JPS6324090A - Gold electrolytic solution - Google Patents

Gold electrolytic solution

Info

Publication number
JPS6324090A
JPS6324090A JP61167616A JP16761686A JPS6324090A JP S6324090 A JPS6324090 A JP S6324090A JP 61167616 A JP61167616 A JP 61167616A JP 16761686 A JP16761686 A JP 16761686A JP S6324090 A JPS6324090 A JP S6324090A
Authority
JP
Japan
Prior art keywords
gold
alkali metal
sodium
iodate
iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61167616A
Other languages
Japanese (ja)
Other versions
JPH0573836B2 (en
Inventor
Mamoru Hirako
平子 衛
Nobuyasu Ezawa
江沢 信泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP61167616A priority Critical patent/JPS6324090A/en
Priority to US07/073,509 priority patent/US4859293A/en
Priority to AU75670/87A priority patent/AU607921B2/en
Priority to DE8787830273T priority patent/DE3775645D1/en
Priority to EP87830273A priority patent/EP0253783B1/en
Priority to CA000542230A priority patent/CA1322855C/en
Publication of JPS6324090A publication Critical patent/JPS6324090A/en
Publication of JPH0573836B2 publication Critical patent/JPH0573836B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To obtain a gold electrolytic soln. having high efficiency of dissolution of gold in a high current density region by preparing a gold electrolytic soln. of a specified pH contg. an alkali metal iodide and an alkali metal iodate each at a specified concn. CONSTITUTION:An aqueous soln. contg. 0.1-5mol/l alkali metal iodide such as sodium iodide and 0.01-1mol/l alkali metal iodate such as sodium iodate is adjusted to 2-13.5pH and used as a gold electrolytic soln. The pH adjustment is carried out with an acid such as sulfuric acid or phosphoric acid or an alkali such as sodium hydroxide or potassium hydroxide and a pH buffer such as acetic acid-sodium acetate may be added. The electrolytic soln. has high current efficiency, the size of an electric dissolving apparatus used can be reduced and the generation of a harmful gas is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金の電解液の改良に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to improvements in gold electrolytes.

(従来技術とその問題点) 従来、金を電気溶解する際の電解液としては、塩酸酸性
電解液が知られている。
(Prior art and its problems) Hydrochloric acid acidic electrolyte is conventionally known as an electrolyte for electrolyzing gold.

Au+4HCN−+ (AuCj!4)+4H”+38
しかし、塩酸酸性電解液は、強酸性である為、常に有害
な塩化水素ガスの発生が伴い、また陽極上での副反応に
より有毒な塩素ガスの発生も伴う。
Au+4HCN-+ (AuCj!4)+4H”+38
However, since the hydrochloric acid acidic electrolyte is strongly acidic, it always generates harmful hydrogen chloride gas, and also generates toxic chlorine gas due to side reactions on the anode.

2HC1−I C!!、+2H”+2eさらに、高電流
密度領域における電解では、塩素ガス発生による分極が
おこる為に、金の溶解が阻害され、金の溶解効率が低下
してしまう。
2HC1-IC! ! , +2H''+2eFurthermore, in electrolysis in a high current density region, polarization occurs due to chlorine gas generation, which inhibits gold dissolution and reduces gold dissolution efficiency.

そのためにヨウ素アルカリ金属塩を含む金の電解液が用
いられているが、電流効率においてまだ十分満足のいく
ものではない。
For this purpose, a gold electrolyte containing an alkali metal iodine salt has been used, but the current efficiency is still not fully satisfactory.

本発明は、斯かる問題を解決すべくなされたもので、電
流効率の高い金の電解液を提供せんとするものである。
The present invention was made to solve this problem, and aims to provide a gold electrolyte with high current efficiency.

(問題点を解決するための手段) 本発明の金の電解液は、1l中にヨウ化アルカリ金属塩
0.1〜5モルとヨウ素酸アルカリ金属塩0.01〜1
モルを含み、pHが2〜13.5に調整された水溶液か
ら成ることを特徴とするものである。
(Means for Solving the Problems) The gold electrolyte of the present invention contains 0.1 to 5 moles of alkali metal iodide and 0.01 to 1 mole of alkali metal iodate in 1 liter.
It is characterized in that it consists of an aqueous solution containing mol and having a pH adjusted to 2 to 13.5.

本発明による金の電解液は、1l中にヨウ化アルカリ金
属塩(ヨウ化ナトリウム、ヨウ化カリウム)を0.1〜
5M含んでいる。
The gold electrolyte according to the present invention contains 0.1 to 1 liter of alkali metal iodide (sodium iodide, potassium iodide).
Contains 5M.

これは0.LM//!以下では金を理論上lす、トル当
り5gLか溶かし込む事ができない事、5M/β以上で
はヨウ化アルカリ金属塩が晶析してしまうなど取扱い上
の問題があげられる。
This is 0. LM//! In the following, there are handling problems such as the inability to dissolve gold at a theoretical level of 5 gL per torr, and the alkali metal iodide salt crystallizing at 5 M/β or more.

また、ヨウ素酸アルカリ金属塩を添加すると電流効率が
上昇する理由として、電極表面での反応が下記の(1)
、(2)、(3)弐の合成でおこっているからと考えら
れる。
In addition, the reason why the current efficiency increases when an alkali metal iodate is added is that the reaction on the electrode surface is caused by the following (1).
, (2) and (3) This is thought to be due to the synthesis of 2.

Au+ 41−− (Au 14) −+ 3 e  
−−−−−(1l電解液中にヨウ素酸アルカリが存在す
ると、陽極の金は、電気分解(1)弐と異なる(2)、
(3)式により?電解される。
Au+ 41−− (Au 14) −+ 3 e
-------(If there is alkali iodate in the 1L electrolyte, the gold at the anode will be different from electrolysis (1) and (2),
By formula (3)? electrolyzed.

また陽極は正に帯電している為に、負のイオン10、−
による酸化をうけやすい事があげられる。
Also, since the anode is positively charged, negative ions 10, -
The reason for this is that it is easily oxidized by

ヨウ素酸アルカリ金属塩の濃度を0.01〜IM/lと
した理由として、0.OIM/7!以下では通常のヨウ
化アルカリ金属電解浴と比べて効果が小さい事、IM/
jl!以上では、ヨウ素酸塩が析出(晶析)し易くなる
為である。
The reason why the concentration of alkali metal iodate was set to 0.01 to IM/l was 0.01 to IM/l. OIM/7! The following shows that the effect is smaller than that of a normal alkali metal iodide electrolytic bath, and that IM/
jl! This is because the iodate is more likely to precipitate (crystallize).

p)(の調整は酸(硫酸、塩酸、鎖酸、ヨウ化水素酸、
リン酸、酢酸等)、アルカリ (水酸化ナトリウム、水
酸化カリウム等)によって行うが、特にp Hの調整を
行わなくても良い。またpHの変動をおさえ抑える為に
、p Hの緩衝作用を有する塩や酸、アルカリとの組合
せ例えば酢酸−酢酸ナトリウム、リン酸−リン酸2水素
ナトリウム、リン酸2水素ナトリウム−リン酸水素2ナ
トリウム炭酸水素ナトリウム−炭酸、炭酸ナトリウム−
水酸化ナトリウム等によりpH調整しても良い。
p) (Preparation of (sulfuric acid, hydrochloric acid, chain acid, hydroiodic acid,
(phosphoric acid, acetic acid, etc.) or alkali (sodium hydroxide, potassium hydroxide, etc.), but there is no need to particularly adjust the pH. In addition, in order to suppress pH fluctuations, combinations with salts, acids, or alkalis that have a pH buffering effect, such as acetic acid-sodium acetate, phosphoric acid-sodium dihydrogen phosphate, sodium dihydrogen phosphate-dihydrogen phosphate, etc. Sodium Sodium Bicarbonate - Carbonic acid, Sodium Carbonate -
The pH may be adjusted using sodium hydroxide or the like.

次に本発明の効果を明瞭にならしめるために、第1図に
示す如く陽イオン交換Jl!J 1を設けた電解槽2に
おいて陽極3に金板を陰極4に炭素板を用いて陽極3の
合板を溶解し、陽極4の減量を求め、それにより電流効
率を求めた。
Next, in order to clearly show the effects of the present invention, as shown in FIG. 1, cation exchange Jl! In the electrolytic cell 2 equipped with J 1, a gold plate was used as the anode 3 and a carbon plate was used as the cathode 4, and the plywood of the anode 3 was melted to determine the weight loss of the anode 4, thereby determining the current efficiency.

(実施例1) 11当たりヨウ化カリウムIM、当つ素酸カリウム0.
2Mを含む溶液に硫酸及び水酸化ナトリウムを加えpH
を、各々2.7.10.13及び比較例として14に調
整した電解液を50゛Cで0.5dm2の金板にIOA
で30分通電したところ、第2図のような結果を得た。
(Example 1) Potassium iodide IM per 11, potassium dinate 0.
Add sulfuric acid and sodium hydroxide to a solution containing 2M and adjust the pH.
The electrolyte solution adjusted to 2.7.10.13 and 14 as a comparative example was applied to a 0.5 dm2 gold plate at 50°C using IOA.
When electricity was applied for 30 minutes, the results shown in Figure 2 were obtained.

(従来例1) ヨウ素酸カリウムのを加えない−LM/7!ヨウ化カリ
ウム溶液に実施例1と同条件で通電したところ、第2図
のような結果が得られた。
(Conventional Example 1) No addition of potassium iodate - LM/7! When electricity was applied to the potassium iodide solution under the same conditions as in Example 1, the results shown in FIG. 2 were obtained.

実施例による電解液の電流効率は従来例のそれよりpH
2〜13において5〜22%高い値を示した。
The current efficiency of the electrolyte according to the example is higher than that of the conventional example.
2 to 13 showed 5 to 22% higher values.

(実施例2) 11当りヨウ化カリウム3Mとヨウ素酸ナトリウム0.
5Mを含みpH10に調整した電解液を用い、液温65
゛Cで0.5dm”の金仮に、IOA (2OA /d
m2)2OA (40A/dm2) 、4QA (80
A/dm”)の3条件で各々30分通電したところ、第
3図のような結果が得られた。
(Example 2) Potassium iodide 3M and sodium iodate 0.11.
Using an electrolytic solution containing 5M and adjusted to pH 10, the solution temperature was 65%.
If gold is 0.5dm at C, IOA (2OA/d
m2) 2OA (40A/dm2), 4QA (80
When electricity was applied for 30 minutes under each of three conditions (A/dm"), the results shown in FIG. 3 were obtained.

(従来例2) ヨウ素酸ナトリウムを含まないヨウ化カリウム3 M 
/ I!電解液を用い実施例2と同条件で通電したとこ
ろ、第3図のような結果が得られた。
(Conventional example 2) Potassium iodide 3M without sodium iodate
/ I! When electricity was applied using an electrolytic solution under the same conditions as in Example 2, the results shown in FIG. 3 were obtained.

(実施例3及び従来例3) 下記の表−1の左欄に示す実施例及び従来例の電解液を
調整しpH=10としたものを50’C220A/dI
I2で30分il電したところ表の右欄のようになった
。KIO,が多い方が電流効率が高いことがわかる。
(Example 3 and Conventional Example 3) The electrolyte solutions of the example and conventional example shown in the left column of Table 1 below were adjusted to pH = 10 and were 50'C220A/dI.
When I powered up I2 for 30 minutes, the result was as shown in the right column of the table. It can be seen that the more KIO, the higher the current efficiency.

表−1 (実施例4) ヨウ化カリウム3M#2ヨウ素酸ナトリウム0.5M/
1  (pH−10)を電解液として、50℃で0.5
dIIliのAu板に10Aiffi電し、A1l板の
減量を測定した。
Table-1 (Example 4) Potassium iodide 3M #2 Sodium iodate 0.5M/
1 (pH-10) as the electrolyte, 0.5 at 50℃
The Au plate of dIIli was charged with 10Aiffi, and the weight loss of the Al plate was measured.

参考例として0 、5dm ”の合板を50℃で上記の
電解凍にひたしそのiF!24ftを求めた。
As a reference example, plywood of 0.5 dm'' was immersed in the above electrolytic freezing at 50°C, and its iF!24ft was determined.

(従来例4) ヨウ素酸ナトリウムを加えないヨウ化カリウム3M/β
の電解液で実施例4と同条件で通電し減量を測定した。
(Conventional example 4) Potassium iodide 3M/β without adding sodium iodate
Electricity was applied to the electrolytic solution under the same conditions as in Example 4, and the weight loss was measured.

以上の結果を下記の表−2に示す。The above results are shown in Table 2 below.

上記の表−2より判るようにヨウ化カリウム−ヨウ素酸
カリウム液自身による金の熔解はわずかであり、電解に
よりヨウ素酸カリウムが効果的に働いている事がわかる
As can be seen from Table 2 above, the potassium iodide-potassium iodate solution itself melts only a small amount of gold, indicating that potassium iodate is working effectively through electrolysis.

(発明の効果) 以上の説明から判るように本発明による金の電解液は、
高電流密度領域においても金の溶解効率が高い為、本電
解液を使用し電気溶解条件の高電流密度化することによ
り、金の電気溶解装置を小型化することができるという
優れた効果が得られる。
(Effect of the invention) As can be seen from the above explanation, the gold electrolyte according to the present invention has
Since the dissolution efficiency of gold is high even in the high current density region, by using this electrolyte and increasing the current density of the electrolytic melting conditions, an excellent effect can be obtained in that the gold electrolytic melting equipment can be made smaller. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解槽の概略図、第2図は電解液のpHと電流
効率の関係を示すグラフ、第3図は電解電流と電流効率
の関係を示すグラフである。 出願人  田中貴金属工業株式会社 第1図 ゝ1 第2図 (PH) 第3図 (A)
FIG. 1 is a schematic diagram of an electrolytic cell, FIG. 2 is a graph showing the relationship between the pH of the electrolytic solution and current efficiency, and FIG. 3 is a graph showing the relationship between electrolysis current and current efficiency. Applicant Tanaka Kikinzoku Kogyo Co., Ltd. Figure 1 1 Figure 2 (PH) Figure 3 (A)

Claims (1)

【特許請求の範囲】[Claims] 1l中にヨウ化アルカリ金属塩0.1〜5モルとヨウ素
酸アルカリ金属塩0.01〜1モルを含みpHが2〜1
3.5に調整された水溶液からなる金の電解液。
Contains 0.1 to 5 moles of alkali metal iodide and 0.01 to 1 mole of alkali metal iodate in 1 liter and has a pH of 2 to 1.
Gold electrolyte consisting of an aqueous solution adjusted to 3.5.
JP61167616A 1986-07-16 1986-07-16 Gold electrolytic solution Granted JPS6324090A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61167616A JPS6324090A (en) 1986-07-16 1986-07-16 Gold electrolytic solution
US07/073,509 US4859293A (en) 1986-07-16 1987-07-15 Process for refining gold and apparatus employed therefor
AU75670/87A AU607921B2 (en) 1986-07-16 1987-07-15 Process for refining gold and apparatus employed therefor
DE8787830273T DE3775645D1 (en) 1986-07-16 1987-07-15 METHOD AND DEVICE FOR CLEANING GOLD.
EP87830273A EP0253783B1 (en) 1986-07-16 1987-07-15 Process for refining gold and apparatus employed therefor
CA000542230A CA1322855C (en) 1986-07-16 1987-07-15 Process for refining gold and apparatus employed therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167616A JPS6324090A (en) 1986-07-16 1986-07-16 Gold electrolytic solution

Publications (2)

Publication Number Publication Date
JPS6324090A true JPS6324090A (en) 1988-02-01
JPH0573836B2 JPH0573836B2 (en) 1993-10-15

Family

ID=15853086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167616A Granted JPS6324090A (en) 1986-07-16 1986-07-16 Gold electrolytic solution

Country Status (1)

Country Link
JP (1) JPS6324090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025815B1 (en) * 2011-08-10 2012-09-12 小島化学薬品株式会社 Hard gold plating solution
WO2019150198A1 (en) * 2018-02-01 2019-08-08 Enviroleach Technologies Inc. Methods, materials and techniques for precious metal recovery
US10563283B2 (en) 2016-06-24 2020-02-18 Enviroleach Technologies Inc. Methods, materials and techniques for precious metal recovery
EP3655557A4 (en) * 2017-07-17 2021-01-13 Enviroleach Technologies Inc. Methods, materials and techniques for precious metal recovery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025815B1 (en) * 2011-08-10 2012-09-12 小島化学薬品株式会社 Hard gold plating solution
US10563283B2 (en) 2016-06-24 2020-02-18 Enviroleach Technologies Inc. Methods, materials and techniques for precious metal recovery
EP3655557A4 (en) * 2017-07-17 2021-01-13 Enviroleach Technologies Inc. Methods, materials and techniques for precious metal recovery
WO2019150198A1 (en) * 2018-02-01 2019-08-08 Enviroleach Technologies Inc. Methods, materials and techniques for precious metal recovery

Also Published As

Publication number Publication date
JPH0573836B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
KR20150118117A (en) High-concentration vanadium electrolyte, and method and apparatus for producing same
US4181777A (en) Rechargeable zinc halogen battery
CN101285198B (en) Method for electrolyzing aluminum
JPH0343351B2 (en)
US4374007A (en) Trivalent chromium electroplating solution and process
JPS6324090A (en) Gold electrolytic solution
US4053374A (en) Chromium electroplating baths
EP0043854B1 (en) Aqueous electrowinning of metals
US4707226A (en) Process for the dehalogenation of chloroacetic and bromoacetic acid
US4313804A (en) Process for preparing ceric sulphate
JPS6324089A (en) Gold electrolytic solution
US4422908A (en) Zinc plating
US5395488A (en) Electrochemical process for reducing oxalic acid to glyoxylic acid
Pavlović et al. Formation of bromates at a RuO2TiO2 titanium anode
JP2000012064A (en) Vanadium redox battery electrolyte and vanadium redox battery using the same
JP2982658B2 (en) Method of lowering metal concentration in electroplating solution
US20020134689A1 (en) Continuous electrochemical process for preparation of zinc powder
JP2585325B2 (en) Gold dissolution method
CA1062195A (en) Method and apparatus for electrolytic production of persulfates
JP2961256B1 (en) Silver plating bath, silver / tin alloy plating bath, and plating method using those plating baths
SU724606A1 (en) Silver plating electrolyte
US4035253A (en) Electrolytic oxidation of phenol at lead-thallium anodes
SU697610A1 (en) Electrolyte for tin-bismuth alloy plating
SU1373739A1 (en) Method of preparing borohydrofluoric electrolyte for depositing tin-lead alloy coating
US20030106806A1 (en) Electrochemical process for preparation of zinc metal