JPS632395A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS632395A
JPS632395A JP14591186A JP14591186A JPS632395A JP S632395 A JPS632395 A JP S632395A JP 14591186 A JP14591186 A JP 14591186A JP 14591186 A JP14591186 A JP 14591186A JP S632395 A JPS632395 A JP S632395A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
hole
shaped
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14591186A
Other languages
Japanese (ja)
Other versions
JP2639912B2 (en
Inventor
Takayuki Nishimura
孝之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14591186A priority Critical patent/JP2639912B2/en
Publication of JPS632395A publication Critical patent/JPS632395A/en
Application granted granted Critical
Publication of JP2639912B2 publication Critical patent/JP2639912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a surface emission type semiconductor laser, threshold currents of which are lowered largely and the spread of outgoing laser beams of which is inhibited, by forming an inverted truncated cone-shaped hole extending over a current block layer, an etching stopping layer and the surface layer section of a substrate, shaping a semiconductor lower clad layer onto the block layer and into the hole and laminating and forming a semiconductor active layer and a semiconductor upper clad layer onto the clad layer in succession. CONSTITUTION:A semiconductor etching stop layer 2 and a current block layer 3 are shaped onto a P-type GaAs substrate 1, an etching mask is formed onto the block layer 3, leaving a circular opening at a central section, and an inverted truncated cone-shaped hole 4 is shaped through etching. A semiconductor lower clad layer 5 is formed onto the block layer 3 and into the hole 4. A semiconductor active layer 6, a semiconductor upper clad layer 7 and a cap layer 8 are laminated and shaped onto the lower clad layer 5 in succession. An upper window hole 13 is shaped to the cap layer 8 exposed to a circular hole 11 while a truncated cone-shaped lower window hole 14 is formed to the back of the hole 4 in the substrate 1 exposed to a circular hole 12. An upper reflecting film 15 and a lower reflecting film 16 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、面発光型の半導体ル−ザを製造する半導体
レーザの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser manufacturing method for manufacturing a surface emitting type semiconductor laser.

〔従来の技術〕[Conventional technology]

一般に、半導体レーザは、半導体基板上に、開口を有す
る電流ブロック層、半導体下部クラッド層、半導体活性
層、半導体上部クラッド層が順次エピタキシャル成長さ
れて形成されたのち、各エピタキシャル層に垂直な前面
および後面がへき開され、このへき開面に反射膜が形成
されて共振器面が形成されて構成されており、この場合
前記共振器面における前記活性層を含む活性領域端面に
相当する線状部分のみが発光し、面発光にはならない。
In general, a semiconductor laser is formed by successively epitaxially growing a current blocking layer having an opening, a semiconductor lower cladding layer, a semiconductor active layer, and a semiconductor upper cladding layer on a semiconductor substrate. is cleaved, and a reflective film is formed on this cleavage plane to form a resonator surface. In this case, only the linear portion of the resonator surface corresponding to the end face of the active region including the active layer emits light. However, it does not emit surface light.

これに対し、共振器面を各エピタキシャル層に平行に形
成して面発光するようにした面発光型の半導体レーザが
あり、この揮の半導体レーザの例として、たとえばアイ
イーイーイージャーナルオブカンタムエレクトロニクス
、ポリウムキューイー21.ナンバー6、ジュー219
85頁663〜668(IEEE JOURNAL O
F QUANTUM 、ELECTRONIC3、VO
L QE−21,NO,6’、 JUNE 19’85
P、668〜668〕に記載のものがあり、このような
面発光型の半導体レーザはその特性から、(1)単−縦
モード動作レーザ、 (I+) 2次元レーザアレイ、
ω1)低ノイズレーザへの応用が期待されている。
On the other hand, there is a surface-emitting type semiconductor laser in which the cavity plane is formed parallel to each epitaxial layer to emit surface light. Porium Qee 21. Number 6, Ju 219
85 pages 663-668 (IEEE JOURNAL O
F QUANTUM, ELECTRONIC3, VO
L QE-21, NO, 6', JUNE 19'85
P, 668-668], and such surface-emitting semiconductor lasers are classified into (1) single-longitudinal mode operating lasers, (I+) two-dimensional laser arrays,
ω1) Application to low noise lasers is expected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の面発光型の半導体レーザは、発振動作に
必要な駆動電流、すなわちしきい値電流が、たとえば室
温におけるパルス動作時で380mAと高いため、実用
上連続発振させて使用する場合、電力消費が非常に大き
いという問題点がある。
However, in conventional surface-emitting semiconductor lasers, the drive current required for oscillation operation, that is, the threshold current, is as high as 380 mA during pulse operation at room temperature. The problem is that consumption is extremely large.

さらに、面発光であるため、出射レーザ光の広がりが大
きくなり、光ファイバなどの他の光学機器との結合を行
なう場合に、実効的な結合効率が低下するという問題点
がある。
Furthermore, since it is a surface emitting device, the spread of the emitted laser light becomes large, and when coupling with other optical equipment such as an optical fiber, there is a problem that the effective coupling efficiency decreases.

そこで、この発明では、しきい値電流が従来に比べて大
幅に低く、出射レーザ光の広がりを従来よりも抑えた面
発光型の半導体レーザを提供することを技術的課題とす
る。
Accordingly, the technical object of the present invention is to provide a surface-emitting type semiconductor laser having a threshold current significantly lower than that of the conventional semiconductor laser and with suppressed spread of emitted laser light compared to the conventional one.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなされたものであり、
半導体基板上に、電流ブロック層、半導体下部クラッド
層、半導体活性層および半導体上部クラッド層を順次エ
ピタキシャル成長させ、面発光型の半導体レーザを製造
する半導体レーザの製造方法において、前記基板上に半
導体エツチング停止層を形成し、該エツチング停止層上
に前記ブロック層を形成する工程と、前記ブロック層。
This invention was made with the above points in mind,
In a method for manufacturing a semiconductor laser, in which a current blocking layer, a semiconductor lower cladding layer, a semiconductor active layer, and a semiconductor upper cladding layer are sequentially epitaxially grown on a semiconductor substrate to manufacture a surface-emitting type semiconductor laser, a semiconductor etching stop is performed on the substrate. forming a blocking layer on the etch stop layer; and forming the blocking layer on the etch stop layer.

前記エツチング停止層および前記基板の表層部にかけて
電流狭さく用の逆円錐台状の穴を形成する工程と、前記
ブロック層上および前記穴内に前記下部クラッド層を形
成する工程と、前記基板の前記穴の裏面に窓孔を形成す
る工程とを含むことを特徴とする半導体レーザの製造方
法である。
forming a hole in the shape of an inverted truncated cone for current confinement across the etching stop layer and the surface layer of the substrate; forming the lower cladding layer on the blocking layer and in the hole; and forming the hole in the substrate. 1. A method of manufacturing a semiconductor laser, comprising the step of forming a window hole on the back surface of the semiconductor laser.

〔作用〕[Effect]

したがって、この発明によると、半導体基板上に半導体
エツチング停止層が形成されたのち、当該エツチング層
上に電流ブロック層が形成され、電流ブロック層、エツ
チング停止層、基板の表層部にかけて逆円錐台状の穴が
形成され、ブロック層上および前記穴内に半導体下部ク
ラッド層が形成されるとともに、下部クラッド層上に半
導体活性層、半導体上部クラッド層が順次積層形成され
、さらに基板の前記穴の裏面に出射レーザ光取り出し用
の窓孔が形成され、面発光型の半導体レーザが作成され
る。
Therefore, according to the present invention, after a semiconductor etching stop layer is formed on a semiconductor substrate, a current blocking layer is formed on the etching layer, and an inverted truncated conical shape is formed over the current blocking layer, the etching stop layer, and the surface layer of the substrate. A hole is formed, a semiconductor lower cladding layer is formed on the block layer and in the hole, a semiconductor active layer and a semiconductor upper cladding layer are sequentially laminated on the lower cladding layer, and a semiconductor upper cladding layer is formed on the back side of the hole of the substrate. A window hole for extracting the emitted laser light is formed, and a surface-emitting type semiconductor laser is produced.

このとき、逆円錐台状の穴を形成したため、いわゆる内
部電流狭さく部が形成され、通電時に各半導体層を通る
電流の流路が前記穴の上側部分のみに限られ、光増幅に
寄与する電流が集中的に流・れることになり、従来のよ
うに電流が分散することによる発振動作電流のうちの光
増幅に寄与しない無効電流の増大が大幅に抑制され、し
きい値電流の低減が図れ、しかも前記穴内に形成される
下部クラッド層が構造上集光用凸レンズとして働き、出
射レーザ光の広がりが抑制されることになる。
At this time, since the holes are formed in the shape of an inverted truncated cone, a so-called internal current constriction is formed, and when electricity is applied, the current flow path through each semiconductor layer is limited to the upper part of the hole, and the current that contributes to optical amplification is flows in a concentrated manner, and the increase in reactive current that does not contribute to optical amplification of the oscillation operating current due to current dispersion as in the past is greatly suppressed, and the threshold current can be reduced. Moreover, the lower cladding layer formed in the hole structurally functions as a convex condensing lens, and the spread of the emitted laser light is suppressed.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した図面ととも
に詳細に説明する。
Next, the present invention will be described in detail with reference to drawings showing one embodiment thereof.

まず、第1図(a)に示すように、半導体基板どしての
p形GaAs基板(1)上に、液相エピタキシャル成長
法(以下LPEという)により厚さ1〜1.5μmのp
形Gao、7Ato、3Asからなる半導体エツチング
停止層(2)を形成し、さらにエツチング停止層(2)
上にLPEにより厚さ1μmのn形GaAsからなる電
流ブロック層(3)を形成し、その後ブロック層(3)
上に中央部に直径的10μmの円形開口を残してエツチ
ングマスクを形成し、混合比a:i:iのリン酸(H3
PO4]、過酸化水素水(H202] 、酢酸(: C
Ha C00HIの混合溶液をエッチャントとしエツチ
ングを行ない、同図中)に示すように、ブロック層(3
)、エツチング停止層(2)および基板(1)の表層部
にかけて最大口径10μm、深さ3μmの電流狭さく用
の逆円錐台状の穴(4)を形成する。
First, as shown in FIG. 1(a), a p-type film with a thickness of 1 to 1.5 μm is grown on a p-type GaAs substrate (1) as a semiconductor substrate by liquid phase epitaxial growth (hereinafter referred to as LPE).
A semiconductor etching stop layer (2) made of Gao, 7Ato, and 3As is formed, and further an etching stop layer (2) is formed.
A current blocking layer (3) made of n-type GaAs with a thickness of 1 μm is formed on top by LPE, and then the blocking layer (3)
An etching mask was formed on the top by leaving a circular opening with a diameter of 10 μm in the center, and phosphoric acid (H3
PO4], hydrogen peroxide (H202), acetic acid (: C
Etching was performed using a mixed solution of Ha C00HI as an etchant, and a block layer (3
), an inverted truncated conical hole (4) for current constriction with a maximum diameter of 10 μm and a depth of 3 μm is formed over the etching stop layer (2) and the surface layer of the substrate (1).

つぎに、第2図(C)に示すように、ブロック層(3)
上および穴(4)内にLPEによりp形Ga  Az 
 AsO,70,3 からなる半導体下部クラッド層(5)を、ブロック層(
3)上での厚さが0.2μmとなるように形成し、下部
クラッド層(5)上にLPEにより厚さ2μmのp形G
aAsからなる半導体活性層(6)、厚さ2μmのn形
Gao、7Ato、3Asからなる半導体上部クラッド
層(7)および厚さ0.1μmのn形GaAsからなる
キャップ層(8)を順次積層して形成する。
Next, as shown in FIG. 2(C), the block layer (3)
p-type Ga Az by LPE on top and in hole (4)
A semiconductor lower cladding layer (5) made of AsO,70,3 is layered with a block layer (
3) A p-type G layer with a thickness of 2 μm is formed on the lower cladding layer (5) using LPE.
A semiconductor active layer (6) made of aAs, a semiconductor upper cladding layer (7) made of n-type Gao, 7Ato, and 3As with a thickness of 2 μm, and a cap layer (8) made of n-type GaAs with a thickness of 0.1 μm are sequentially laminated. and form it.

このとき、下部クラッド層(5)を形成する際に、サー
マルエツチングやメルトバックにより、第2図(C)に
示すように、穴(4)の角部分が滑らかになり、とくに
穴(4)の底部は放物面状になり、穴(4)内の下部ク
ラッド層(5)が集光用の凸レンズとして作用し、出射
レーザ光を集光して広がりを抑制することになる。
At this time, when forming the lower cladding layer (5), due to thermal etching or meltback, the corners of the hole (4) become smooth as shown in FIG. The bottom part of the hole (4) has a parabolic shape, and the lower cladding layer (5) inside the hole (4) acts as a convex condensing lens to condense the emitted laser beam and suppress its spread.

さらに、キャップ層(8)の上面および基板(1)の裏
面にそれぞれ金(Au :)−ゲルマニウム(Ge )
−ニッケル〔Ni〕および金(Au膜−亜鉛(Zn)を
蒸着して上部電極(9)および下部電極00を形成した
のち、ヨウ化カリウム(K工:)とヨウ素〔■2〕の溶
液などをエッチャントとして、上部電極(9)および下
部電極00の中央部にそれぞれ直径IOμm l  2
00μmの円形孔aa 、 a2Jを形成し、温度40
〜50Cで混合比1:20の水酸化アンモニウム(NH
40H)、過酸化水素水[H2O2]の混合溶液をエッ
チャントとしてエラチン。
Further, gold (Au:)-germanium (Ge) was added to the top surface of the cap layer (8) and the back surface of the substrate (1), respectively.
- After evaporating nickel [Ni] and gold (Au film - zinc (Zn) to form the upper electrode (9) and lower electrode 00, a solution of potassium iodide (K) and iodine [■2], etc. As an etchant, a diameter of IO μm l 2 was placed at the center of the upper electrode (9) and the lower electrode 00, respectively.
00 μm circular holes aa and a2J were formed, and the temperature was 40 μm.
Ammonium hydroxide (NH
40H), Elatin using a mixed solution of hydrogen peroxide [H2O2] as an etchant.

グを行ない、同図(d)に示すように、円形孔αυに露
出したキャップ層(8)に円形孔01)と同じく直径1
0μmの円形の上部窓孔α口を形成するとともに、円形
孔@に露出した基板(1)の穴〈4)の裏面lこ円錐台
状の下部窓孔0荀を形成する。
As shown in Figure (d), the cap layer (8) exposed in the circular hole αυ has a diameter of 1
A circular upper window hole α with a diameter of 0 μm is formed, and a truncated conical lower window hole 0 is formed on the back surface of the hole (4) of the substrate (1) exposed in the circular hole.

このとき、NH4OH、H2O20’)混合溶液がGa
AsのみをエツチングしてGaAtAsを侵さない性質
を有しているため、前記したエツチング工程において、
キャップ層(8)の下層のn形GaAzAsの土部クラ
ッド層(7)、および基板(1)の上層のp形GaAz
Asのエツチング停止層(2)でエツチングが自動的l
こ停止し、鏡面を有する窓孔α口、α→がそれぞれ形成
されることになる。
At this time, the mixed solution of NH4OH, H2O20')
Because it has the property of etching only As and not attacking GaAtAs, in the etching process described above,
An n-type GaAzAs soil cladding layer (7) below the cap layer (8), and a p-type GaAz upper layer of the substrate (1).
Etching is automatically performed with the As etching stop layer (2).
This stops, and window holes α and α→ having mirror surfaces are respectively formed.

つぎに、第2図(e)に示すように、上部窓孔03に露
出した上部クラッド層(7)上に5i02/TiO2多
層膜やAu膜などの高反射率膜からなる上部反射膜αつ
を形成するとともに、下部窓孔03に露出したエツチン
グ停止層(2)の下面および穴(4)内の下部クララ゛
 ド層(5)の下面に前記高反射率膜から゛なる下部反
射膜α・を形成し、面発光型の半導体レーザを作成する
Next, as shown in FIG. 2(e), an upper reflective film α made of a high reflectance film such as a 5i02/TiO2 multilayer film or an Au film is placed on the upper cladding layer (7) exposed in the upper window hole 03. At the same time, a lower reflective film α consisting of the high reflectance film is formed on the lower surface of the etching stop layer (2) exposed in the lower window hole 03 and on the lower surface of the lower claride layer (5) in the hole (4).・Create a surface-emitting type semiconductor laser.

なお、下部反射膜Q0側からレーザ光を取り出す場合に
は上部反射膜αQの反射率を100%とし、逆の場合に
は下部反射膜αQの反射率を100%とし、両反射膜α
υ、0Q側からレーザ光を取り出す必要がある場合には
、両反射膜0υ、αQの反射率を適宜設定すればよい。
Note that when the laser beam is extracted from the lower reflective film Q0 side, the reflectance of the upper reflective film αQ is set to 100%, and in the opposite case, the reflectance of the lower reflective film αQ is set to 100%, and both reflective films α
If it is necessary to take out the laser beam from the υ and 0Q sides, the reflectances of both the reflective films 0υ and αQ may be set appropriately.

そして、第2図に示すように、直流電源(十B)の正、
負端子をリード線により下部電極α*、h部電極(9)
にそれぞれ接続し、通電を行なうと、電流は、同図中の
矢印に示すように、基板(1)からエッチ性層(6)で
生じた光が両反射膜αs、nt19間のレーザ共振器内
で共振、増幅を繰り返し、たとえば下部反射膜0Qから
レーザ光が出射される。
Then, as shown in Figure 2, the positive of the DC power supply (10B),
Connect the negative terminal to the lower electrode α* and h part electrode (9) using the lead wire.
When connected to each and energized, as shown by the arrow in the figure, the light generated from the substrate (1) in the etched layer (6) passes through the laser resonator between the reflective films αs and nt19. Resonance and amplification are repeated within the structure, and a laser beam is emitted from, for example, the lower reflective film 0Q.

ところで、この場合、逆円錐台状の穴(4)を形成した
ため、いわゆる内部電流狭さく部が形成され、各層(5
) I (6) 、 (7)を通る電流の流路が、前記
電流狭さく部により、ブロック層(3)を除去した断面
幅・電流が当該部分に集中して流れ、実効的に元の発生
に寄与する活性領域は第2図中のクロスハツチングで示
すように活性層(6)の直径的10μmの円形領域とな
り、面発光することになるとともに、前記したように、
穴(4)内の下部クラッド層(5)が集光用凸レンズと
して働き、下部反射膜0Qから出射されるレーザ光の広
がりが従来の面発光型半導体レーザに比べて抑制される
ことになる。
By the way, in this case, since the inverted truncated conical hole (4) is formed, a so-called internal current constriction part is formed, and each layer (5)
) The current flow path passing through I (6) and (7) is caused by the current narrowing part, the cross-sectional width of which the blocking layer (3) has been removed, and the current flowing concentrated in the relevant part, effectively preventing the original generation. The active region that contributes to this is a circular region of 10 μm in diameter in the active layer (6) as shown by the crosshatching in FIG. 2, which emits surface light and, as mentioned above,
The lower cladding layer (5) within the hole (4) functions as a convex condensing lens, and the spread of the laser light emitted from the lower reflective film 0Q is suppressed compared to a conventional surface-emitting semiconductor laser.

このとき、前記した内部電流狭さく部による電流流路の
集中により、前記したレーザのしきい値電流は従来のも
のの約l/16程度に低減でき、たとえば室温における
パルス動作時lこ従来スポット径IOμmのレーザ光を
得るためのしきい値電流が330mAであったものが、
そのl/16の約20mAにまで低減できることになり
、さらに従来出射レーザ光の広がり角が半値全角で約1
0度であったものが、数度程度に抑制できることになり
、光ファイバ等の他の光学機器との結合効率を大福に向
上することが可能となる。
At this time, the threshold current of the laser described above can be reduced to about 1/16 of that of the conventional laser due to concentration of the current flow path by the internal current constriction part, and for example, during pulse operation at room temperature, the conventional spot diameter IO μm The threshold current for obtaining a laser beam of 330 mA is
This means that it can be reduced to about 20 mA, which is 1/16 of that, and the spread angle of conventionally emitted laser light is about 1 at full width at half maximum.
What used to be 0 degrees can now be suppressed to about several degrees, making it possible to greatly improve the coupling efficiency with other optical devices such as optical fibers.

以上のように、この発明の半導体レーザの製造方法によ
ると、従来の面発光型の半導体レーザに比べ、しきい値
電流が大幅に低く、出射レーザ光の広がりを抑制した特
性の優れた面発光型の半導体レーザを提供することがで
き、単−縦モード動作レーザ、2次レーザアレイ、低ノ
イズレーザとして非常に有効であり、その応用範囲の拡
充を大いに期待できる。
As described above, according to the method for manufacturing a semiconductor laser of the present invention, the threshold current is significantly lower than that of conventional surface-emitting type semiconductor lasers, and the surface-emitting laser has excellent characteristics of suppressing the spread of emitted laser light. This type of semiconductor laser is very effective as a single-longitudinal mode operation laser, a secondary laser array, and a low-noise laser, and the range of its applications can be greatly expected to expand.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の半導体レーザの製造方法の1実施例
を示し、第1図(a)〜(e)はそれぞれ製造工程を示
す断面図、第2図は製造された半導体レーザの動作説明
図である。 (1)・・・基板、(2)・・・半導体エツチング停止
層、(3)・・・電流ブロック層、(4)・・・穴、(
5)・・・半導体下部クラッド層、(6)・・・半導体
活性層、(7)・・・半導体上部クラッド層、α→・・
・下部窓孔。
The drawings show an embodiment of the semiconductor laser manufacturing method of the present invention, and FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing steps, respectively, and FIG. 2 is an explanatory diagram of the operation of the manufactured semiconductor laser. It is. (1)...Substrate, (2)...Semiconductor etching stop layer, (3)...Current blocking layer, (4)...Hole, (
5)...Semiconductor lower cladding layer, (6)...Semiconductor active layer, (7)...Semiconductor upper cladding layer, α→...
・Lower window hole.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に、電流ブロック層、半導体下部ク
ラッド層、半導体活性層および半導体上部クラッド層を
順次エピタキシャル成長させ、面発光型の半導体レーザ
を製造する半導体レーザの製造方法において、前記基板
上に半導体エッチング停止層を形成し、該エッチング停
止層上に前記ブロック層を形成する工程と、前記ブロッ
ク層、前記エッチング停止層および前記基板の表層部に
かけて電流狭さく用の逆円錐台状の穴を形成する工程と
、前記ブロック層上および前記穴内に前記下部クラッド
層を形成する工程と、前記基板の前記穴の裏面に窓孔を
形成する工程とを含むことを特徴とする半導体レーザの
製造方法。
(1) A method for manufacturing a semiconductor laser in which a current blocking layer, a semiconductor lower cladding layer, a semiconductor active layer, and a semiconductor upper cladding layer are sequentially epitaxially grown on a semiconductor substrate to manufacture a surface-emitting semiconductor laser. forming a semiconductor etching stop layer, forming the block layer on the etching stop layer, and forming an inverted truncated cone-shaped hole for current narrowing across the block layer, the etching stop layer, and the surface layer of the substrate; a step of forming the lower cladding layer on the block layer and in the hole; and a step of forming a window hole on the back surface of the hole of the substrate.
JP14591186A 1986-06-20 1986-06-20 Manufacturing method of semiconductor laser Expired - Fee Related JP2639912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14591186A JP2639912B2 (en) 1986-06-20 1986-06-20 Manufacturing method of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14591186A JP2639912B2 (en) 1986-06-20 1986-06-20 Manufacturing method of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS632395A true JPS632395A (en) 1988-01-07
JP2639912B2 JP2639912B2 (en) 1997-08-13

Family

ID=15395921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14591186A Expired - Fee Related JP2639912B2 (en) 1986-06-20 1986-06-20 Manufacturing method of semiconductor laser

Country Status (1)

Country Link
JP (1) JP2639912B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575207A (en) * 1991-09-13 1993-03-26 Nippon Telegr & Teleph Corp <Ntt> Resonator type semiconductor luminous device and manufacture thereof
WO2023171148A1 (en) * 2022-03-08 2023-09-14 ソニーグループ株式会社 Surface-emitting laser, surface-emitting laser array, and method for manufacturing surface-emitting laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575207A (en) * 1991-09-13 1993-03-26 Nippon Telegr & Teleph Corp <Ntt> Resonator type semiconductor luminous device and manufacture thereof
WO2023171148A1 (en) * 2022-03-08 2023-09-14 ソニーグループ株式会社 Surface-emitting laser, surface-emitting laser array, and method for manufacturing surface-emitting laser

Also Published As

Publication number Publication date
JP2639912B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
US4366568A (en) Semiconductor laser
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
KR19990072352A (en) Self-pulsation type semiconductor laser
JPH05102595A (en) Laser diode array and manufacture thereof
JPS5940592A (en) Semiconductor laser element
JPH08139412A (en) Semiconductor laser device
JPS632395A (en) Manufacture of semiconductor laser
US4377865A (en) Semiconductor laser
JP2002141611A (en) Semiconductor light emitting element and its fabricating method
JPH0461292A (en) Semiconductor laser
JPS61220394A (en) Laser diode and manufacture thereof
JPH03123092A (en) Semiconductor laser
JPH0156547B2 (en)
JPH0671121B2 (en) Semiconductor laser device
JPH0376287A (en) Broad area laser
KR100255695B1 (en) Semiconductor laser device and its manufacturing method
JPS63164288A (en) Manufacture of semiconductor laser device
JPS613486A (en) Semiconductor laser
JPH01108789A (en) Surface emission semiconductor laser element
JPS62104188A (en) Semiconductor laser
JPS60132381A (en) Semiconductor laser device
KR100343203B1 (en) Semiconductor laser device
KR100259006B1 (en) Manufacturing method of semiconductor laser device
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPH0332089A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees