JPS63237508A - Magnetostatic field magnet - Google Patents

Magnetostatic field magnet

Info

Publication number
JPS63237508A
JPS63237508A JP62072734A JP7273487A JPS63237508A JP S63237508 A JPS63237508 A JP S63237508A JP 62072734 A JP62072734 A JP 62072734A JP 7273487 A JP7273487 A JP 7273487A JP S63237508 A JPS63237508 A JP S63237508A
Authority
JP
Japan
Prior art keywords
shim
winding
windings
current
shim coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62072734A
Other languages
Japanese (ja)
Other versions
JPH0531809B2 (en
Inventor
Nobuyuki Miura
信幸 三浦
Yuji Inoue
井上 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP62072734A priority Critical patent/JPS63237508A/en
Publication of JPS63237508A publication Critical patent/JPS63237508A/en
Publication of JPH0531809B2 publication Critical patent/JPH0531809B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To make correction for the ununiformity of magnetic fields at the least expense by providing a plurality of chin coils so that the number of windings which are required for each shim coil of the orders O-n are filled and the windings to be useable in common are used in common and current supply means, through which an ampare-turn required for the current shim of each order is additionally supplied to each winding. CONSTITUTION:Z<n> type current shim used for a nuclear magnetic resonance tomograph is applied to a magnetostatic field magnet to make correction for the ununiformity of magnetic fields. A plurality of shim coils where the number of windings which are required for each shim coil of the orders O-n are filled and the windings to be usable in common are used in common as well as current supplying means which are equal to the number of windings, through which an ampare-turn required for the current shim of each order is additionally supplied to each winding are provided. In the case of an even order shim coil, ampare-turn AT1 is given by connecting a power source to left and right ends of Z<1>1 winding 1 and ampare- turn AT2 is given by connecting the power source to left and right ends of Z<3>2 winding 3. This approach not only economizes the steps by reducing the required pairs of coils but also economizes the amount of a working current by curtailing the required number of power source devices and then makes it possible to obtain a magnetostatic field magnet using inexpensive shim coils.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は核磁気共鳴断層撮影装置(以下NMR−CTと
いう)に用いる静磁場マグネットに関し、特にZnn雷
電流シム用いて磁場不均一補正を行う静磁場マグネット
に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a static magnetic field magnet used in a nuclear magnetic resonance tomography apparatus (hereinafter referred to as NMR-CT), and in particular uses a Znn lightning current shim to correct magnetic field inhomogeneity. Regarding static magnetic field magnets.

(従来の技術) NMR−CTは核磁気共鳴現象を利用して被検体内にお
(プる特定原子核分布等を被検体外部から知るようにし
た検査装置である。このようなNMR−CTではNMR
信号を生じさせるために、被検体に均一な磁場を印加す
る必要があり、磁場の均一性の良否は、得られる像に大
きな影響を与える。一方、磁場発生源であるコイルの周
囲には漏洩磁界を減らすことと磁場強度をエンハンスす
る目的で磁性体く鉄等)を配し、磁気回路を構成するが
、これは磁性体の位置誤差による不均一性を増ず要因と
なっている。それ故に、NMR−CT用の静磁場マグネ
ットには、製造上での寸法誤差(線材の巻線精度1組立
時の位置誤差等)やマグネットを設置した環境での磁気
的影響等によって生ずる磁場の不均一性を調整するため
の磁場不均一調整手段が必要となる。この磁場不均一性
の補正手段として電流シムがあり、次のような種類のシ
ムコイルがある。
(Prior art) NMR-CT is an inspection device that utilizes nuclear magnetic resonance phenomena to determine the distribution of specific atomic nuclei within a subject from outside the subject. NMR
In order to generate a signal, it is necessary to apply a uniform magnetic field to the subject, and the quality of the uniformity of the magnetic field has a large effect on the image obtained. On the other hand, a magnetic circuit is constructed by placing a magnetic material (such as iron, etc.) around the coil, which is the source of the magnetic field, in order to reduce leakage magnetic field and enhance the magnetic field strength, but this is due to the position error of the magnetic material. This is a factor that increases heterogeneity. Therefore, static magnetic field magnets for NMR-CT are subject to magnetic field fluctuations caused by dimensional errors during manufacturing (wire winding precision, positional errors during assembly, etc.) and magnetic effects in the environment where the magnet is installed. A magnetic field non-uniformity adjustment means is required to adjust the non-uniformity. Current shims are used as means for correcting this magnetic field non-uniformity, and there are the following types of shim coils.

01次シム  X、Y 02次シム  X2−Y2.XY、ZX、ZY。01st shim X, Y 02nd shim X2-Y2. XY, ZX, ZY.

Z2  X2.Z2  Y2 ■zn型シム zTI この中、従来のZTI型シムシムコイルを第6図に示す
Z2 X2. Z2 Y2 ■zn type shim zTI Among these, the conventional ZTI type shim shim coil is shown in Fig. 6.

(イ)図は1次シムコイル〈Zl )、(ロ)図は3次
シムコイル(z3)、(ハ)図は2次シムコイル(Zl
)、(ニ)図は4次シムコイル(Z4)の図である。図
において、1は(イ)図において、ボビンの長さ方向の
中心のZ軸の座標をOとして、Z−±71の位置に互い
に逆方向に電流を流すように巻いてアンペアターンをA
T+にしたベアの71巻線である。
(a) The figure shows the primary shim coil (Zl), (b) the tertiary shim coil (z3), and (c) the secondary shim coil (zl).
) and (d) are diagrams of the fourth-order shim coil (Z4). In the figure, 1 is (a) In the figure, the coordinate of the Z-axis at the center in the longitudinal direction of the bobbin is O, and the ampere turn is A by winding the bobbin so that the current flows in opposite directions at positions Z-±71.
It is a bare 71 winding set to T+.

2は(ロ)図において、座標Z−±71の位置に巻かれ
たZ3シムコイルのアンペアターンAT2の第1ベアコ
イルの71巻線、3はZ3シムコイルの2=±Zjの位
置にさかれ、巻線2に隣接する巻線に逆方向の電流を流
しているアンペアターンAT3のz1巻線である。(ハ
〉図において、4はZ2シムコイルのZ−±2!の位置
に同方向の電流を流すように巻いたアンペアターンAT
4のZ’x巻線である。同様にして、5はZ2シムコイ
ルの第2ベアのアンペアターンATsのZ’を巻線で、
zキ嘗線に対して逆方向に電流を流すものである。(ニ
)図において、6はZ4シムコイルの同方向に電流を流
すように巻いたアンペアターンATeの7?巻線、7は
Z4シムコイルの71巻線6に対して逆方向に巻いたア
ンペアターンAT7の72巻線、8は同様にアンペアタ
ーンAT8の71巻線である。ここで、2m巻線は0次
シムコイルの第mベア巻線を意味している。奇数次シム
コイルは静磁石マグネットの不平衡不均一性を、偶数次
シムコイルは平衡不均一性を補正するもので、図におい
て明らかなように、奇数次シムコイルは同一ベアのコイ
ルに逆方向に電流を流ずように巻き、偶数次シムコイル
は同一ベアのコイルの電流を同方向に流すように巻いて
あり、何れも隣接ベアとは逆方向に電流が流れるように
さいである。Z  、Zl、Zl、Z4シムコイルが補
正しようとする磁場不均一性の形状を第7図に示す。図
において、(イ)は1次、(口〉は2次。
2 is the 71st winding of the first bare coil of the ampere turn AT2 of the Z3 shim coil wound at the coordinate Z-±71 position, and 3 is the 71st winding of the first bare coil of the Z3 shim coil wound at the position 2=±Zj of the Z3 shim coil in the figure (b). The winding adjacent to line 2 is the z1 winding of ampere turn AT3 carrying current in the opposite direction. (In the figure, 4 is an ampere turn AT wound in the Z-±2! position of the Z2 shim coil so that the current flows in the same direction.
4 Z'x winding. Similarly, 5 winds Z' of the second bare ampere turn ATs of the Z2 shim coil,
A current is passed in the opposite direction to the z-line. (d) In the figure, 6 is the ampere turn ATe, which is wound so that the current flows in the same direction as the Z4 shim coil. The winding 7 is the 72nd winding of the ampere turn AT7 wound in the opposite direction to the 71st winding 6 of the Z4 shim coil, and 8 is the 71st winding of the ampere turn AT8. Here, the 2m winding means the m-th bare winding of the 0th order shim coil. Odd-order shim coils correct the unbalanced non-uniformity of the static magnet, and even-order shim coils correct the balanced non-uniformity.As is clear in the figure, the odd-order shim coils correct the current in the opposite direction to the same bare coil. The even-order shim coils are wound so that the currents of the coils of the same bear flow in the same direction, and the currents of the coils of the adjacent bears are so small that the current flows in the opposite direction. FIG. 7 shows the shape of the magnetic field inhomogeneity that the Z, Zl, Zl, and Z4 shim coils attempt to correct. In the figure, (a) is primary, and (mouth) is secondary.

(ハ)は3次、(ニ)は4次の磁場不均一性の図で、Z
’ 、Zl、Zl、Z’ シムコイルはそレソれの次数
の磁場不均一性の逆曲線を描かせて補正するものである
(C) is a diagram of third-order magnetic field inhomogeneity, and (D) is a diagram of fourth-order magnetic field inhomogeneity.
', Zl, Zl, Z' The shim coil is used to correct the magnetic field inhomogeneity of the order of the shim by drawing an inverse curve.

(発明が解決しようとする問題点) 均一度補正に用いるZ”  (ここではn −Q〜4と
する)の各シムコイルは第6図に示した通りであって、 Zl  シムコイル  1ベア Z2シムコイル  2ペア Z3シムコイル  2ペア Z4シムコイル  3ペア の8ベアの巻線を必要とし、図に示していないが、Zo
 シムコイル1ベアを加えて合計9ペアのコイルを必要
としている。9ペアのコイルを巻く作業には相当な工数
を必要とし、又、それぞれに電源装置が必要で、静磁場
マグネット装置が複雑になると共に、電源装置に対する
設(5i費及び使用電力量もかなりのものとなる。
(Problems to be Solved by the Invention) Each shim coil of Z" (here n - Q ~ 4) used for uniformity correction is as shown in FIG. Pair Z3 shim coil 2 pair Z4 shim coil Requires 3 pairs of 8-bear windings, and although not shown in the diagram, Zo
A total of 9 pairs of coils are required, including 1 bare shim coil. Winding 9 pairs of coils requires a considerable amount of man-hours, and a power supply is required for each, which makes the static magnetic field magnet device complicated and requires a considerable amount of equipment (5i cost and power consumption) for the power supply. Become something.

本発明は上記の点に鑑みてなされたもので、その目的は
、シムコイルに要するコイルベア数を減少させて、製作
工数の削減、シムコイル構成の簡略化を計り、電源装置
の所要数日の削減及び使用電力量の節減により少ない経
費で磁場不均一性の補正を行う静11場マグネットを実
現することにある。
The present invention has been made in view of the above points, and its purpose is to reduce the number of coil bears required for a shim coil, reduce manufacturing man-hours, simplify the shim coil configuration, reduce the number of days required for a power supply device, and The object of the present invention is to realize a static 11-field magnet that corrects magnetic field inhomogeneity at low cost by reducing the amount of power used.

(問題点を解決するための手段) 前記の問題点を解決する本発明は、核磁気共鳴断層撮影
装置に用いるZn型雷電流シム用いて磁場不均一補正を
行う静磁場マグネットにおいて、0次〜n次の各シムコ
イルに必要な巻線の数を充足し、共用し得る巻線を共用
させるようにした複数のシムコイルと、各巻線に各次数
の電流シムに必要なアンペアターンを加算供給する前記
巻線の数に等しい電流供給手段とを具備することを特徴
とするものである。
(Means for Solving the Problems) The present invention solves the above problems in a static magnetic field magnet that corrects magnetic field inhomogeneity using a Zn-type lightning current shim used in a nuclear magnetic resonance tomography apparatus. A plurality of shim coils each having the number of windings required for each shim coil of the nth order and sharing the windings that can be shared, and the above-mentioned method for supplying each winding with the ampere-turns required for each order of current shim. and current supply means equal to the number of windings.

(作用) 0次に1ベア、1次に1ベア、2次に2ベア。(effect) 1 bear on the 0th, 1 bear on the 1st, 2 bears on the 2nd.

3次に2ベア、4次に3ベアの各次数における所!!!
巻線数を充し、且つ各次数を構成する巻線を少なくとも
1個用い、共用する巻線には共用弁を含む電流を供給し
て磁場不均一補正を行う。
Places in each degree, 3rd, 2bears, 4th, 3bears! ! !
At least one winding that satisfies the number of windings and constitutes each order is used, and a current including a shared valve is supplied to the shared winding to correct magnetic field non-uniformity.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のシムコイルの図で、〈イ)
図は奇数次シムコイル、(ロ)図は偶数次シムコイルの
図である。図において、第6図と同等の巻線には同じ符
号を付しである。9は直流オフセットを補正する0次シ
ムコイルのためのボビン上±2?の位置に巻かれた巻線
2?である。、巻線の巻方向は図のように同一方向に巻
いである。
Figure 1 is a diagram of a shim coil according to an embodiment of the present invention.
The figure shows an odd-order shim coil, and the figure (b) shows an even-order shim coil. In the figure, windings that are equivalent to those in FIG. 6 are given the same reference numerals. 9 is ±2 on the bobbin for the 0th order shim coil that corrects DC offset? Winding 2 wound at position ? It is. , the windings are wound in the same direction as shown in the figure.

(イ)図の奇数次シムコイルでは、電源(図示せず)を
Z+ 1の左端と右端に接続してアンペアターンA T
 1を与え、79巻線3の左端と右端に接続してアンペ
アターン△T2を与えている。これ等の電源を電源Zl
、電源Z贋と呼ぶ。
(a) For the odd-order shim coil shown in the figure, connect the power supply (not shown) to the left and right ends of Z+1 and connect the ampere turn A T.
1 and is connected to the left and right ends of the 79 winding 3 to provide an ampere turn ΔT2. Power supply Zl for these
, it is called power supply Z counterfeit.

第1図(イ)図と(ロ)図の奇数次シムフィルと偶数次
シムフィルに同様な方法で与える電源と、アンペアター
ンを第2図に示す。図に示すように、各巻線の両端には
それぞれの′電源を接続して、図に示すアンペアターン
を与えである。シムコイルは説明の都合上奇数次と偶数
次を別に示しであるが、実際には巾ねて巻くものである
Figure 2 shows the power supply and ampere turns applied to the odd-order shim fills and even-order shim fills in the same manner as in Figures 1(a) and 1(b). As shown in the figure, a respective power supply is connected to both ends of each winding to give the ampere turns shown in the figure. For convenience of explanation, shim coils are shown separately for odd and even orders, but in reality they are wound across the width.

次に各シムコイルのボビン上の巻く位置Z1の算出方法
を説明する。半径R,コイルの中心の座標が(0,O,
Z’ )、アンペアターンがATのコイルによる円電流
が原点(0,O,O)に作るvAIBzは次式で与えら
れる。
Next, a method of calculating the winding position Z1 of each shim coil on the bobbin will be explained. The radius R, the coordinates of the center of the coil are (0, O,
Z'), vAIBz generated by a circular current caused by a coil with an ampere turn of AT at the origin (0, O, O) is given by the following equation.

8Z −(2π/10)・AT・< 1 /R)(1+
 (Z’ /R) 2)−丁 ここで、計算の便のため(2π/10)・ATを省略し
て P−Z’ /Rとおくと、(1)式は次のようになる。
8Z − (2π/10)・AT・< 1 /R) (1+
(Z'/R) 2)-DHere, for convenience of calculation, (2π/10)·AT is omitted and set as P-Z'/R, then equation (1) becomes as follows.

Bz −(1/R) (1+P・)−÷  、(1)0
次シムコイルの巻線の位置は次式で求められる。
Bz −(1/R) (1+P・)−÷ , (1)0
The position of the next shim coil winding is determined by the following formula.

d”2BZ 丁戸7−0          ・・・(2)(1)式
、(2)式から Zo シムコイル・・・ 一〇              ・・・〈3)Z’−
PR−±0.5R Z?の正負の1組の持前を持っている。
d”2BZ Chodo 7-0 ... (2) From formulas (1) and (2) Zo Shim coil ... 10 ...〈3) Z'-
PR-±0.5R Z? It has one set of positive and negative traits.

Zl  シムコイル・・・ = (15/R)(−4P” +3P)(1+P2>7
−0       ・・・(4)Zlの正負の111の
持前を持っている。
Zl Shim coil... = (15/R) (-4P" +3P) (1+P2>7
-0...(4) It has 111 positive and negative characteristics of Zl.

Z2シムコイル・・・ −(45/R)(8P4−12P2 +1 >(1+P
2)−’2’−0・・・(5)z+、ziの正負の2組
の持前を持っている。
Z2 shim coil... -(45/R)(8P4-12P2 +1 >(1+P
2) -'2'-0...(5) It has two sets of positive and negative characteristics of z+ and zi.

Z3シムコイル・・・ 一5P)(1+P2 )・ツーO・・・(6)Z? 、
Z?の正角の211の持前を持っている。
Z3 shim coil... 15P) (1+P2) 2 O... (6) Z? ,
Z? He has a property of 211 square angles.

−(315/R)  (64P”  −240P4+1
20P2−5)(1+P2)ツー0・・・ (7) zi 、Z: 、Z’iの正負の3111の持前を持っ
ている。
-(315/R) (64P" -240P4+1
20P2-5) (1+P2) Two 0... (7) zi, Z: , has 3111 positive and negative characteristics of Z'i.

最小限それぞれの持前の数だ番プの巻線を用いればよい
It is sufficient to use at least the number of windings each has.

次に各巻線のアンペアターンは次式から、先の・・・(
8) 但し、AT+は各巻線のアンペアターン、BZ+は発生
磁場、 iはコイルベア数、 αzロ はコイルZpで発生する磁場の理想値、 Zlはコイルを巻く位置である。
Next, the ampere-turns of each winding can be calculated from the following formula:
8) However, AT+ is the ampere turns of each winding, BZ+ is the generated magnetic field, i is the number of coil bares, αzro is the ideal value of the magnetic field generated by the coil Zp, and Zl is the position where the coil is wound.

上式の連立−次方程式の各係数を最小自乗法を用いて最
適化を行い、ニュートン・プラソン法を用いてアンペア
ターン(AT)を算出する。(3)〜(7)式から求め
た各シムコイルの巻線から一例として第3図に示す組合
わせによりZ  −24のシムコイルを作る。
Each coefficient of the above simultaneous equations is optimized using the least squares method, and the ampere-turn (AT) is calculated using the Newton-Plason method. A Z-24 shim coil is made by combining the windings of each shim coil determined from equations (3) to (7) as shown in FIG. 3, as an example.

図中、奇数次コイルでは、Zl  シムコイルは(4)
式から71巻線1組 ZSシムコイルは(6)式から所
要巻線数2組が求められ、Zl シムコイルのZ ’t
を共用し、21巻線と併せて2巻線を選ぶ。この2組の
コイルのアンペアターンを(8)式によって計算して適
合するアンペアターンを求める。
In the figure, for the odd-order coil, the Zl shim coil is (4)
One set of 71 windings is obtained from the formula.For the ZS shim coil, the required number of windings, two sets, is obtained from the formula (6), and Z't of the Zl shim coil.
2 windings are selected together with 21 windings. The ampere turns of these two sets of coils are calculated using equation (8) to find a suitable ampere turn.

偶数次シムコイルでは zOシムコイルは(3)式で求
めた29巻線、Z2シムコイルは(5)式で求めた71
巻線と22巻線tZ’シムコイルは(7)式で所要巻線
数3組が得られ、2 シムコイルの21巻線、Z2シム
コイルの22巻線及び(7)式から求めたZlの3組の
巻線で構成する。
For even-order shim coils, the ZO shim coil has 29 windings calculated using equation (3), and the Z2 shim coil has 71 windings calculated using equation (5).
The required number of windings for the 22-winding tZ' shim coil is 3 sets obtained from equation (7), 21 windings for the 2 shim coil, 22 windings for the Z2 shim coil, and 3 sets of Zl obtained from equation (7). Consists of windings.

このZo  シムコイル 、F2シムコイル、Z4シム
コイルのそれぞれのアンペアターンを(8)式によって
計口して、適合するアンペアターンを求める。このよう
にして巻線を共用し、必要なアンペアターンを計算して
、それぞれに必要な電流を加算して流すことにより、各
シムコイルによる磁場不均一性の補正が実施できる。各
シムコイルに与える電流と各電源装置が負担する電流と
の関係を第4図に示す。(イ)図は奇数次シムコイル、
(ロ)図は偶数次シムコイルについて示しである。
Calculate the ampere turns of each of the Zo shim coil, F2 shim coil, and Z4 shim coil using equation (8) to find the appropriate ampere turns. In this way, by sharing the windings, calculating the required ampere-turns, and adding the necessary currents to each, it is possible to correct the magnetic field non-uniformity caused by each shim coil. FIG. 4 shows the relationship between the current applied to each shim coil and the current borne by each power supply device. (a) The figure shows an odd-order shim coil.
(b) The figure shows an even-order shim coil.

(イ)図において、zl  シムコイルは第3図に示す
ようにz1巻Ii!1によって構成され、Z3シムコイ
ルはz11巻線とz11巻線とで構成されている。これ
はZl  シムコイルのために71巻線1に電流A1を
、Z3シムコイルのために71巻線1に電流A)を、7
3巻線3に電流Aフを流す。
(a) In the figure, the zl shim coil has z1 volume Ii! as shown in Fig. 3. 1, and the Z3 shim coil is composed of a z11 winding and a z11 winding. This is the current A1 in 71 winding 1 for the Zl shim coil, the current A) in 71 winding 1 for the Z3 shim coil, and the current A) in 71 winding 1 for the Z3 shim coil.
3. Apply current A to winding 3.

従って、電源Z1を71巻線1に接続して電流A’!+
AIを流し、電源Z2を72巻線3に接続して電゛流A
lを流す。このシムコイルの調整法は次の通りである。
Therefore, by connecting the power supply Z1 to the 71 winding 1, the current A'! +
Flow AI, connect power supply Z2 to 72 winding 3 and current A
Flow l. The adjustment method for this shim coil is as follows.

(1) Z’ シムを発生するために電源zXを使用し
て調整する。
(1) Adjust using power supply zX to generate Z' shim.

(2)(1)で求めた使用電流値A1を記録しておく。(2) Record the operating current value A1 obtained in (1).

(3)Z’シムを発生するために電源Zt 、 Zlを
使用して調整する。
(3) Adjust using power supplies Zt and Zl to generate Z' shim.

(4)(3)T−調整シテ得た使用′rfi流値に(2
)のzl シムの使用電流値を加え合せる。
(4) (3) T-adjust the obtained RFI current value to (2
) of zl Add the current values used by the shims.

(5)最債に微調節を行い、電源Z1.Z2でのを使用
電流値を得る。
(5) Make fine adjustments to power supply Z1. Obtain the current value using Z2.

偶数次シムコイルも同様に行う。Do the same for even-order shim coils.

本実施例のシムコイルと従来のシムコイルとを比較づる
と第5図のようになる。図から明らかなように、 (1)製作工数が少なくてすむ。(コイルベア数の減少
) (2)電源の設備数が少なくて良い。
A comparison between the shim coil of this embodiment and a conventional shim coil is shown in FIG. As is clear from the figure, (1) The number of manufacturing steps is reduced. (Reduction in the number of coil bearings) (2) Fewer power supply facilities are required.

(3)使用電力が減少する。(アンペアターン数の減少
) 尚、本発明は上記実施例に限るものでは無い。
(3) Power consumption is reduced. (Reduction in the number of ampere turns) Note that the present invention is not limited to the above embodiments.

例えば、第3図において、偶数次シムコイルの場合z?
、Z+ * Zz* 22の4ベアを選んだが、次の組
合せも可能である。
For example, in Figure 3, for an even-order shim coil, z?
, Z+ * Zz * 22 4 bears were selected, but the following combinations are also possible.

<1)Z’?、Z’l 、Z’: 、zi(2)Z+ 
、 Zz 、 Z+ 、 Zz等その他を含め組み合せ
は9通り可能である。
<1) Z'? ,Z'l,Z': ,zi(2)Z+
, Zz, Z+, Zz, etc. There are nine possible combinations.

又、コイルベア数は第3図の必要数4ペアを5ペアに増
やすこと、又 zOシムコイルの1ペアを2ベアにづる
ことも当然可能である。
Also, it is naturally possible to increase the number of coil bears from the required number of 4 pairs shown in Fig. 3 to 5 pairs, or to connect 1 pair of zO shim coils to 2 bears.

(発明の効果) 以上詳細に説明したように本発明によれば、シムコイル
のコイル谷線を次数間で共用させることにより所要コイ
ルベア数を減少させて、コイル製作に要する工数を節減
し、電源装置の所要数分を削減し、使用電力量を節減す
る等の低廉なシムコイルを使用するNMR−CT用の静
磁場マグネットを実現することができ、実用上の効果は
大きい。
(Effects of the Invention) As described in detail above, according to the present invention, by sharing the coil valley wire of the shim coil between orders, the number of required coil bears is reduced, the man-hours required for coil manufacturing are reduced, and the power supply device It is possible to realize a static magnetic field magnet for NMR-CT using an inexpensive shim coil, which reduces the number of required times and the amount of power used, and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のシムコイルの図、第2図は
実施例のシムコイルに与える電源とアンペアターンの説
明図、第3図は実施例のシムコイルにお【ノる巻線の組
み合せの図、第4図は電源装置の口筒電流の説明図、第
5図は実施例と従来のシムコイルの比較説明図、第6図
は従来のシムコイルの図、第7図は各次数のシムコイル
が補正する磁場不均一性曲線の図である。 1・・・71%線    2・・・71巻線3−22 
巻$1!it     4− Z を巻線5・・・72
巻線    6・・・71巻線7・・・72巻線   
 8・・・73巻線9・・・71巻線 特許出願人 横河メディカルシステム株式会社第1図 (イ) (D) 第2図 (イ) 奇数次シムコイル (ロ) 偶数次シムコイル 第6図 (イ)                      
 (O)z1シムコイル(奮ア)         Z
3シムコイル(2ペア)(ハ)           
     (ニ)z2 シムフィル(2ゲア)    
      Z4シムコイル(3ペア)簗7図
Fig. 1 is a diagram of a shim coil according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the power supply and ampere turns applied to the shim coil according to the embodiment, and Fig. 3 is a diagram showing the combination of windings in the shim coil according to the embodiment. Figure 4 is an explanatory diagram of the tube current of the power supply device, Figure 5 is a comparative diagram of the embodiment and the conventional shim coil, Figure 6 is a diagram of the conventional shim coil, and Figure 7 is the shim coil of each order. FIG. 2 is a diagram of a magnetic field inhomogeneity curve corrected by . 1...71% wire 2...71 winding 3-22
Volume $1! Winding it 4-Z 5...72
Winding 6...71 winding 7...72 winding
8...73 windings 9...71 windings Patent applicant Yokogawa Medical Systems Co., Ltd. Figure 1 (A) (D) Figure 2 (A) Odd-numbered shim coil (B) Even-numbered shim coil Figure 6 (stomach)
(O)z1 shim coil (Strive a) Z
3 shim coil (2 pairs) (c)
(d) z2 Simfil (2gea)
Z4 shim coil (3 pairs) Figure 7

Claims (1)

【特許請求の範囲】[Claims]  核磁気共鳴断層撮影装置に用いるZ^n型電流シムを
用いて磁場不均一補正を行う静磁場マグネットにおいて
、0次〜n次の各シムコイルに必要な巻線の数を充足し
、共用し得る巻線を共用させるようにした複数のシムコ
イルと、各巻線に各次数の電流シムに必要なアンペアタ
ーンを加算供給する前記巻線の数に等しい電流供給手段
とを具備することを特徴とする静磁場マグネット。
In a static magnetic field magnet that corrects magnetic field inhomogeneity using Z^n type current shims used in nuclear magnetic resonance tomography equipment, the number of windings required for each of the 0th to nth order shim coils is satisfied and can be shared. A static electricity supply system characterized by comprising: a plurality of shim coils having a common winding; and a current supply means equal to the number of said windings for supplying ampere-turns necessary for each order of current shims to each winding. magnetic field magnet.
JP62072734A 1987-03-26 1987-03-26 Magnetostatic field magnet Granted JPS63237508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072734A JPS63237508A (en) 1987-03-26 1987-03-26 Magnetostatic field magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072734A JPS63237508A (en) 1987-03-26 1987-03-26 Magnetostatic field magnet

Publications (2)

Publication Number Publication Date
JPS63237508A true JPS63237508A (en) 1988-10-04
JPH0531809B2 JPH0531809B2 (en) 1993-05-13

Family

ID=13497884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072734A Granted JPS63237508A (en) 1987-03-26 1987-03-26 Magnetostatic field magnet

Country Status (1)

Country Link
JP (1) JPS63237508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508868A1 (en) * 2018-01-04 2019-07-10 Bruker BioSpin AG Nmr shim system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508868A1 (en) * 2018-01-04 2019-07-10 Bruker BioSpin AG Nmr shim system
CN110007259A (en) * 2018-01-04 2019-07-12 布鲁克碧奥斯平股份公司 NMR shimming system
US10481230B2 (en) 2018-01-04 2019-11-19 Bruker Switzerland Ag NMR shim system

Also Published As

Publication number Publication date
JPH0531809B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
US20230251333A1 (en) Magnetic sensor
US4506247A (en) Axisymmetric correction coil system for NMR magnets
Estermann et al. The magnetic moment of the proton
JPS60227403A (en) Coil for generating magnetic field
JPS63237508A (en) Magnetostatic field magnet
US5867027A (en) Magnetic resonance imaging apparatus
JPH0453086B2 (en)
JPH01714A (en) magnetic field compensator
EP0244843B1 (en) Coil arrangement for correction of magnetic field
GB2184243A (en) Electromagnet arrangements
CN113030811A (en) Design method of cylindrical shimming coil
JP2617918B2 (en) Uniform magnetic field generator
JP2009141255A (en) Superconductive electromagnet
EP1521095B1 (en) Superconducting magnet apparatus
JPS58186915A (en) Superconductive magnet
JP2003126059A (en) Method of shimming and mri apparatus
JPS60157206A (en) High uniform magnetic-field magnet
US2790130A (en) Polyphase transformer phase converter system
CN115184850A (en) Matrix gradient coil driving method for magnetic resonance imaging system
JP4129330B2 (en) Z-channel shielded coil assembly of active shielded gradient coil in magnetic resonance imaging apparatus
JPS61165648A (en) Radial gradient magnetic field coil for magnetic resonance imaging
DE477333C (en) Device for measuring and adding up similar measured quantities
JPS60228944A (en) Hollow-core type magnet for nuclear magnetic resonance image pick-up apparatus
US1904095A (en) Electrical measuring instrument
EP2620957A1 (en) Confined field magnet system and method