JPS63241028A - Production of polyether polyol - Google Patents

Production of polyether polyol

Info

Publication number
JPS63241028A
JPS63241028A JP28231087A JP28231087A JPS63241028A JP S63241028 A JPS63241028 A JP S63241028A JP 28231087 A JP28231087 A JP 28231087A JP 28231087 A JP28231087 A JP 28231087A JP S63241028 A JPS63241028 A JP S63241028A
Authority
JP
Japan
Prior art keywords
alkali metal
reaction
polyhydroxy compound
aprotic solvent
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28231087A
Other languages
Japanese (ja)
Other versions
JPH0637554B2 (en
Inventor
Yoji Hirasawa
洋治 平沢
Keita Mizutani
啓太 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Publication of JPS63241028A publication Critical patent/JPS63241028A/en
Publication of JPH0637554B2 publication Critical patent/JPH0637554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

PURPOSE:To obtain the title high-MW compound of a low impurity content, by reacting a polyhydroxy compound with an alkylene oxide in the presence of a specified alkali metal catalyst in an aprotic solvent. CONSTITUTION:An alkali metal catalyst (C) is obtained by reacting an alkali metal hydroxide (a) (e.g., KOH) with a cycloalkapolyene (b) (e.g., cyclopentadiene). A polyhydroxy compound (A) containing 4-8 OH groups and preferably being solid at room temperature (e.g., sucrose) is reacted with an alkylene oxide (B) (e.g., propylene oxide) at 100-160 deg.C under normal or elevated pressure in the presence of 1-10mol%, based on component A, compo nent C in an aprotic solvent (D), preferably, of the formula (wherein R1 is H or a 1-3C alkyl, R2-3 are each a 1-3C alkyl, R1 and R2 or R1 and R3 may be combined together to form a cyclic group), e.g., N-methylpyrrolidone, to obtain the title compound of an MW of 500-10,000 and an OH value of 10-650.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なポリエーテルポリオールの製法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a novel method for producing polyether polyols.

(従来の技術およびその問題点) ポリエーテルポリオールはポリヒドロキシ化合物を出発
物質として、これにアルキレンオキシドを付加すること
により形成され、種々の用途に利用されてい4゜これら
の中で、3以上の官能性を有するポリヒドロキシ化合物
を出発物質とするボリエーテルボリオールは三次元的な
反応に関与し得るヒドロキシル基を有しており、更に有
用である。しかしながら、実際には4〜8個のヒドロキ
シル基を有するヒドロキシ化合物を出発物質とするポリ
エーテルポリオールは形成が困難である。
(Prior art and its problems) Polyether polyol is formed by adding alkylene oxide to a polyhydroxy compound as a starting material, and is used for various purposes. Polyether polyols starting from functional polyhydroxy compounds have hydroxyl groups that can participate in three-dimensional reactions and are further useful. However, it is actually difficult to form polyether polyols starting from hydroxy compounds having 4 to 8 hydroxyl groups.

ポリエーテルポリオール形成のための重合反応は通常反
応の制御が容易なため、溶液内で実施されるが、反応に
必要な物質の全てを溶解し、しかも重合反応に不活性な
溶剤は少ない。
The polymerization reaction for forming a polyether polyol is usually carried out in a solution because it is easy to control the reaction, but there are few solvents that can dissolve all the substances necessary for the reaction and are inert to the polymerization reaction.

カナダ特許第1,118,417号にはポリエーテルポ
リオールの形成反応にN−メチルピロリドンやN−メチ
ルアセトアミド等の親水性の溶剤を用いることが提案さ
れている。しかしながら、この特許の場合アミン系の触
媒を用いており反応が遅く、分子量も900〜1200
と高分子量の重合物が得られにくい。
Canadian Patent No. 1,118,417 proposes the use of hydrophilic solvents such as N-methylpyrrolidone and N-methylacetamide in the formation reaction of polyether polyols. However, in the case of this patent, an amine-based catalyst is used, so the reaction is slow and the molecular weight is 900-1200.
and high molecular weight polymers are difficult to obtain.

特開昭58−15933号公報にはアルカリ金属水酸化
物を触媒として用い、一旦水溶中で反応させて低分子量
の核を形成し、これを更に第2工程で鎖延長することが
開示されている。しかしながら、溶媒として水を用いる
ので、水とアルキレンオキシドとの副反応生成物が生じ
、これを完全に除くのが極めて困難である。
JP-A No. 58-15933 discloses that an alkali metal hydroxide is used as a catalyst to react once in an aqueous solution to form a low molecular weight nucleus, which is further chain-extended in a second step. There is. However, since water is used as a solvent, a side reaction product between water and alkylene oxide is generated, which is extremely difficult to completely remove.

(発明の内容) 本発明者等は特殊なアルカリ金属の触媒を用いることに
より、前記カナダ特許よりも分子量の高い有用なポリエ
ーテルポリオールが得られることを見出した。
(Contents of the Invention) The present inventors have discovered that by using a special alkali metal catalyst, a useful polyether polyol having a higher molecular weight than that disclosed in the Canadian patent can be obtained.

即ち、本発明はアルカリ金属水酸化物とシクロアルカポ
リエンとの反応により得られたアルカリ金属触媒の存在
下非プロトン溶剤中で、ポリヒドロキシ化合物とアルキ
レンオキシドとを反応させることを特徴とするポリエー
テルポリオールの製法を提供する。
That is, the present invention provides a polyether characterized by reacting a polyhydroxy compound and an alkylene oxide in an aprotic solvent in the presence of an alkali metal catalyst obtained by the reaction of an alkali metal hydroxide and a cycloalkapolyene. Provides a method for producing polyol.

アルカリ金属水酸化物は触媒活性が高く、ポリエーテル
ポリオールの形成に有利な触媒である。
Alkali metal hydroxides have high catalytic activity and are advantageous catalysts for the formation of polyether polyols.

しかしながら、この水酸化物は本発明で使用される非プ
ロトン溶剤、特にN−メチルピロリドンに溶解しない。
However, this hydroxide is not soluble in the aprotic solvents used in the invention, especially N-methylpyrrolidone.

本発明ではアルカリ金属水酸化物を非プロトン溶剤に溶
解可能な形にした。例えば水酸化カリウムとシクロペン
タジェンとを採用した場合以下のような反応が進行する
In the present invention, the alkali metal hydroxide is made into a form that can be dissolved in an aprotic solvent. For example, when potassium hydroxide and cyclopentadiene are used, the following reaction proceeds.

(A) この化合物(A)は固体で、N−メチルピロリドン等の
非プロトン溶剤に溶解して強アルカリ性を示す。
(A) This compound (A) is a solid and exhibits strong alkalinity when dissolved in an aprotic solvent such as N-methylpyrrolidone.

本発明の製法に用いられるアルカリ金属触媒はアルカリ
金属水酸化物とシクロアルカポリエンとの反応により得
られる。この反応は通常両者を混合することにより起こ
るが、必要により加熱してもよい。アルカリ金属水酸化
物の例としては水酸化カリウム、水酸化ナトリウム、水
酸化リチウム、水酸化ルビジウム等が挙げられる。好ま
しくは水酸化ナトリウムおよび水酸化カリウムモある。
The alkali metal catalyst used in the production method of the present invention is obtained by reacting an alkali metal hydroxide with a cycloalkapolyene. This reaction usually occurs by mixing the two, but may be heated if necessary. Examples of alkali metal hydroxides include potassium hydroxide, sodium hydroxide, lithium hydroxide, rubidium hydroxide, and the like. Preferred are sodium hydroxide and potassium hydroxide.

シクロアルカポリエンは通常環内に不飽和基のあるもの
、例えばシクロペンタジェン、シクロオクタジエン、シ
クロドデカトリエン等が好適であるが、環外に不飽和基
のあるもの、例えばメチレンビニルシクロペンタンも本
発明のシクロアルカポリエンに包含される。
Cycloalkapolyenes are usually those with an unsaturated group inside the ring, such as cyclopentadiene, cyclooctadiene, cyclododecatriene, etc., but those with an unsaturated group outside the ring, such as methylene vinyl cyclopentane, are also suitable. It is included in the cycloalkapolyene of the present invention.

上記反応により得られたアルカリ触媒の存在下にポリエ
ーテルポリオールの形成反応が実施される。反応は非プ
ロトン溶剤中で行なわれる。非プロトン溶剤以外の溶剤
の使用はアルキレンオキシドとの反応により副反応物が
生成するので好ましくない。非プロトン溶剤は以下の式
を有するものが好ましい; OR。
A polyether polyol formation reaction is carried out in the presence of the alkali catalyst obtained by the above reaction. The reaction is carried out in an aprotic solvent. The use of solvents other than aprotic solvents is not preferred because side reactants are produced by reaction with the alkylene oxide. Preferably, the aprotic solvent has the following formula: OR.

R,−C−N            (I)[式中、
R1は水素または炭素数1〜3のアルキル基、R7また
はR3は同一または異なって炭素数1〜3のアルキル基
であり、R1とR2またはR1とR3は環状基を形成し
てもよい。」 式(1)を満足する非プロトン溶剤の代表例としてはN
−メチルピロリドン、ジメチルアセトアミド、ジメチル
ホルムアミド等が挙げられる。最も好適なものはN−メ
チルピロリドンである。上記式(I)以外の非プロトン
溶剤の例としてはジメチルスルホキシド、ジメチルアセ
トアミド、ジメチルホルムアミド等が挙げられる。非プ
ロトン溶剤の使用量は重合溶液全量に対し5〜70重量
%、好ましくは10〜50重量%である。上記上限を越
えて使用してもよいが、溶媒の除去に時間がかかる。
R, -C-N (I) [wherein,
R1 is hydrogen or an alkyl group having 1 to 3 carbon atoms, R7 or R3 are the same or different alkyl groups having 1 to 3 carbon atoms, and R1 and R2 or R1 and R3 may form a cyclic group. ” A typical example of an aprotic solvent that satisfies formula (1) is N.
-Methylpyrrolidone, dimethylacetamide, dimethylformamide and the like. Most preferred is N-methylpyrrolidone. Examples of aprotic solvents other than those of formula (I) include dimethyl sulfoxide, dimethylacetamide, dimethylformamide, and the like. The amount of the aprotic solvent used is 5 to 70% by weight, preferably 10 to 50% by weight, based on the total amount of the polymerization solution. Although the above upper limit may be used, it takes time to remove the solvent.

本発明に使用するポリヒドロキシ化合物は、常温で固体
のものが好適であるが、もちろん常温で液体のジオール
、トリオール等に応用してもよい。
The polyhydroxy compound used in the present invention is preferably one that is solid at room temperature, but it may of course be applied to diols, triols, etc. that are liquid at room temperature.

使用し得るポリヒドロキシ化合物の例としてはジオール
類、例えばエチレングリコール、ジプロピレングリコー
ル、l、4−ブタンジオール、プロピレングリコール、
ジエチレングリコール等;トリオール類、例えばトリメ
チロールプロパン、グリセロール等;テトラオール等、
例えばペンタエリスリトール:へキサオール類、例えば
D−ツル、ビトール、ジペンタエリスリトール類二オク
タオール類、例えばスクロース、ラクトース等が挙げら
れる。スクロースは高い官能性と低価格の故に最も好適
である。
Examples of polyhydroxy compounds that can be used are diols, such as ethylene glycol, dipropylene glycol, 1,4-butanediol, propylene glycol,
diethylene glycol, etc.; triols, such as trimethylolpropane, glycerol, etc.; tetraol, etc.
Examples include pentaerythritol: hexaols, such as D-turu, bitol, dipentaerythritol, and dioctaols, such as sucrose and lactose. Sucrose is most preferred due to its high organoleptic properties and low cost.

アルキレンオキシドは公知のいかなるものを用いてもよ
い。アルキレンオキシドの例としてはエチレンオキシド
、l、2−プロピレンオキシド、1.2−ブチレンオキ
シド、2.3−ブチレンオキシド等が挙げられる。最も
好ましいものはエチレンオキシドとプロピレンオキシド
である。アルキレンオキシド中に水が含まれる場合には
、副反応が生じるので公知の方法により除去してもよい
Any known alkylene oxide may be used. Examples of alkylene oxides include ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and the like. Most preferred are ethylene oxide and propylene oxide. If water is contained in the alkylene oxide, a side reaction will occur, so it may be removed by a known method.

アルキレンオキシドの添加量はポリエーテルポリオール
の鎖長、即ち分子量またはOH価により大きく変化する
。ポリエーテルポリオールの好適な分子量は500〜t
 o、o o o、好ましくは700〜8.000であ
り、OH価は10〜650、好ましくは15〜300で
ある。従って、この範囲になるようにポリアルキレンオ
キシドを添加する。
The amount of alkylene oxide added varies greatly depending on the chain length, ie, molecular weight, or OH value of the polyether polyol. The preferred molecular weight of the polyether polyol is 500 to t.
o, o o o, preferably 700 to 8,000, and the OH value is 10 to 650, preferably 15 to 300. Therefore, polyalkylene oxide is added within this range.

重合反応は常圧または加圧下に加温された非プロトン溶
剤(ポリヒドロキシ化合物および上記反応により得られ
たアルカリ触媒を含む。)にアルキレンオキシドを滴下
または吹き込むことにより行なう。反応温度は通常10
0〜160℃、好ましくは110〜150℃である。1
00℃以下であれば重合反応が遅くなるが副反応が抑制
されるJいいかえれば、高い官能基数を保持した生成物
が得られる。従って、官能基数の高いポリマーのものが
必要な場合、100℃以下、特に70〜95℃の温度で
加圧・加温下に重合することに意味がある。反応温度が
160℃を越えると末端ヒドロキシル基が不飽和基に変
わる副反応が著しくなる。
The polymerization reaction is carried out by dropping or blowing the alkylene oxide into a heated aprotic solvent (containing the polyhydroxy compound and the alkali catalyst obtained by the above reaction) under normal pressure or increased pressure. The reaction temperature is usually 10
The temperature is 0 to 160°C, preferably 110 to 150°C. 1
If the temperature is below 00°C, the polymerization reaction will be slow, but side reactions will be suppressed. In other words, a product retaining a high number of functional groups can be obtained. Therefore, when a polymer with a high number of functional groups is required, it is meaningful to polymerize under pressure and heat at a temperature of 100°C or less, particularly 70 to 95°C. When the reaction temperature exceeds 160° C., side reactions in which terminal hydroxyl groups become unsaturated groups become significant.

不飽和基生成反応が起こると、同時に、生成物の官能基
数が著しく失われる。未反応のモノマーは回収して再度
反応に使用される。
When the unsaturated group forming reaction occurs, at the same time, the number of functional groups in the product is significantly lost. Unreacted monomers are collected and used again in the reaction.

重合反応終了後、予め使用した非プロトン溶剤で置換し
たイオン交換樹脂で触媒を除去し、次いで溶剤を除去す
ることにより精製する。
After the polymerization reaction is completed, the catalyst is removed using an ion exchange resin substituted with the previously used aprotic solvent, and then the solvent is removed for purification.

(発明の効果) 本発明のポリエーテルポリオールは特定のアルカリ触媒
を用いて重合するし、高い官能性のポリヒドロキシ化合
物、特にスクロースからも高い分子量の重合物が得られ
る。また、水等のアルキレンオキシドと反応し得る溶媒
を用いていないので、副反応物が不純物として混入する
ことは少ない。
(Effects of the Invention) The polyether polyol of the present invention is polymerized using a specific alkali catalyst, and a high molecular weight polymer can also be obtained from a highly functional polyhydroxy compound, especially sucrose. Furthermore, since a solvent that can react with alkylene oxide such as water is not used, side reaction products are less likely to be mixed in as impurities.

更に親水性の有機溶剤を用いて反応が行なわれているの
で、精製もイオン交換樹脂により容易になされる。工程
が1つであり、簡略されている。また高分子量化も容易
になすことができる。
Furthermore, since the reaction is carried out using a hydrophilic organic solvent, purification can be easily carried out using an ion exchange resin. There is only one process and it is simplified. Furthermore, the molecular weight can be easily increased.

多官能ポリエーテルポリオール、特にスクロースペース
のポリエーテルポリオールはイソシアネートと反応させ
て得られるポリウレタンの形成に極めて有利である。多
官能のポリエーテルポリオールの場合、熱的安定性が極
めて良好である。高分子量のポリエーテルポリオールの
場合、得られたポリウレタンの耐衝撃性が高くなる。
Multifunctional polyether polyols, especially sucrose-spaced polyether polyols, are highly advantageous for reaction with isocyanates to form the resulting polyurethanes. In the case of polyfunctional polyether polyols, thermal stability is extremely good. In the case of high molecular weight polyether polyols, the impact resistance of the resulting polyurethane is increased.

(実施例) 本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail with reference to Examples.

実施例1 (触媒の調整) 粉末状のKOH4,56gにシクロペンタジェン7.9
5gを加え、室温で約1時間振盪して反応させた。反応
後、濾過して黒褐色状固体(触媒)を集めた。
Example 1 (Preparation of catalyst) 7.9 g of cyclopentadiene was added to 4.56 g of powdered KOH.
5 g was added, and the mixture was shaken and reacted at room temperature for about 1 hour. After the reaction, a dark brown solid (catalyst) was collected by filtration.

(ポリオールの重合) 上記触媒4.28をN−メチルピロリドン500mQに
加え、撹拌して溶解した。続いて、スクロース85.5
gを加え、撹拌しながら昇温し約90℃で溶解させた。
(Polymerization of polyol) 4.28 of the above catalyst was added to 500 mQ of N-methylpyrrolidone and dissolved with stirring. Next, sucrose 85.5
g was added thereto, and the temperature was raised while stirring to dissolve at about 90°C.

溶液温度が約130℃に達したところで、酸化プロピレ
ン1600mfを約4時間にわたって滴下した。未反応
の酸化プロピレン約430mQがトラップされた。滴下
終了後室温に冷却し、あらかじめN−メチルピロリドン
で置換されているイオン交換樹脂を通した。続いてエバ
ポレーターを用いて約120℃で2mmHgの真空下2
時間蒸留を行った。得られたポリマーは黄褐状液体でM
n=4.too、Mw/Mn=l 、l 2、OH価=
107、[C=C]=4.Omo1%/molof[O
H]を有した。上記特性値は株式会社日立製作所製のV
 P O(V aper pressure osmo
sis)分子漬汁で測定した。また、[C= C]はW
ijの方法で求めた。
When the solution temperature reached about 130° C., 1600 mf of propylene oxide was added dropwise over about 4 hours. Approximately 430 mQ of unreacted propylene oxide was trapped. After the dropwise addition was completed, the mixture was cooled to room temperature and passed through an ion exchange resin substituted with N-methylpyrrolidone in advance. Then, using an evaporator, it was heated at about 120°C under a vacuum of 2 mmHg.
Time distillation was performed. The obtained polymer is a yellow-brown liquid with M
n=4. too, Mw/Mn=l, l2, OH value=
107, [C=C]=4. Omo1%/molof[O
H]. The above characteristic values are V manufactured by Hitachi, Ltd.
P O (V aper pressure osmo
sis) Measured with molecular pickle juice. Also, [C=C] is W
It was determined by the method of ij.

実施例2 実施例1と同様に得た触媒4.0gを、N−メチルピロ
リドン500mf2に加え、撹拌して溶解した。
Example 2 4.0 g of the catalyst obtained in the same manner as in Example 1 was added to 500 mf2 of N-methylpyrrolidone and dissolved with stirring.

続いて、ペンタエリスリトール68gを加え、撹拌しな
がら昇温し、約80°Cで溶解した。溶液は約140℃
まで昇温した。次に酸化プロピレン約150On++2
を約3時間にわたって滴下した。未反応の酸化プロピレ
ン約300mCが回収された。滴下終了後、室温に冷却
し、あらかじめN−メチルピロリドンで置換されている
イオン交換樹脂を通した。続いてエバポレーターを用い
て約120℃で2mm)Lgの真空下2時間蒸留して溶
剤を除去した。得られたポリマーは黄褐色でMn=21
00、Mw/ Mn= 1 、10 、 ON価=10
6、[C=C]=2.5mo1%/mol of [O
H’lを有した。
Subsequently, 68 g of pentaerythritol was added, the temperature was raised while stirring, and the mixture was dissolved at about 80°C. The solution is about 140℃
The temperature rose to . Next, propylene oxide about 150On++2
was added dropwise over about 3 hours. Approximately 300 mC of unreacted propylene oxide was recovered. After the dropwise addition was completed, the mixture was cooled to room temperature and passed through an ion exchange resin that had been substituted with N-methylpyrrolidone in advance. Subsequently, the solvent was removed by distillation using an evaporator at about 120° C. under a vacuum of 2 mm) Lg for 2 hours. The obtained polymer was yellowish brown and had Mn=21.
00, Mw/Mn=1, 10, ON value=10
6, [C=C]=2.5mol%/mol of [O
I had H'l.

比較例1 粉状のKO34,2gをN−メチルピロリドン500m
f2に加えて撹拌した。溶液は黄褐色を呈したが、K 
OI(はほとんど溶解しなかった。次にスクロース85
.5gを加え、撹拌しながら約140℃に昇温した。ス
クロースは約90℃で溶解したが、KOHは溶解せず、
粒状のまま残った。そのまま酸化プロピレン500m1
2を約2時間にわたって滴下したところ、沈澱物が多量
に生じt:。
Comparative Example 1 4.2 g of powdered KO was mixed with 500 m of N-methylpyrrolidone.
f2 and stirred. The solution had a yellowish brown color, but K
OI (was hardly dissolved. Next, sucrose 85
.. 5 g was added, and the temperature was raised to about 140°C while stirring. Sucrose melted at about 90°C, but KOH did not.
It remained granular. 500ml of propylene oxide as is
When 2 was added dropwise over about 2 hours, a large amount of precipitate was formed.

実施例3 512のオートクレーブ容器にN−メチルピロリドン5
00m+2.実施例1の触媒4.29を加え撹拌して溶
解した。続いてスクロース85.5yを加え、充分に窒
素置換を行ってから、撹拌しながら昇温した(窒素圧2
kg/amす。スクロースは約90℃で溶解した。温度
を95℃に保ちながら酸化プロピレン1600m(2を
高圧注入定量ポンプを用いて、約8時間にわたって滴下
した。滴下終了後、反応を完結させるため、さらに約1
時間反応さけた。
Example 3 N-methylpyrrolidone 5 in a 512 autoclave container
00m+2. 4.29% of the catalyst from Example 1 was added and stirred to dissolve. Subsequently, 85.5y of sucrose was added, and after sufficient nitrogen substitution, the temperature was raised with stirring (nitrogen pressure 2
kg/am. Sucrose melted at about 90°C. While maintaining the temperature at 95°C, 1,600 m (2) of propylene oxide was added dropwise using a high-pressure injection metering pump over a period of about 8 hours.
It took a while to react.

反応後、室温に冷却し、あらかじめN−メチルピロリド
ンで置換されているイオン交換樹脂を通して、触媒を除
去した。続いて、エバポレーターを用いて、約120℃
、2mm1’lの真空下2時間蒸留した。得られたポリ
マーは黄褐色液状でM n −5,100、Mw/ M
n= l 、 I 3.0f−1価=84、[C=C]
=2.5mo1%/mol of [OH]であった。
After the reaction, the reaction mixture was cooled to room temperature and passed through an ion exchange resin substituted with N-methylpyrrolidone to remove the catalyst. Next, use an evaporator to heat the temperature to about 120°C.
, 2 mm 1'l was distilled under vacuum for 2 hours. The obtained polymer was a yellowish brown liquid with M n -5,100, Mw/M
n=l, I3.0f-1 valence=84, [C=C]
=2.5mol%/mol of [OH].

実施例4 スクロースの代わりにペンタエリスリトール68gを加
え、ペンタエリスリトールは約80℃で溶解した。酸化
プロピレン1600mCを約6時間に渡って滴下し、滴
下終了後さらに1時間加温し反応を終結させる以外は実
施例3と同様に実験した。得られたポリマーはMn=2
,600、Mw/Mn=1.15、 OH価=84、 
[C=Cコー 1.4mo1%/mol of [OI
(コを有した。
Example 4 68 g of pentaerythritol was added in place of sucrose, and the pentaerythritol was dissolved at about 80°C. An experiment was carried out in the same manner as in Example 3, except that 1600 mC of propylene oxide was added dropwise over about 6 hours, and after the addition was completed, the reaction was further heated for 1 hour to terminate the reaction. The obtained polymer has Mn=2
,600, Mw/Mn=1.15, OH value=84,
[C=C-co 1.4mol1%/mol of [OI
(I had this.

実施例5 スクロースの代わりにD−ソルビトール919を加え、
D−ソルビトールは約70℃で溶解した。
Example 5 D-sorbitol 919 was added instead of sucrose,
D-sorbitol dissolved at about 70°C.

酸化プロピレン1200mQを約4時間にわたって滴下
し、滴下終了後さらに1時間加温して反応を終結させる
以外は実施例2と同様に実験した。得られたポリマーは
Mn=2.1001Mw/Mn=1゜12、OH価=1
56、[C=C]=0.6mo1%/mol of [
01〜(]を存した。
An experiment was carried out in the same manner as in Example 2, except that 1200 mQ of propylene oxide was added dropwise over about 4 hours, and after the dropwise addition was completed, the reaction was further heated for 1 hour to terminate the reaction. The obtained polymer had Mn=2.1001Mw/Mn=1°12, OH value=1
56, [C=C]=0.6mol%/mol of [
01~() existed.

Claims (1)

【特許請求の範囲】 1、アルカリ金属水酸化物とシクロアルカポリエンとの
反応により得られたアルカリ金属触媒の存在下非プロト
ン溶剤中で、ポリヒドロキシ化合物とアルキレンオキシ
ドとを反応させることを特徴とするポリエーテルポリオ
ールの製法。 2、ポリヒドロキシ化合物が4〜8個のヒドロキシル基
を有する第1項記載の製法。 3、ポリヒドロキシ化合物がスクロースである第2項記
載の製法。 4、アルカリ金属触媒が水酸化カリウムとシクロペンタ
ジエンとの反応生成物である第1項記載の製法。 5、アルカリ金属触媒がポリヒドロキシ化合物1モルに
対し1〜10モル%の量で使用される第1項記載の製法
。 6、非プロトン溶剤が式 ▲数式、化学式、表等があります▼ [式中、R_1は水素または炭素数1〜3のアルキル基
、R_2またはR_3は同一または異なって炭素数1〜
3のアルキル基であり、R_1とR_2またはR_1と
R_3は環状基を形成してもよい。] を有する第1項記載の製法。 7、非プロトン溶剤がN−メチルピロリドンである第6
項記載の製法。
[Claims] 1. A polyhydroxy compound and an alkylene oxide are reacted in an aprotic solvent in the presence of an alkali metal catalyst obtained by the reaction of an alkali metal hydroxide and a cycloalkapolyene. A method for producing polyether polyol. 2. The method according to item 1, wherein the polyhydroxy compound has 4 to 8 hydroxyl groups. 3. The method according to item 2, wherein the polyhydroxy compound is sucrose. 4. The method according to item 1, wherein the alkali metal catalyst is a reaction product of potassium hydroxide and cyclopentadiene. 5. The method according to item 1, wherein the alkali metal catalyst is used in an amount of 1 to 10 mol % based on 1 mol of the polyhydroxy compound. 6. Aprotic solvents have the formula ▲ Numerical formulas, chemical formulas, tables, etc.
R_1 and R_2 or R_1 and R_3 may form a cyclic group. ] The manufacturing method according to item 1, which has the following. 7. No. 6 where the aprotic solvent is N-methylpyrrolidone
Manufacturing method described in section.
JP28231087A 1986-11-13 1987-11-09 Polyether polyol manufacturing method Expired - Lifetime JPH0637554B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-270686 1986-11-13
JP27068686 1986-11-13

Publications (2)

Publication Number Publication Date
JPS63241028A true JPS63241028A (en) 1988-10-06
JPH0637554B2 JPH0637554B2 (en) 1994-05-18

Family

ID=17489536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28231087A Expired - Lifetime JPH0637554B2 (en) 1986-11-13 1987-11-09 Polyether polyol manufacturing method

Country Status (1)

Country Link
JP (1) JPH0637554B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996310A (en) * 1989-03-10 1991-02-26 Polioles, S. A. De C.U. Polyol-polyether with high content of ethylene oxide and low viscosity
WO2004101103A1 (en) * 2003-05-15 2004-11-25 San Nopco Ltd. Surfactant and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996310A (en) * 1989-03-10 1991-02-26 Polioles, S. A. De C.U. Polyol-polyether with high content of ethylene oxide and low viscosity
WO2004101103A1 (en) * 2003-05-15 2004-11-25 San Nopco Ltd. Surfactant and process for producing the same

Also Published As

Publication number Publication date
JPH0637554B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
CA2183695C (en) Improved polyether-containing double metal cyanide catalysts
RU2250910C2 (en) Method for polyester-polyol production
KR100610285B1 (en) Long-Chain Polyether Polyols with a High Proportion of Primary OH Groups
CN111393630B (en) Polymer polyol and preparation method thereof
US5210179A (en) Process for the production of polyethers derived from oxetanes
KR20010041718A (en) Improved Double Metal Cyanide Catalysts For Producing Polyether Polyols
JP2017510686A (en) Process for producing polyoxymethylene block copolymer
JPH04505934A (en) Polymerization of cyclic ethers
US5003111A (en) Isobutylene oxide polyols
KR100556175B1 (en) Method for Producing Partially Crystalline Polyether Polyols
JPH0768336B2 (en) Process for producing polyether copolymer having oligooxyethylene side chain
JPS63241028A (en) Production of polyether polyol
JP3442833B2 (en) Block copolyether via oxonium coupling of poly (tetramethylene ether) glycol
US3374277A (en) Diol of poly
US5254744A (en) Preparation and purification of poly(tetramethylene ether) formal glycols and poly(oxybutylene formal) glycols
EP1448663B1 (en) Process for the alkoxylation of organic compounds
Xu et al. Syntheses and characterization of poly (tetrahydrofuran) polyols with multifunctional oxocarbenium perchlorates as initiator
US5055496A (en) Polymer product containing isobutylene oxide polyols
JPH0434550B2 (en)
JPS59152923A (en) Manufacture of polyoxyalkylenediol-alpha, omega-bisarylpolycarbonate
JP4896296B2 (en) Crystallized polyether polyol
JPH07113060B2 (en) Polyether polyol manufacturing method
JPS60248727A (en) Purification of delta-valerolactone polymer
JP2002543255A5 (en)
JPH0859800A (en) Production of lactone polyol