JPS63239134A - Method for depositing glass corpuscles - Google Patents

Method for depositing glass corpuscles

Info

Publication number
JPS63239134A
JPS63239134A JP7538587A JP7538587A JPS63239134A JP S63239134 A JPS63239134 A JP S63239134A JP 7538587 A JP7538587 A JP 7538587A JP 7538587 A JP7538587 A JP 7538587A JP S63239134 A JPS63239134 A JP S63239134A
Authority
JP
Japan
Prior art keywords
burner
turntable
substrate
glass
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7538587A
Other languages
Japanese (ja)
Other versions
JPH0617239B2 (en
Inventor
Yoshinobu Mihashi
三橋 慶喜
Satoshi Ishihara
石原 聰
Hiroyoshi Yajima
矢嶋 弘義
Naoto Uetsuka
尚登 上塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Cable Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP62075385A priority Critical patent/JPH0617239B2/en
Publication of JPS63239134A publication Critical patent/JPS63239134A/en
Publication of JPH0617239B2 publication Critical patent/JPH0617239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Integrated Circuits (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To deposit glass corpuscles on many substrates in uniform thickness by specifying the rotational speed of the substrate arranged on a turntable rotating at fixed angular velocity and the translational velocity of a burner supplying glass corpuscles. CONSTITUTION:The substrate is arranged on the truntable 1 rotating at fixed angular velocity omega at the position of the radius gamma distant from the center of the turntable 1. Position gamma at the tip 51 of the burner on the turntable 1 is transformed into a voltage V by a potentiometer 52, the voltage V is read by a voltmeter 53 and a controller 54, the voltage proportional to 1/gamma is impressed on a DC motor 56 through a DC power source 55, and the burner 3 is translationally moved by the burner fixing arm 58 fixed to a trapezoidal screw thread 57. The rotational speed gammaomega of the substrate and the translational velocity dr/dt of the burner 3 are limited to conform to inequalities I and II, and glass corpuscles are supplied from the burner 3 and deposited on the substrate.

Description

【発明の詳細な説明】 [発明の対象] 本発明は、石英ガラス光導波路素子の形成等に用いるガ
ラス微粒子の堆積法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method for depositing glass particles used for forming silica glass optical waveguide elements.

[従来技術] 従来技術について、第1図を用いて説明する。[Prior art] The prior art will be explained using FIG. 1.

カーボンあるいは、石英ガラス等より成るターンテーブ
ル1の中心から半径「の円周上に、シリコンあるいは石
英ガラスの基板2が配置されている。ターンテーブル1
は、一定の回転角速度ωで回転する。バーナ3は、ター
ンテーブル1の中心から外側、外側から中心に向けて反
復した並進運動を行うことができる。バーナ3には、フ
レーム用ガスであるH  、OをそれぞれH2ポート5
、02ボート6より、またフレーム制御用ガスであるA
rをArポート7より、さらにガラス原料用ガスである
5iCj!  、TiC1)  、GeC(14等のガ
ラス原料をボート8より送り込んでいる。
A substrate 2 made of silicon or quartz glass is disposed on the circumference of a turntable 1 made of carbon, quartz glass, etc. with a radius of ``from the center.Turntable 1
rotates at a constant rotational angular velocity ω. The burner 3 can perform repeated translational movements from the center of the turntable 1 to the outside and from the outside to the center. Burner 3 is supplied with flame gases H2 and O at H2 port 5, respectively.
, from 02 boat 6, and A, which is a flame control gas.
r from Ar port 7, and 5iCj!, which is glass raw material gas! , TiC1), GeC (14, etc.) are sent from boat 8.

バーナ3から発する火炎4を、シリコンあるいは石英ガ
ラスの基板2に吹き付けると、ガラス原料ガスである5
LCI 、TiCjJ  、GeCf14は、加水分解
反応により0.1μm〜1μmfz度のガラス微粒子と
なり、基板2の上に堆積する。
When flame 4 emitted from burner 3 is blown onto silicon or quartz glass substrate 2, glass material gas 5
LCI, TiCjJ, and GeCf14 become fine glass particles of 0.1 μm to 1 μm fz degree through a hydrolysis reaction, and are deposited on the substrate 2.

尚、加水分解反応により生じたHCfi等のガスを排気
管9により排気する。本ガラス微粒子堆積法においては
、一度に多数の基板上にガラス微粒子を形成できるとい
う利点を持つが、均一な厚さのガラス微粒子を形成する
ことは容易なことではない。
Note that gases such as HCfi generated by the hydrolysis reaction are exhausted through an exhaust pipe 9. Although this glass particle deposition method has the advantage of being able to form glass particles on a large number of substrates at once, it is not easy to form glass particles with a uniform thickness.

例えば、従来法においては、 rω、: ターンテーブルの回転速度 d 「 の条件により堆積を行なりでいた。この従来法により堆
積したガラス微粒子膜厚分布を第2図に示す。横軸は、
ターンテーブル中心からの距Mr、縦軸は、相対膜厚で
ある。第2図により明らかなように、従来の堆積法では
、膜厚は、大きく変化していることがわかる。
For example, in the conventional method, deposition could be carried out under the following conditions: rω: rotational speed of the turntable d''. Figure 2 shows the thickness distribution of glass particles deposited by this conventional method. The horizontal axis is
The distance Mr from the center of the turntable, the vertical axis is the relative film thickness. As is clear from FIG. 2, it can be seen that the film thickness varies greatly with the conventional deposition method.

因みに、このときのバーナ先端の軌跡は第3図に示すよ
うになる。第3図において、1はターンテーブルであり
、31はバーナ先端の軌跡である。
Incidentally, the trajectory of the burner tip at this time is as shown in FIG. In FIG. 3, 1 is a turntable, and 31 is a locus of the tip of the burner.

[発明の目的と要点] 本発明の目的は、前記した従来技術の欠点を解消し、均
一な厚さのガラス微粒子膜を形成することができる新規
な、ガラス微粒子堆積法を提供することにある。
[Purpose and main points of the invention] An object of the present invention is to provide a novel glass particle deposition method capable of eliminating the drawbacks of the conventional techniques described above and forming a glass particle film with a uniform thickness. .

すなわち、本発明の要旨は、ターンテーブルの分大きく
し、かつターンテーブルの中心からの距した動きとなる
ように制御してガラス微粒子を堆積することにある。
That is, the gist of the present invention is to increase the size of the turntable and to deposit glass particles by controlling the movement to be a distance from the center of the turntable.

[発明の実施例] 本発明について、実施例を示しながら具体的に説明する
[Examples of the Invention] The present invention will be specifically described with reference to Examples.

ターンテーブルの回転速度「ωとバーナの並進回転速度
rω) 並進速度□ t dr     1 となる様な条件でガラス微粒子を堆積する場合、バーナ
先端の軌跡は第4図に示すようになる。
When glass particles are deposited under conditions such that the rotational speed of the turntable is ω and the translational rotational speed of the burner is rω, the trajectory of the burner tip is as shown in FIG. 4.

ここで、単位時間にバーナ3から発するガラス微粒子量
が一定であるとすると、合成速度(回転はど、微粒子は
厚く堆積する。(効果1)また、バーナから発するガラ
ス微粒子はある分布を持っており、第4図に示す、バー
ナ先端の軌跡31の間隔が狭いほど、微粒子が重なり合
うため、厚く堆積する。(効果2) 例えば、従来法である の条件を用いて堆積した場合、バーナ先端の軌跡31は
第3図に示したようにほぼ一定の間隔となっている。
Here, assuming that the amount of glass particles emitted from the burner 3 per unit time is constant, the particles will accumulate thickly depending on the synthesis rate (rotation speed). (Effect 1) Also, the glass particles emitted from the burner will have a certain distribution. As shown in Fig. 4, the narrower the interval between the burner tip trajectories 31, the thicker the particles are deposited because they overlap.(Effect 2) For example, when depositing using the conventional method conditions, the burner tip The trajectories 31 are spaced at approximately constant intervals as shown in FIG.

元来、中心はど合成速度 が小さいため、この場合には必然的に中心側に厚く堆積
することになる。また、本発明の条件である によれば、第4図に示したバーナ先端の軌跡31の間隔
が中心はど広くなるため、効果1と効果2とが相互に打
ち消し合い、均一な厚さのガラス微粒子を堆積できる。
Originally, the synthesis rate at the center is low, so in this case, it will inevitably be thickly deposited toward the center. Furthermore, according to the conditions of the present invention, the interval between the loci 31 of the burner tips shown in FIG. Glass particles can be deposited.

にバーナの動きを制御するためには、例えば、第5図に
示す制御系を用いるとよい。
In order to control the movement of the burner, for example, a control system shown in FIG. 5 may be used.

ターンテーブル1上におけるバーナ先端51の位置rを
ポテンショメータ52により電圧Vに変換し、電圧計5
3とコントローラ54により電圧■を読み取り□に比例
した電圧を、D、C。
The position r of the burner tip 51 on the turntable 1 is converted into a voltage V by the potentiometer 52, and the voltmeter 5
3 and the controller 54 read the voltage ■ and output the voltage proportional to □ to D and C.

電源55を用いて、D、C,モータ56に印加する。D
、C,モータ56は、台形ネジ57に取り付けられたバ
ーナ固定用アーム58により、バーナ3の並進運動を行
なう。以上の様な制御系を用いて、堆積したガラス微粒
子の膜厚分布を第6図に示す。横軸は、ターンテーブル
中心から距離「、縦軸はガラス微粒子の相対膜厚である
。本発明のガラス微粒子堆積法により形成した膜厚の均
一性は従来法に比べ、大きく改善されている。
A power supply 55 is used to apply power to D, C, and motors 56. D
, C, the motor 56 translates the burner 3 by means of a burner fixing arm 58 attached to a trapezoidal screw 57. FIG. 6 shows the film thickness distribution of the glass particles deposited using the control system as described above. The horizontal axis is the distance from the center of the turntable, and the vertical axis is the relative film thickness of the glass particles.The uniformity of the film thickness formed by the glass particle deposition method of the present invention is greatly improved compared to the conventional method.

の10倍程度であれば良いと認められる。It is recognized that a value of about 10 times is sufficient.

運動させるかわりにターンテーブルを並進運動させても
よいが、この場合には、ターンテーブルは、回転運動と
並進運動の両方の機能を持たせる必要がある。
Instead of movement, the turntable may be moved in translation, but in this case, the turntable needs to have both rotational and translational movement functions.

[発明の効果] 本発明によれば、均一な厚さのガラス微粒子膜を一度に
多数の基板上に堆積することが可能となり、均一性が従
来より極めて高くなるので、本発明の工業上の価値は極
めて大きいものである。
[Effects of the Invention] According to the present invention, it becomes possible to deposit glass fine particle films of uniform thickness on a large number of substrates at once, and the uniformity is much higher than that in the past. The value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のガラス微粒子堆積法の一実施例を示す
説明図、第2図は、従来のガラス微粒子堆積法により形
成された膜厚分布の一例を示す線図、第3図は、従来の
ガラス微粒子堆積法におけるバーナ先端の軌跡を示す説
明図、第4図は、本発明のガラス微粒子堆積法における
バーナ先端の軌跡を示す説明図、第5図は、本発明ガラ
ス微粒子堆積法を実施するための制御系の一例を示す説
明図であり、第6図は、本発明ガラス微粒子堆積法によ
り形成された膜厚分布の一例を示す線図である。 1:ターンテーブル、 2:シリコン基板あるいは石英ガラス基板、3:バーナ
、 4:火炎、 5 :H2ボート、 6 :02ボート、 7:Arポート、 8ニガラス原料ボート、 9:排気管、 31:バーナ先端の軌跡、 51:バーナ先端、 52:ポテンショメータ、 53:1!圧計、 54:コントローラ、 55:D、C,電源、 56:D、C,モータ、 57:台形ネジ、 58:バーナ固定用アーム。 5LCIA   第 1 口 T・弘 ツ 宛3121 箇4 図 第2 図 ′#J 6 図
FIG. 1 is an explanatory diagram showing an example of a conventional glass particle deposition method, FIG. 2 is a diagram showing an example of film thickness distribution formed by a conventional glass particle deposition method, and FIG. FIG. 4 is an explanatory diagram showing the trajectory of the burner tip in the conventional glass particle deposition method. FIG. 4 is an explanatory diagram showing the trajectory of the burner tip in the glass particle deposition method of the present invention. FIG. FIG. 6 is an explanatory diagram showing an example of a control system for implementing the method, and FIG. 6 is a diagram showing an example of a film thickness distribution formed by the glass fine particle deposition method of the present invention. 1: Turntable, 2: Silicon substrate or quartz glass substrate, 3: Burner, 4: Flame, 5: H2 boat, 6: 02 boat, 7: Ar port, 8 Niglass raw material boat, 9: Exhaust pipe, 31: Burner Tip locus, 51: Burner tip, 52: Potentiometer, 53:1! Pressure gauge, 54: Controller, 55: D, C, power supply, 56: D, C, motor, 57: Trapezoidal screw, 58: Burner fixing arm. 5LCIA No. 1 Addressed to T. Hirotsu 3121 Clause 4 Figure 2 Figure '#J 6 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)一定の回転角速度ωで回転するターンテーブル1
上で、ターンテーブル1の中心から半径rの位置に基板
2を配置し、バーナ3によりガラス微粒子を供給して前
記基板2上にガラス微粒子を堆積する方法において、基
板2の回転速度rω及び前記バーナ3の並進速度dr/
dtをそれぞれ次のように制御することを特徴とするガ
ラス微粒子堆積法。 rω≫dr/dt (dr/dt)∝1/r
(1) Turntable 1 rotating at a constant rotational angular velocity ω
In the method described above, the substrate 2 is placed at a position with a radius r from the center of the turntable 1, and the glass particles are supplied by the burner 3 to deposit the glass particles on the substrate 2. Translational speed of burner 3 dr/
A glass particle deposition method characterized in that dt is controlled as follows. rω≫dr/dt (dr/dt)∝1/r
JP62075385A 1987-03-27 1987-03-27 Glass particle deposition method Expired - Lifetime JPH0617239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075385A JPH0617239B2 (en) 1987-03-27 1987-03-27 Glass particle deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075385A JPH0617239B2 (en) 1987-03-27 1987-03-27 Glass particle deposition method

Publications (2)

Publication Number Publication Date
JPS63239134A true JPS63239134A (en) 1988-10-05
JPH0617239B2 JPH0617239B2 (en) 1994-03-09

Family

ID=13574674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075385A Expired - Lifetime JPH0617239B2 (en) 1987-03-27 1987-03-27 Glass particle deposition method

Country Status (1)

Country Link
JP (1) JPH0617239B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079126A1 (en) * 2000-04-14 2001-10-25 Heraeus Quarzglas Gmbh & Co. Kg Method and device for producing a quartz glass body
KR20010099086A (en) * 2001-08-28 2001-11-09 권순창 controling methode torch and turntable for flame hydrolysis deposition
US6504983B1 (en) 2000-03-30 2003-01-07 The Furukawa Electric Co., Ltd. Optical waveguide and method for fabricating the same
US6563986B2 (en) 2000-03-28 2003-05-13 The Furukawa Electric Co., Ltd. Arrayed waveguide grating
KR100389577B1 (en) * 2001-06-26 2003-06-27 주식회사 세미텔 Uniform Deposition System Of A Semiconductor Wafer And Storage Medium Thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288802A (en) * 1986-06-09 1987-12-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of quartz optical waveguide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288802A (en) * 1986-06-09 1987-12-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of quartz optical waveguide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563986B2 (en) 2000-03-28 2003-05-13 The Furukawa Electric Co., Ltd. Arrayed waveguide grating
US6504983B1 (en) 2000-03-30 2003-01-07 The Furukawa Electric Co., Ltd. Optical waveguide and method for fabricating the same
WO2001079126A1 (en) * 2000-04-14 2001-10-25 Heraeus Quarzglas Gmbh & Co. Kg Method and device for producing a quartz glass body
KR100389577B1 (en) * 2001-06-26 2003-06-27 주식회사 세미텔 Uniform Deposition System Of A Semiconductor Wafer And Storage Medium Thereof
KR20010099086A (en) * 2001-08-28 2001-11-09 권순창 controling methode torch and turntable for flame hydrolysis deposition

Also Published As

Publication number Publication date
JPH0617239B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
DE59201645D1 (en) Method and device for coating particles.
JPS63239134A (en) Method for depositing glass corpuscles
JPH0533305B2 (en)
JPS58114763A (en) Method for forming thin film
JPH0516193Y2 (en)
JPH0616491B2 (en) Vapor phase epitaxial growth system
KR100389577B1 (en) Uniform Deposition System Of A Semiconductor Wafer And Storage Medium Thereof
EP3677555A1 (en) Method for producing glass fine particle deposit, method for producing glass base material, and glass fine particle deposit
JPH069235A (en) Method for flame deposition
JPH10273777A (en) Inductively coupled plasma cvd system and uniform deposition method using the same
JPH0285368A (en) Formation of amorphous silicon film
JPS6316617A (en) Vapor growth equipment
JP3130977B2 (en) Thin film forming method and apparatus
JPH08262252A (en) Production of optical waveguide film
JPH0226851A (en) Method and device for forming film over entire surface of spherical glass
JPH02243530A (en) Production of base material for optical fiber
JPH0535223B2 (en)
JPH04177721A (en) Vapor growth device
JP3381309B2 (en) Method for producing glass particle deposit
JPH03247594A (en) Method for synthesizing diamond
JPH05147956A (en) Apparatus for producing oxide glass thin film
JPS63213673A (en) Microwave plasma thin film forming device
JPH05186232A (en) Apparatus for producing glass thin film
JPH068180B2 (en) Glass film deposition equipment
JPS6230147B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term