前加熱温度の影響をみた。製管までの条件、試験
条件は実施例1と同じである。第4表に示す耐SSC性
の試験結果によれば、加熱温度が低すぎる場合溶接部の
耐SSC性が劣り、高すぎる場合には母材、溶接部とも
耐SSC性が悪い。
Similarly, using an electric resistance welded steel pipe manufactured from steel strip 3 in Table 1,
The influence of heating temperature before quenching was examined. The conditions up to pipe making and test conditions are the same as in Example 1. According to the SSC resistance test results shown in Table 4, if the heating temperature is too low, the SSC resistance of the welded part is poor, and if it is too high, the SSC resistance of both the base metal and the welded part is poor.

焼入れ時の加熱温度の選定も耐SSC性の改善に極めて
重要であることが分る。
It can be seen that selection of the heating temperature during quenching is also extremely important for improving SSC resistance.

(発明の効果) 本発明は特に油井管として用いられることを前提として
、高強度であると同時に耐SSC性にも優れた電縫鋼管
の製造方法を提供する。この本発明方法は素材となる鋼
帯の化学組成から製管及び熱処理の条件まで緻密に検討
し、−貫して管理するところに特色があり、それによっ
て電縫鋼管本来の長所を生かしながら、溶接部の耐SS
C性が小さいという欠点を克服している。
(Effects of the Invention) The present invention provides a method for manufacturing an electric resistance welded steel pipe that has high strength and excellent SSC resistance, especially on the premise that the pipe is used as an oil country tubular product. The method of the present invention is characterized by careful consideration and thorough management of everything from the chemical composition of the raw material steel strip to the tube manufacturing and heat treatment conditions, thereby making full use of the inherent advantages of ERW steel pipe. SS resistance of welded parts
This overcomes the drawback of low C properties.

本発明方法によって得られる電縫鋼管は、油井管として
だけでなく、高強度と優れた耐SSC性を必要とするあ
らゆる用途に使用できることは言うまでもない。
It goes without saying that the electric resistance welded steel pipe obtained by the method of the present invention can be used not only as oil country tubular goods but also for all kinds of applications requiring high strength and excellent SSC resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、素材鋼帯のMoとCrの含有量の比とSSC
発生率との関係を示す図、 第2図は、耐SSC性試験に用いた試験片形状を示す図
、である。
Figure 1 shows the ratio of Mo and Cr contents in the raw steel strip and the SSC.
FIG. 2 is a diagram showing the relationship with the incidence rate. FIG. 2 is a diagram showing the shape of the test piece used in the SSC resistance test.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、C:0.15〜0.35%、Si:0
.1〜0.8%、Mn:0.2〜0.5%、Cr:0.
2〜0.6%、Mo:0.05〜0.25%、sol.
Al:0.01〜0.06%、並びにZr:0.01〜
0.15%とHf:0.001〜0.150%の1種ま
たは2種、およびNb:0.01〜0.15%、V:0
.01〜0.15%、Ti:0.01〜0.15%のう
ちの1種以上、残部Feと不可避不純物から成り、不純
物としてのPが0.02%以下、Sが0.005%以下
であり、かつ0.2≦Mo(%)/Cr(%)≦0.4
である鋼帯を、その接合端部を非酸化性雰囲気で加熱し
、アプセット量が肉厚の25〜125%となるように電
縫溶接し、得られた鋼管を920〜1020℃に加熱し
た後焼入れし、次いで焼もどしを行う耐硫化物割れ性に
優れた高強度電縫鋼管の製造方法。
(1) In weight%, C: 0.15-0.35%, Si: 0
.. 1-0.8%, Mn: 0.2-0.5%, Cr: 0.
2-0.6%, Mo: 0.05-0.25%, sol.
Al: 0.01 to 0.06%, and Zr: 0.01 to
0.15%, Hf: 0.001-0.150%, and Nb: 0.01-0.15%, V: 0
.. 01 to 0.15%, Ti: one or more of 0.01 to 0.15%, the balance consisting of Fe and unavoidable impurities, P as impurities is 0.02% or less, S is 0.005% or less and 0.2≦Mo(%)/Cr(%)≦0.4
The joint ends of the steel strips were heated in a non-oxidizing atmosphere, and electrical resistance welding was performed so that the upset amount was 25 to 125% of the wall thickness, and the obtained steel pipe was heated to 920 to 1020 ° C. A method for manufacturing high-strength electric resistance welded steel pipes with excellent sulfide cracking resistance, which involves post-quenching and then tempering.
(2)重量%で、C:0.15〜0.35%、Si:0
.1〜0.8%、Mn:0.2〜0.5%、Cr:0.
2〜0.6%、Mo:0.05〜0.25%、sol.
Al:0.01〜0.06%、B:0.0001〜0.
0030%、並びにZr:0.01〜0.15%とHf
:0.001〜0.150%の1種または2種、および
Nb:0.01〜0.15%、V:0.01〜0.15
%、Ti:0.01〜0.15%のうちの1種以上、残
部Feと不可避不純物から成り、不純物としてのPが0
.02%以下、Sが0.005%以下であり、かつ0.
2≦Mo(%)/Cr(%)≦0.4である鋼帯を、そ
の接合端部を非酸化性雰囲気で加熱し、アプセット量が
肉厚の25〜125%となるように電縫溶接し、得られ
た鋼管を920〜1020℃に加熱した後焼入れし、次
いで焼もどしを行う耐硫化物割れ性に優れた高強度電縫
鋼管の製造方法。
(2) In weight%, C: 0.15-0.35%, Si: 0
.. 1-0.8%, Mn: 0.2-0.5%, Cr: 0.
2-0.6%, Mo: 0.05-0.25%, sol.
Al: 0.01-0.06%, B: 0.0001-0.
0030%, and Zr: 0.01 to 0.15% and Hf
: 0.001 to 0.150% of one or two kinds, and Nb: 0.01 to 0.15%, V: 0.01 to 0.15
%, Ti: one or more of 0.01 to 0.15%, the balance consists of Fe and unavoidable impurities, and P as an impurity is 0
.. 0.02% or less, S is 0.005% or less, and 0.02% or less.
A steel strip with 2≦Mo (%)/Cr (%)≦0.4 is heated at its joint end in a non-oxidizing atmosphere, and is electrically welded so that the upset amount is 25 to 125% of the wall thickness. A method for manufacturing a high-strength electric resistance welded steel pipe with excellent sulfide cracking resistance, which comprises welding, heating the obtained steel pipe to 920 to 1020°C, quenching, and then tempering.
(3)重量%で、C:0.15〜0.35%、Si:0
.1〜0.8%、Mn:0.2〜0.5%、Cr:0.
2〜0.6%、Mo:0.05〜0.25%、sol.
Al:0.01〜0.06%、Ca:0.001〜0.
010%、並びにZr:0.01〜0.15%とHf:
0.001〜0.150%の1種または2種、およびN
b:0.01〜0.15%、V:0.01〜0.15%
、Ti:0.01〜0.15%のうちの1種以上、残部
Feと不可避不純物から成り、不純物としてのPが0.
02%以下、Sが0.005%以下であり、かつ0.2
≦Mo(%)/Cr(%)≦0.4である鋼帯を、その
接合端部を非酸化性雰囲気で加熱し、アプセット量が肉
厚の25〜125%となるように電縫溶接し、得られた
鋼管を920〜1020℃に加熱した後焼入れし、次い
で焼もどしを行う耐硫化物割れ性に優れた高強度電縫鋼
管の製造方法。
(3) In weight%, C: 0.15-0.35%, Si: 0
.. 1-0.8%, Mn: 0.2-0.5%, Cr: 0.
2-0.6%, Mo: 0.05-0.25%, sol.
Al: 0.01-0.06%, Ca: 0.001-0.
010%, and Zr: 0.01 to 0.15% and Hf:
0.001 to 0.150% of one or two types, and N
b: 0.01-0.15%, V: 0.01-0.15%
, Ti: 0.01 to 0.15%, the balance is Fe and unavoidable impurities, and P as an impurity is 0.01 to 0.15%.
02% or less, S is 0.005% or less, and 0.2%
Steel strips with ≦Mo (%)/Cr (%)≦0.4 are heated at their joint ends in a non-oxidizing atmosphere, and electrical resistance welding is performed so that the upset amount is 25 to 125% of the wall thickness. A method for manufacturing a high-strength electric resistance welded steel pipe with excellent sulfide cracking resistance, which comprises heating the obtained steel pipe to 920 to 1020°C, quenching it, and then tempering it.
(4)重量%で、C:0.15〜0.35%、Si:0
.1〜0.8%、Mn:0.2〜0.5%、Cr:0.
2〜0.6%、Mo:0.05〜0.25%、sol.
Al:0.01〜0.06%、B:0.0001〜0.
0030%、Ca:0.001〜0.010%、並びに
Zr:0.01〜0.15%とHf:0.001〜0.
150%の1種または2種、およびNb:0.01〜0
.15%、V:0.01〜0.15%、Ti:0.01
〜0.15%のうちの1種以上、残部Feと不可避不純
物から成り、不純物としてのPが0.02%以下、Sが
0.005%以下であり、かつ0.2≦Mo(%)/C
r(%)≦0.4である鋼帯を、その接合端部を非酸化
性雰囲気で加熱し、アプセット量が肉厚の25〜125
%となるように電縫溶接し、得られた鋼管を920〜1
020℃に加熱した後焼入れし、次いで焼もどしを行う
耐硫化物割れ性に優れた高強度電縫鋼管の製造方法。
(4) In weight%, C: 0.15-0.35%, Si: 0
.. 1-0.8%, Mn: 0.2-0.5%, Cr: 0.
2-0.6%, Mo: 0.05-0.25%, sol.
Al: 0.01-0.06%, B: 0.0001-0.
0030%, Ca: 0.001-0.010%, Zr: 0.01-0.15%, and Hf: 0.001-0.001%.
150% of one or two types, and Nb: 0.01-0
.. 15%, V: 0.01-0.15%, Ti: 0.01
~0.15%, the balance consists of Fe and unavoidable impurities, P as impurities is 0.02% or less, S is 0.005% or less, and 0.2≦Mo (%) /C
A steel strip with r(%)≦0.4 is heated at its joint end in a non-oxidizing atmosphere, and the upset amount is 25 to 125 of the wall thickness.
%, and the obtained steel pipe is 920~1
A method for producing a high-strength electric resistance welded steel pipe with excellent sulfide cracking resistance, which comprises heating to 020°C, quenching, and then tempering.
JP7474987A 1987-03-28 1987-03-28 Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance Pending JPS63241116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7474987A JPS63241116A (en) 1987-03-28 1987-03-28 Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7474987A JPS63241116A (en) 1987-03-28 1987-03-28 Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance

Publications (1)

Publication Number Publication Date
JPS63241116A true JPS63241116A (en) 1988-10-06

Family

ID=13556216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7474987A Pending JPS63241116A (en) 1987-03-28 1987-03-28 Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance

Country Status (1)

Country Link
JP (1) JPS63241116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019189A (en) * 1989-04-13 1991-05-28 Kawasaki Steel Corporation Steel pipe and a method for welding thereof and pipeline resistant to carbon dioxide corrosion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019189A (en) * 1989-04-13 1991-05-28 Kawasaki Steel Corporation Steel pipe and a method for welding thereof and pipeline resistant to carbon dioxide corrosion

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
EP1371743B1 (en) Electric welded steel tube for hollow stabilizer
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH06306543A (en) High strength pc wire rod excellent in delayed fracture resistance and its production
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JP3502691B2 (en) Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same
EP3971307B1 (en) Electric-resistance-welded steel pipe or tube for hollow stabilizer
JPS63241116A (en) Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance
JPH0625745A (en) Manufacture of steel for machine structural use excellent in delayed fracture resistance
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JPS6013025A (en) Production of electric welded steel pipe having low yield point and high strength
JP3468828B2 (en) Manufacturing method of high strength PC steel rod
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
CN116463546B (en) 100 kg-level ultrahigh-strength galvanized steel sheet and manufacturing method thereof
JPH0319285B2 (en)
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH01188652A (en) Steel for welding having excellent low temperature toughness and manufacture thereof
JPH05214499A (en) Production of high ni alloy-clad steel plate excellent in sour resistance and toughness at low temperature
JPS58199819A (en) Manufacture of high strength steel pipe for oil well
JPH024944A (en) Steel for electric-resistance weld steel tube having excellent fatigue characteristics
JPH08283839A (en) Production of steel excellent in sour resistance and hot workability
JPH0372053A (en) Ferritic stainless steel excellent in thermal fatigue resistance
JPS61281814A (en) Production of high-strength hot rolled steel sheet having low sensitivity to bauschinger effect
JPH08929B2 (en) Method for producing ferritic stainless steel excellent in stress corrosion cracking resistance and carbon dioxide corrosion resistance