JPS6323734A - Method and device for manufacturing fine particles - Google Patents

Method and device for manufacturing fine particles

Info

Publication number
JPS6323734A
JPS6323734A JP16730386A JP16730386A JPS6323734A JP S6323734 A JPS6323734 A JP S6323734A JP 16730386 A JP16730386 A JP 16730386A JP 16730386 A JP16730386 A JP 16730386A JP S6323734 A JPS6323734 A JP S6323734A
Authority
JP
Japan
Prior art keywords
reactive gas
fine particles
inner tube
tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16730386A
Other languages
Japanese (ja)
Other versions
JPH0435215B2 (en
Inventor
Akihiro Goto
昭博 後藤
Mitsutaka Kawamura
河村 光隆
Fumikazu Igasaki
伊ケ崎 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16730386A priority Critical patent/JPS6323734A/en
Publication of JPS6323734A publication Critical patent/JPS6323734A/en
Publication of JPH0435215B2 publication Critical patent/JPH0435215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/04Feed or outlet devices; Feed or outlet control devices using osmotic pressure using membranes, porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state

Abstract

PURPOSE:To prepare fine particles and also prevent fine particles from adhering to the inner wall of an inner tube by supplying reactive gas with high pressure into an outer tube and reactive gas with less high pressure into an inner tube in a double tube consisting of a porous inner tube and an outer tube having a space therebetween. CONSTITUTION:Reactive gas A is fed into an inner tube 1, while reactive gas B is fed into a space 5. Although reactive gas B depends on the porous pore diameter and void content of the inner tube wall 1 and stoichiometric ratio with the flow of reactive gas A, the pressure of reactive gas B is maintained slightly higher than that of reactive gas A. Thus, reactive gas B passes through the porous tube wall of the inner tube 1 and is introduced into the inner tube 1, where reactive gas A and reactive gas B are reacted to form fine particles. As reactive gas A, titanium tetrachloride or the like is used, while reactive gas B is a different kind from reactive gas A and can form fine particles by reacting with reactive gas A. For example, ammonia or the like is used as reactive gas B.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は微粒子の製造方法とその装置に関し、より詳細
には回収率を向上せしめた微粒子の製造方法とその装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing fine particles and an apparatus therefor, and more particularly to a method for producing fine particles and an apparatus therefor that improve the recovery rate.

〔従来技術〕[Prior art]

光フアイバー製造用原料、高純度セラミックス用原料な
どを、有機化合物ガスあるいは無機化合物ガスの熱分解
反応、または異種類の有機化合物ガスあるいは無機化合
物ガスのガス反応によって微粒子の形状で製造する新し
い技術が、近年開発されつつある。
A new technology for producing raw materials for optical fiber production, raw materials for high-purity ceramics, etc. in the form of fine particles by thermal decomposition reactions of organic compound gases or inorganic compound gases, or gas reactions of different types of organic compound gases or inorganic compound gases. , has been developed in recent years.

しかしながら、かかる製造技術を工業化する場合、生成
した微粒子の回収が問題になる。
However, when such manufacturing technology is industrialized, recovery of the generated fine particles becomes a problem.

特に高温の微粒子は反応器、輸送管路での内外の温度差
に起因して管壁等に付着しやすく、歩留りの低下が怒念
される。
In particular, high-temperature fine particles tend to adhere to pipe walls and the like due to temperature differences between the inside and outside of reactors and transport pipes, resulting in lower yields.

また、微粒子の製造技術には、前述の有機化合物ガスの
熱分解反゛応以外に、微粒子素材を高温プラズマガスに
より溶融、気化させた後に、冷却、凝縮させて微粒子を
製造する方法がある。
In addition to the above-mentioned thermal decomposition reaction of organic compound gas, techniques for producing fine particles include a method of melting and vaporizing a fine particle material using high-temperature plasma gas, followed by cooling and condensation to produce fine particles.

しかしながら、この方法の工業化においても、反応器、
輸送管路の壁面における冷却、凝縮作用による微粒子の
付着のために、生成物回収率の低下が問題となる。
However, even in the industrialization of this method, the reactor,
Due to the adhesion of fine particles on the walls of the transport pipe due to cooling and condensation, a reduction in product recovery rate becomes a problem.

〔発明の目的〕[Purpose of the invention]

本発明は、上記したような近年開発されつつある技術の
工業化において予測される問題点の解決方法とその装置
を提供することを目的とするものである。
An object of the present invention is to provide a method and an apparatus for solving the problems expected in the industrialization of the technology that has been developed in recent years as described above.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明の微粒子の製造方法は、反応
性ガスA中に多孔質壁を通して反応性ガスBを導入し、
前記反応性ガスAと前記反応性ガスBを反応させて微粒
子状生成物を形成させることを特徴とするものである。
The method for producing fine particles of the present invention that achieves the above object includes introducing reactive gas B into reactive gas A through a porous wall,
The method is characterized in that the reactive gas A and the reactive gas B are reacted to form particulate products.

また、かかる製造方法の実施に使用される本発明の微粒
子の製造装置は、多孔質内管から間隙を置いて外管を設
けて二重管を形成し、前記内管には反応性ガスAが導入
され、前記間隙には反応性ガスBが前記反応性ガスAよ
りも窩圧で供給されることを特徴とするものである。
In addition, the apparatus for producing fine particles of the present invention used to carry out such a production method includes an outer tube provided with a gap from a porous inner tube to form a double tube, and the inner tube is provided with a reactive gas A. is introduced into the gap, and the reactive gas B is supplied to the gap at a pressure higher than that of the reactive gas A.

以下、本発明について詳述する。The present invention will be explained in detail below.

第1図および第2図は本発明の微粒子の製造装置の要部
概要を示す実施例であり、内管1から間隙を置いて外管
2が設けられて、二重管3が形成されている。
FIG. 1 and FIG. 2 are embodiments showing an outline of the main parts of the apparatus for producing fine particles of the present invention, in which an outer tube 2 is provided with a gap from an inner tube 1 to form a double tube 3. There is.

二重管3は後述する微粒子形成反応の均一化の観点から
すれば、同心二重管であることが好ましい。
The double tube 3 is preferably a concentric double tube from the viewpoint of making the fine particle formation reaction uniform, which will be described later.

なお、内管1は支持部材4によって外管内壁に支持され
ている。
Note that the inner tube 1 is supported by a support member 4 on the inner wall of the outer tube.

内管1と外管2との間隙5は、後述するように反応性ガ
スBの流通路であり、内管1の外径と外管2の内径を選
択することによって、適宜選定することができる。
The gap 5 between the inner tube 1 and the outer tube 2 is a flow path for the reactive gas B, as described later, and can be appropriately selected by selecting the outer diameter of the inner tube 1 and the inner diameter of the outer tube 2. can.

ここで本発明においいては、内管1として多孔質管壁を
有する内管、たとえばセラミックス、金属の粉末焼結管
、金網の焼結管等が用いられる。
Here, in the present invention, as the inner tube 1, an inner tube having a porous tube wall, such as a ceramic or metal powder sintered tube, a wire mesh sintered tube, or the like is used.

孔径は目的とする微粒子の種類、性状によっても異なる
が、通常では数μ〜数十μ、好ましくは数μ〜10μで
あり、空孔率には特に制限はなく、反応性ガスBの透過
量に応じて選択される。
The pore size varies depending on the type and properties of the target fine particles, but is usually from several microns to several tens of microns, preferably from several microns to 10 microns, and there is no particular limit to the porosity, and it depends on the amount of permeation of reactive gas B. selected according to

かかる本発明の微粒子製造装置においては、内管1に反
応性ガスAが供給され、一方、間隙5には反応性ガスB
が供給される。
In the particle manufacturing apparatus of the present invention, reactive gas A is supplied to the inner tube 1, while reactive gas B is supplied to the gap 5.
is supplied.

この際、反応性ガスBは、内管1管壁の多孔質孔径、空
孔率、また反応性ガスA流量との反応量論比にも依存す
るが、反応性ガスAよりもわずかに高圧に保たれる。す
ると、反応性ガスBは内管lの多孔質管壁を通過して内
管l内に導入され、内管1内において反応性ガスAと反
応性ガスBが反応して微粒子が形成される。
At this time, the pressure of reactive gas B is slightly higher than that of reactive gas A, although it depends on the porous pore diameter and porosity of the wall of the inner tube 1, as well as the reaction stoichiometric ratio with the flow rate of reactive gas A. is maintained. Then, reactive gas B passes through the porous wall of inner tube 1 and is introduced into inner tube 1, and reactive gas A and reactive gas B react within inner tube 1 to form fine particles. .

ここで反応性ガスAとしては、たとえば四塩化チタン、
四塩化ケイ素、シラン(S i H#)等の蒸気を挙げ
ることができる。
Here, as the reactive gas A, for example, titanium tetrachloride,
Vapors such as silicon tetrachloride and silane (S i H#) can be mentioned.

また、反応性ガスBは反応性ガスAと異種類であり、反
応性ガスAとの反応によって微粒子の形成可能なガスで
あり、たとえばアンモニヤ、メタン等が用いられ、また
上記反応性ガスAを反応性ガスBとして、上記反応性ガ
スBを反応性ガスAとして使用することもできる。
In addition, the reactive gas B is a different type from the reactive gas A, and is a gas that can form fine particles by reaction with the reactive gas A. For example, ammonia, methane, etc. are used, and the reactive gas A is As the reactive gas B, the above-mentioned reactive gas B can also be used as the reactive gas A.

あるいは、反応性ガスAとして熱分解可能ガスを使用し
、反応性ガスBとして不活性ガスを使用することにより
熱分解させて微粒子を形成させることもできる。
Alternatively, by using a thermally decomposable gas as the reactive gas A and using an inert gas as the reactive gas B, the particles can be thermally decomposed to form fine particles.

かかる熱分解反応の場合には、反応性ガスAとして4塩
化チタン、四塩化ケイ素等の金属ハロゲン化物蒸気、ま
たは金属アルコキシドの蒸気等が用いられ、不活性ガス
としては窒素、アルゴン等が用いられる。
In the case of such a thermal decomposition reaction, metal halide vapor such as titanium tetrachloride or silicon tetrachloride, or metal alkoxide vapor is used as the reactive gas A, and nitrogen, argon, etc. are used as the inert gas. .

或いは、反応性ガスAとして不活性ガスを用い、反応性
ガスBとして上記反応性ガスAを用いても良い。
Alternatively, the reactive gas A may be an inert gas, and the reactive gas B may be the reactive gas A described above.

更に内管1内に導入される反応性ガスAとして、微粒子
、たとえばセラミックス、金属微粒子等を含む反応性ガ
スA′を用いることもできる。
Furthermore, as the reactive gas A introduced into the inner tube 1, it is also possible to use a reactive gas A' containing fine particles such as ceramics and metal fine particles.

この場合には反応性ガスA′ と反応性ガスBとの反応
生成物を微粒子表面に形成させて、微粒子をコーティン
グすることができる。
In this case, a reaction product of reactive gas A' and reactive gas B can be formed on the surface of the fine particles to coat the fine particles.

一般に反応性ガスAと反応性ガスBとの反応には高温状
態が必要であるが、高温状態の保持は製造装置である二
重管等を高周波炉内に設置するか、あらかじめ反応性ガ
スA、Bをプラズマ状態として導くことによって達成す
ることができる。
Generally, a high temperature state is required for the reaction between reactive gas A and reactive gas B, but in order to maintain the high temperature state, it is necessary to install a manufacturing device such as a double tube in a high frequency furnace, or to react with reactive gas A in advance. , B in a plasma state.

内管1の管壁を通過して内管1内に導入された反応性ガ
スBは、内管1内において反応性ガスAと混合され、内
管1を流れる間に均一混合が促進されると共に反応性ガ
スBとの反応によって微粒子が形成される。
The reactive gas B introduced into the inner tube 1 through the wall of the inner tube 1 is mixed with the reactive gas A in the inner tube 1, and uniform mixing is promoted while flowing through the inner tube 1. At the same time, fine particles are formed by reaction with reactive gas B.

このように、高温ガス反応によって生成した微粒子は拡
散あるいは内管内外の温度差による熱力を受ける。
In this way, the fine particles generated by the high-temperature gas reaction are subjected to thermal forces due to diffusion or temperature differences between the inside and outside of the inner tube.

特に高温反応で生成した微粒子は熱力の影響を大きく受
け、内管壁へ動こうとする。
In particular, fine particles generated by high-temperature reactions are greatly affected by thermal forces and tend to move toward the inner tube wall.

従来の製造方法では、生成した微粒子がこの熱力によっ
て管壁に付着し、回収率が著しく低下して、工業化の欠
点となっていた。
In the conventional production method, the generated fine particles adhere to the tube wall due to this thermal force, resulting in a significant decrease in recovery rate, which has been a drawback for industrialization.

ところが本発明では多孔質の内管壁から放出される反応
性ガスBによって管壁への付着が著しく低減され、回収
率の向上がはかれるのである。
However, in the present invention, the reactive gas B released from the porous inner tube wall significantly reduces adhesion to the tube wall, thereby improving the recovery rate.

また、反応性ガスA、B間の反応の制御は、内管壁の空
孔率、間隙5に導入する反応性ガスBの圧力、すなわち
流量によって制御することができる。
Further, the reaction between the reactive gases A and B can be controlled by the porosity of the inner tube wall and the pressure, that is, the flow rate, of the reactive gas B introduced into the gap 5.

間隙保持用の支持部材4は、一般には反応性ガスBが自
由に通過できるようになっているが、場合によっては間
隙を気密に封する気密支持部材とすることもできる。
The gap-maintaining support member 4 is generally designed to allow the reactive gas B to pass through freely, but in some cases it may be an airtight support member that airtightly seals the gap.

すなわち間隙5を気密支持部材によって複数の空間に区
分し、これら空間ごとにガス導入口を設け、多種類の反
応性ガスを内管1の多孔質管壁を経て内管1内に導入し
て順次連続的に反応させることができる。
That is, the gap 5 is divided into a plurality of spaces by an airtight support member, a gas inlet is provided for each of these spaces, and various types of reactive gases are introduced into the inner pipe 1 through the porous pipe wall of the inner pipe 1. It is possible to react sequentially and continuously.

たとえば本発明によって製造された微粒子を別の装置に
導く場合、気密支持部材を使用した二重管によって不活
性ガスを反応性ガスBとして導入すれば微粒子の管壁へ
の付着を防止しつつ輸送することができる。
For example, when introducing the fine particles produced according to the present invention to another device, if an inert gas is introduced as the reactive gas B through a double pipe using an airtight support member, the fine particles can be transported while preventing them from adhering to the pipe wall. can do.

更に本発明により製造された微粒子を含むガスに、別種
の反応性ガスCを間隙5から多孔質壁を経て内管1内に
導入して反応させることにより、微粒子表面に新しい物
質を管壁面への付着を防止しつつ形成させることができ
る。
Furthermore, by introducing a different type of reactive gas C into the inner tube 1 from the gap 5 through the porous wall and reacting with the gas containing the fine particles produced according to the present invention, a new substance is transferred to the surface of the fine particles to the tube wall surface. can be formed while preventing the adhesion of

なお、本発明によって製造された微粒子の回収は、形成
された微粒子含有ガスを熱交換器等の冷却装置で冷却し
、熱力を利用して冷却装置の熱交換壁面に付着させるこ
とに行わなれる。
The fine particles produced according to the present invention can be recovered by cooling the formed fine particle-containing gas with a cooling device such as a heat exchanger, and making the particles adhere to the heat exchange wall surface of the cooling device using thermal power.

更にまた、本発明の装置は微粒子を含む高温ガス中の含
塵濃度測定の際に、粒度測定装置のための希釈装置とし
ても使用することもできる。
Furthermore, the device of the present invention can also be used as a diluter for a particle size measuring device when measuring the dust concentration in high temperature gas containing fine particles.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の微粒子の製造方法および装置
によれば、多孔質内管の管壁を経て反応性ガスBを反応
性ガスA中に導入することによって内管内壁面への付着
を防止しつつ微粒子を形成させることができ、従来の欠
点とされていた、付着による微粒子回収率の低下を防止
することができる。
As described above, according to the method and apparatus for producing fine particles of the present invention, reactive gas B is introduced into reactive gas A through the wall of the porous inner tube, thereby preventing adhesion to the inner wall surface of the inner tube. It is possible to form fine particles while maintaining the temperature, and it is possible to prevent a decrease in the collection rate of fine particles due to adhesion, which has been considered a conventional drawback.

反応性ガスAおよびBとしては種々の選定が可能であり
、各種の微粒子を容易に製造することができる。
Various selections can be made as the reactive gases A and B, and various types of fine particles can be easily produced.

また生成した微粒子を含むガスに、更に他種類の反応性
ガスを供給して、微粒子表面に更に他の生成物を形成さ
せることも可能である。
It is also possible to further form other products on the surface of the fine particles by supplying another type of reactive gas to the gas containing the generated fine particles.

しかも本発明の微粒子製造装置は、多孔質内管および外
管からなる二重管のみを要部とするものであり、構造が
極めて簡単である。
In addition, the fine particle manufacturing apparatus of the present invention has an extremely simple structure, with only a double tube consisting of a porous inner tube and an outer tube as the main part.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

実施例 下記反応式に従い、チタンテトライソプロポキシド蒸気
の熱分解による酸化チタン微粒子の製造を行なった。
Example Titanium oxide fine particles were produced by thermal decomposition of titanium tetraisopropoxide vapor according to the following reaction formula.

Ti (QC:1H7) *−一→Ti0z + 4C
3116+ 211□0反応条件は下記のようであった
Ti (QC: 1H7) *-1 → Ti0z + 4C
3116+211□0 reaction conditions were as follows.

多孔質内管・・・管径10鶴、孔径平均10μm。Porous inner tube: tube diameter 10, average pore diameter 10 μm.

外管・・・管径20mm。Outer tube...pipe diameter 20mm.

反応温度 400“C。Reaction temperature: 400"C.

チタンテトライソプロポキシドを窒素により1%以下に
うすめたものを反応性ガスAとして上記内管に、流量2
0cc/secで供給した。
Titanium tetraisopropoxide diluted to 1% or less with nitrogen was introduced into the inner tube as reactive gas A at a flow rate of 2.
It was supplied at a rate of 0 cc/sec.

一方、上記内管と外管との間隙に反応性ガスBとしてN
2ガスを、平均0.2 (1/min/cnの流量、0
、1 kg/ad以下の圧力で供給した。
On the other hand, in the gap between the inner tube and the outer tube, N is used as reactive gas B.
2 gases at an average flow rate of 0.2 (flow rate of 1/min/cn, 0
, was supplied at a pressure of 1 kg/ad or less.

この結果、収率90%以上でTiO□徽粒子を得た。As a result, TiO□hui particles were obtained with a yield of 90% or more.

内管内壁へのTiO□微粒子の付着は、はとんど見られ
なかった。
Adhesion of TiO□ fine particles to the inner wall of the inner tube was hardly observed.

比較実施例 上記実施例において外管のみを用い、チタンテトライソ
プロポキシド蒸気中にN2ガスを供給してTiO□微粒
子を製造した。
Comparative Example In the above example, only the outer tube was used and N2 gas was supplied into titanium tetraisopropoxide vapor to produce TiO□ fine particles.

反応条件は実施例と同様である。The reaction conditions are the same as in the examples.

この結果、管内壁への付着が著しく、得られたTiO□
微粒子は収率30%にすぎなかった。
As a result, the adhesion to the inner wall of the tube was significant, and the obtained TiO□
The yield of fine particles was only 30%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の微粒子製造装置の概要を示す部分切欠
側面図、第2図はその横断面図である。 1・・・多孔質内管、2・・・外管、5・・・間隙、A
・・・反応性ガスA、B・・・反応性ガスB。
FIG. 1 is a partially cutaway side view showing an outline of the apparatus for producing fine particles of the present invention, and FIG. 2 is a cross-sectional view thereof. 1...Porous inner tube, 2...Outer tube, 5...Gap, A
...Reactive gas A, B...Reactive gas B.

Claims (1)

【特許請求の範囲】 1、反応性ガスA中に多孔質壁を通して反応性ガスBを
導入し、前記反応性ガスAと前記反応性ガスBとを反応
させて微粒子状生成物を形成させることを特徴とする微
粒子の製造方法。 2、多孔質管から間隙を置いて外管を設けて二重管を形
成し、前記内管には反応性ガスAが導入され、前記間隙
には反応性ガスBが前記反応性ガスAよりも高圧で供給
されることを特徴とする微粒子の製造装置。
[Claims] 1. Introducing reactive gas B into reactive gas A through a porous wall, and causing the reactive gas A and the reactive gas B to react to form particulate products. A method for producing fine particles characterized by: 2. An outer tube is provided with a gap from the porous tube to form a double tube, reactive gas A is introduced into the inner tube, and reactive gas B is introduced into the gap from the reactive gas A. A device for producing fine particles, which is characterized by being supplied at high pressure.
JP16730386A 1986-07-16 1986-07-16 Method and device for manufacturing fine particles Granted JPS6323734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16730386A JPS6323734A (en) 1986-07-16 1986-07-16 Method and device for manufacturing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16730386A JPS6323734A (en) 1986-07-16 1986-07-16 Method and device for manufacturing fine particles

Publications (2)

Publication Number Publication Date
JPS6323734A true JPS6323734A (en) 1988-02-01
JPH0435215B2 JPH0435215B2 (en) 1992-06-10

Family

ID=15847250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16730386A Granted JPS6323734A (en) 1986-07-16 1986-07-16 Method and device for manufacturing fine particles

Country Status (1)

Country Link
JP (1) JPS6323734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1021252C2 (en) * 2002-08-12 2004-02-13 Univ Eindhoven Tech Process for preparing particles with a defined size using a reaction of reactants in a reaction vessel.
WO2007144455A1 (en) * 2006-06-14 2007-12-21 Omg Finland Oy Preparation of nanoparticles
WO2010121882A1 (en) * 2009-04-23 2010-10-28 Evonik Röhm Gmbh Metering ring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014530A1 (en) * 1992-12-28 1994-07-07 Kao Corporation Method of manufacturing fine ceramic particles and apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1021252C2 (en) * 2002-08-12 2004-02-13 Univ Eindhoven Tech Process for preparing particles with a defined size using a reaction of reactants in a reaction vessel.
WO2004014536A1 (en) * 2002-08-12 2004-02-19 Technische Universiteit Eindhoven Method for preparing particles of a defined size in a reaction vessel
US7407639B2 (en) 2002-08-12 2008-08-05 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for preparing particles of a defined size in a reaction vessel
WO2007144455A1 (en) * 2006-06-14 2007-12-21 Omg Finland Oy Preparation of nanoparticles
WO2010121882A1 (en) * 2009-04-23 2010-10-28 Evonik Röhm Gmbh Metering ring
US9169194B2 (en) 2009-04-23 2015-10-27 Evonik Röhm Gmbh Metering ring

Also Published As

Publication number Publication date
JPH0435215B2 (en) 1992-06-10

Similar Documents

Publication Publication Date Title
JP3356325B2 (en) Fine metal powder
JP3274740B2 (en) Apparatus and method for producing fine metal and ceramic powders
JP3122643B2 (en) Method for producing high-purity silicon particles
JPH0673401A (en) Fine metal powder
Weiss et al. H2 production by Zn hydrolysis in a hot‐wall aerosol reactor
TWI496936B (en) Processes and an apparatus for manufacturing high purity polysilicon
US2915367A (en) Metal oxide production
EP0186910B1 (en) Process for preparation of ceramic film
US5384306A (en) Fine-particle oxide ceramic powders
JPH068170B2 (en) Method for producing high-purity magnesium oxide fine powder
CN111268656A (en) Preparation method of boron nitride nanotube
JPS6323734A (en) Method and device for manufacturing fine particles
JPH05246786A (en) Method for uniformly coating core powders with ultrafine silicon-based particles while using chemical vapor decomposition in presence of core powders
US5527747A (en) Rapid process for the preparation of diamond articles
JPS58110493A (en) Production of graphite whisker
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JPS63147812A (en) Production of silicon carbide powder
US5614162A (en) Process for the production of long fibrous silicon carbide whiskers
JPS58213607A (en) Preparation of silicon imide and/or silicon nitride
US20130089490A1 (en) Method and device
JPS6126526A (en) Burner for synthesizing porous quartz glass base material
JPH06127922A (en) Fluidized bed reactor for producing polycrystalline silicon
JPS6117764B2 (en)
JPH01167215A (en) Method and apparatus for manufacturing highly dispersed aluminium oxide particles
JPH06127925A (en) Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term