JPS63236313A - Compound semiconductor integrated circuit - Google Patents

Compound semiconductor integrated circuit

Info

Publication number
JPS63236313A
JPS63236313A JP6881787A JP6881787A JPS63236313A JP S63236313 A JPS63236313 A JP S63236313A JP 6881787 A JP6881787 A JP 6881787A JP 6881787 A JP6881787 A JP 6881787A JP S63236313 A JPS63236313 A JP S63236313A
Authority
JP
Japan
Prior art keywords
pattern
patterns
selective growth
compound semiconductor
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6881787A
Other languages
Japanese (ja)
Other versions
JP2828974B2 (en
Inventor
Masaru Miyazaki
勝 宮崎
Yuichi Ono
小野 佑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62068817A priority Critical patent/JP2828974B2/en
Publication of JPS63236313A publication Critical patent/JPS63236313A/en
Application granted granted Critical
Publication of JP2828974B2 publication Critical patent/JP2828974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable a device and circuit to be manufactured with a selective growth technique suitable tor LSIs by providing a dummy pattern in the neighborhood of the real pattern, and selectively growing a compound semiconductor both patterns. CONSTITUTION:When an FET is formed by making a self alignment with a selective growth layer of n<+>-GaAs, windows are opened in a SiO2 film at both sides of gate electrodes 10, 11, and n<+>-GaAs layers 20, 30 are obtained with a selective growth by MOCVD. In a memory circuit using many such FETs, a memory cell section pattern group 200 and peripheral circuit pattern groups 101, 102 are locally placed as shown in figure (a). If the n+-GaAs layers are selectively grown with these patterns as they are, the growth layers become abnormally thick in the peripheral part of massed patterns and cannot be used is LSIs. Then, as shown in figure (b), a dummy pattern group 300 is located in the region where no growth pattern was required before, and a selective growth is performed with the patterns of figures (a) and (b) being placed upon one another. it is better that the boundary parts of the real pattern and the dummy pattern when the patterns of figures (a) and (b) are placed upon one another are close to each other, and usually, the distance therebetween is preferably 100mum or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体によるMESFETに係わり、特
にG a A s  MESFETとこれらを中心に集
積した半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to MESFETs using compound semiconductors, and more particularly to GaAs MESFETs, semiconductor devices integrated therewith, and methods of manufacturing the same.

〔従来の技術〕[Conventional technology]

従来のG a A s  ME!5FETはゲート電極
とソース電極の直列抵抗Rstを極力小さくして性能を
向上させるため、高゛耐熱ゲート電極(例えばタングス
テンシリサイド、WSix)を用いたセルファライン形
構造で作られていた。n十−低抵抗層をゲート電極の周
辺にセルファラインで形成するため、Siイオン打込み
技術および選択成長技術が使われている。選択成長層は
Siイオン打込みで作った層より、■高濃度不純物濃度
が得やすいので低抵抗化できる、■イオン打込みではア
ニール温度が750℃以上必要であるが1選択成長層度
は約600〜700℃と低くできるので、ゲート電極の
ショットキ接合の劣化は少ない、などの利点がある。し
かし選択成長にも欠点がある。例えば単位FETや、少
規模集積回路では、特に問題にならなかったことが、中
、大規模集積回路で顕在化した。すなわち、選択成長に
パターンの粗・密依存性があり、G a A s成長層
の膜厚が孤立パターン群では厚く、密集パターン群では
薄くなるという問題である。
Conventional G a As ME! In order to improve performance by minimizing the series resistance Rst between the gate electrode and the source electrode, the 5FET was made with a self-line structure using a highly heat-resistant gate electrode (for example, tungsten silicide, WSix). Si ion implantation technology and selective growth technology are used to form the n+-low resistance layer around the gate electrode in a self-lined manner. The selective growth layer is better than the layer made by Si ion implantation: ■ It is easier to obtain a high impurity concentration, so the resistance can be lowered. ■ Ion implantation requires an annealing temperature of 750°C or higher, but the selective growth layer degree is approximately 600°C or higher. Since the temperature can be as low as 700° C., there are advantages such as less deterioration of the Schottky junction of the gate electrode. However, selective growth also has drawbacks. For example, what was not a particular problem in unit FETs and small-scale integrated circuits has become apparent in medium- and large-scale integrated circuits. That is, there is a problem in that selective growth is dependent on pattern sparseness and density, and the thickness of the GaAs growth layer is thicker in isolated pattern groups and thinner in dense pattern groups.

この膜厚は、LSIを作る上で許容限界を越えて5例え
ば密集部では300nmの膜厚のものが、孤立部では6
00〜800nmとなった。また厚く成長する孤立パタ
ーンの領域では、5iOz膜やW S i x膜上の成
長不用部に結晶粒が析出し、外観不良となった。これは
配線工程の歩留りを著しく低下させ、LSI化を回置な
ものとしていた。
This film thickness exceeds the permissible limit for making LSIs.
The wavelength ranged from 00 to 800 nm. In addition, in the region of the isolated pattern that grows thickly, crystal grains precipitate in unnecessary growth areas on the 5iOz film and the WSi x film, resulting in poor appearance. This significantly lowered the yield of the wiring process and made LSI implementation a deferred process.

なおn十選択成長で得られたFETは、ジャパニーズ・
ジャーナルオブアプライドフイジックス23 、5 (
1984年)第L342から第L345Japanes
e Journal of Applied Phys
ics、 Vol。
Note that the FET obtained by n-ten selective growth is Japanese
Journal of Applied Physics 23, 5 (
1984) No. L342 to L345 Japanese
e Journal of Applied Phys.
ics, Vol.

23 、 NQ5 (1984) PPL342−34
5)に記載されている。
23, NQ5 (1984) PPL342-34
5).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はLSI化には配慮がされておらず、選択
成長膜厚にパターンの粗・密依存性がある問題があった
The above-mentioned conventional technology does not take into consideration LSI implementation, and there is a problem in that the thickness of the selectively grown film depends on the coarseness and density of the pattern.

本発明の目的は上述した欠点を解決し、LSI化に適し
た選択成長技術で素子及び回路を製造することにある。
An object of the present invention is to solve the above-mentioned drawbacks and to manufacture elements and circuits using a selective growth technique suitable for LSI.

〔問題点を解決するための手段〕[Means for solving problems]

S i Ox ’e’Ws ix材の表面をさけてG 
a A s表面だけにG a A sを選択的に成長さ
せる技術には主にMOCVDと呼ばれる成長法が用いら
れる。実験の結果、成長膜厚にパターンの粗・密依存性
があることがわかった。
S i Ox 'e'Ws ix G, avoiding the surface of the material.
A growth method called MOCVD is mainly used as a technique for selectively growing GaAs only on the aAs surface. As a result of experiments, it was found that the thickness of the grown film depends on the coarseness and density of the pattern.

実験では第4図の如き孤立パターンAと距離Qで分けら
れた周辺パターンBを用いて、Qを零から十分前して変
化させたときのパターンAに成長したG a A s層
の厚さdを求めた。パターンA。
In the experiment, an isolated pattern A and a peripheral pattern B separated by a distance Q as shown in Fig. 4 were used, and the thickness of the G a A s layer grown in pattern A when Q was changed sufficiently from zero. I found d. Pattern A.

BはG a A s表面が呪われており、両者は5iO
z40で分離されている9この結果を第5図に示す。
B has a cursed G a A s surface, and both are 5iO
The results are shown in FIG.

上記成長層の厚さdは、Ωが小さいときには、全面成長
厚さと同じ厚さcto となるが、Qが約100μmを
こえると急激に厚く成長し、Qが約250μm以上から
は厚さが飽和する傾向を有している。
When Ω is small, the thickness d of the growth layer is the same as the overall growth thickness cto, but when Q exceeds about 100 μm, it rapidly grows thicker, and when Q exceeds about 250 μm, the thickness becomes saturated. have a tendency to

しかも成長条件(温度、流量、ガス比など)でパターン
の粗・密によらぬ選択成長を行なわしめることは回置で
ある結論が得られた。これを解決するには、成長層のパ
ターンを一様に密とするようなダミーパターンを粗の領
域に形成して、ダミーパターンにも結晶成長を行なうこ
とが好ましいことがわかった。また本パターンとダミー
・パターンの距離は少なくとも100μm以内で配置す
る必要があることが第5図かられかった。またダミーパ
ターンは半絶縁性G a A s上に成長するものであ
るから、これによって集積回路の性能を低下することが
ないよう配慮して2通常ダミーパターンはメモリセル内
に用いている分割したパターン群を並べたものを利用す
るようにした。これによって配線層がダミーパターン上
を通る場合でも、ダミーパターンのない従来のものと比
べて配線容量が増えることはなくなった。
Moreover, it was concluded that selective growth regardless of whether the pattern is coarse or dense under growth conditions (temperature, flow rate, gas ratio, etc.) is inversion. In order to solve this problem, it has been found that it is preferable to form a dummy pattern in a coarse region so that the pattern of the growth layer is uniformly dense, and to perform crystal growth on the dummy pattern as well. Furthermore, it was found from FIG. 5 that the distance between the main pattern and the dummy pattern must be at least 100 μm. In addition, since the dummy pattern is grown on the semi-insulating GaAs, in order to prevent this from degrading the performance of the integrated circuit, the dummy pattern is usually grown on the divided layer used in the memory cell. I started using a list of pattern groups. As a result, even when the wiring layer passes over the dummy pattern, the wiring capacitance does not increase compared to the conventional structure without the dummy pattern.

〔作用〕[Effect]

本パターンに近接して、ダミーパターンを設けることに
よって選択成長の厚さはウェーハのどの位置でも均一に
することができる。
By providing a dummy pattern close to the main pattern, the thickness of the selective growth can be made uniform at any position on the wafer.

〔実施例〕〔Example〕

以下、本発明の一実施例を以下により説明する。 An embodiment of the present invention will be described below.

GaAs  LSIのキーデバイスであるFETをn+
  G a A sの選択成長層でセルファラインして
形成した場合の素子断面構造を第3図に示す。
FET, which is a key device of GaAs LSI, is
FIG. 3 shows a cross-sectional structure of an element formed by self-lining with a selectively grown layer of GaAs.

ゲート電極10,11はW S i xの耐熱性ショッ
トバリアであり、このゲートをはさんで両側にソース、
ドレイン用の窓をSiO2膜に明け、MOCVDによる
選択成長でn+ −G a A s層20,30をえる
。成長不用の部分は5iOz膜40,5iOz側壁50
及びW S i xゲート電極11上である。
The gate electrodes 10 and 11 are heat-resistant shot barriers of WSi x, and there are sources on both sides of the gate, and
A drain window is opened in the SiO2 film, and n+ -GaAs layers 20 and 30 are obtained by selective growth using MOCVD. The parts that do not require growth are the 5iOz film 40 and the 5iOz sidewall 50.
and on the W Si x gate electrode 11 .

このようなFETを沢山使用して、SRAMのようなメ
モリ回路かえられている。
Memory circuits such as SRAM are being modified by using many such FETs.

選択成長用のFET1コのパターンは第3図に示した如
くであるが、メモリ回路では、第1図(a)に示すよう
な密度の高いパターン領域がチップ内に局在して配置さ
れている。同図(a)のハツチング部はメモリセル部パ
ターン群200と周辺回路部パターン群101,102
を表わしている、同図(a)のままのパターンでn+ 
−GaAs層を選択成長すると密集パターンの周辺部で
異常に厚い成長層となってLSIとして使用できない。
The pattern of one FET for selective growth is as shown in Fig. 3, but in a memory circuit, a high-density pattern area as shown in Fig. 1(a) is arranged locally within the chip. There is. The hatched portion in FIG.
n+ with the same pattern as shown in (a) in the figure
- If the GaAs layer is selectively grown, the grown layer becomes abnormally thick around the dense pattern and cannot be used as an LSI.

そこで第1図(b)の如く、成長パターンが従来不用で
あった領域にダミーパターン群300を配置して第1図
の(、)と(b)のパターンを重ねてウェーハ上に形成
して選択成長を行なうようにした。
Therefore, as shown in FIG. 1(b), a dummy pattern group 300 is placed in a region where a growth pattern is not needed conventionally, and the patterns in FIG. 1 (,) and (b) are overlapped and formed on the wafer. Selective growth is now possible.

第2図は第1図(a)と(b)のパターンを重ねたとき
の本パターン300とダミーパターン400の境界部を
拡大して表示したものである。
FIG. 2 is an enlarged view of the boundary between the main pattern 300 and the dummy pattern 400 when the patterns of FIGS. 1(a) and 1(b) are overlapped.

この図に示した距IiQは本パターンの特性に悪影響を
及ぼさぬ限り接近させた方がよく、通常は5〜50μm
の範囲内で決められる。第2図の如くダミーパターンの
模様は本パターンのそれに同じか近いことが好ましく、
通常はメモリセル部200のくり返しパターン模様を用
いている。
The distance IiQ shown in this figure should be kept close to each other as long as it does not adversely affect the characteristics of this pattern, and is usually 5 to 50 μm.
It can be determined within the range of As shown in Figure 2, it is preferable that the pattern of the dummy pattern is the same as or close to that of the main pattern.
Usually, a repeating pattern of the memory cell portion 200 is used.

本発明の実施例をGaAs  SRAMパターンで述べ
たが、単体FETを含んだ種々の機能回路でも同様な趣
旨によるダミーパターンを用いることで、選択成長によ
る成長膜厚を均一に得られるようになることは言うに及
ばない。
Although the embodiment of the present invention has been described using a GaAs SRAM pattern, by using a dummy pattern with a similar purpose in various functional circuits including single FETs, it is possible to obtain a uniform film thickness by selective growth. Needless to say.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、GaAs  LSIがn+ −G a
 A s選択成長技術を用いて製作できるようになった
ので、従来イオン打込みで形成したいたn十層の抵抗に
比べて、約1/10の低抵抗比が達成でき、これによっ
てFETの直列抵抗は約115と改善できた。そのため
従来より約2倍高速なメモリ素子をえることができた。
According to the present invention, the GaAs LSI is n+ -Ga
Since it has become possible to fabricate using As selective growth technology, it is possible to achieve a low resistance ratio of about 1/10 compared to the n-layer resistor that was conventionally formed by ion implantation. was improved to about 115. As a result, it was possible to obtain a memory element that is approximately twice as fast as the conventional one.

また、これはn+ −GaAs選択成長層のセルファラ
インによって改善されたFETの特性であるが、従来の
イオン打込みでは800℃の熱処理によって短ゲート効
果の劣化、ショットキバリアの劣化がみられていたもの
がなくなって、著しく性能を向上させることができた。
Additionally, this is a FET characteristic that has been improved by the self-line of the n+ -GaAs selectively grown layer, but with conventional ion implantation, the short gate effect and Schottky barrier deteriorated due to heat treatment at 800°C. was eliminated, and the performance was significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の(a)本パターン(b)ダ
ミーパターンの上面図、第2図は本パターンとダミーパ
ターンの境界部における拡大図、第3図はFETの素子
図、第4図は選択成長で粗・密依存性を調べたパターン
、第5図は第4図を用いて実験した結果である。 1・・・G a A s基板結晶、101.102・・
・周辺回路部パターン、200・・・メモリセル部パタ
ーン、300・・・ダミーパターン。
FIG. 1 is a top view of (a) a main pattern (b) a dummy pattern of an embodiment of the present invention, FIG. 2 is an enlarged view of the boundary between the main pattern and the dummy pattern, and FIG. 3 is an element diagram of an FET. Fig. 4 shows a pattern in which the coarse/dense dependence was investigated in selective growth, and Fig. 5 shows the results of an experiment using Fig. 4. 1...G a As substrate crystal, 101.102...
- Peripheral circuit pattern, 200...Memory cell pattern, 300...Dummy pattern.

Claims (1)

【特許請求の範囲】 1、化合物半導体の表面が、化合物半導体、SiO_2
WSi_xなどからなる材質で構成されている半導体基
板結晶を用いて、化合物半導体表面のみに選択的に成長
層を形成して集積回路を構成する工程において、本パタ
ーンの近傍にダミーパターンを設けて、どちらのパター
ンにも化合物半導体を選択成長させたことを特徴とする
化合物半導体集積回路。 2、化合物半導体としてGaAsを用いることを特徴と
する第1項記載の化合物半導体集積回路。 3、上記本パターンに近傍するダミーパターンは少なく
とも100μm以内で配置されていることを特徴とする
第1項、第2項記載の化合物半導体集積回路。
[Claims] 1. The surface of the compound semiconductor is a compound semiconductor, SiO_2
In the process of forming an integrated circuit by selectively forming a growth layer only on the surface of a compound semiconductor using a semiconductor substrate crystal made of a material such as WSi_x, a dummy pattern is provided near the main pattern, A compound semiconductor integrated circuit characterized in that a compound semiconductor is selectively grown in both patterns. 2. The compound semiconductor integrated circuit according to item 1, characterized in that GaAs is used as the compound semiconductor. 3. The compound semiconductor integrated circuit according to items 1 and 2, wherein the dummy patterns adjacent to the main pattern are arranged within at least 100 μm.
JP62068817A 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit Expired - Fee Related JP2828974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068817A JP2828974B2 (en) 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068817A JP2828974B2 (en) 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS63236313A true JPS63236313A (en) 1988-10-03
JP2828974B2 JP2828974B2 (en) 1998-11-25

Family

ID=13384643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068817A Expired - Fee Related JP2828974B2 (en) 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2828974B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228186A (en) * 1988-03-09 1989-09-12 Sumitomo Electric Ind Ltd Semiconductor selective growth method
US5782979A (en) * 1993-04-22 1998-07-21 Mitsubishi Denki Kabushiki Kaisha Substrate holder for MOCVD
KR100504940B1 (en) * 2000-12-29 2005-08-03 주식회사 하이닉스반도체 Method of forming a selective monocrystal silicon film in a semiconductor device
US7554139B2 (en) 2004-04-30 2009-06-30 Panasonic Corporation Semiconductor manufacturing method and semiconductor device
WO2010103792A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196542A (en) * 1981-05-28 1982-12-02 Fujitsu Ltd Semiconductor integrated circuit device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196542A (en) * 1981-05-28 1982-12-02 Fujitsu Ltd Semiconductor integrated circuit device and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228186A (en) * 1988-03-09 1989-09-12 Sumitomo Electric Ind Ltd Semiconductor selective growth method
US5782979A (en) * 1993-04-22 1998-07-21 Mitsubishi Denki Kabushiki Kaisha Substrate holder for MOCVD
KR100504940B1 (en) * 2000-12-29 2005-08-03 주식회사 하이닉스반도체 Method of forming a selective monocrystal silicon film in a semiconductor device
US7554139B2 (en) 2004-04-30 2009-06-30 Panasonic Corporation Semiconductor manufacturing method and semiconductor device
WO2010103792A1 (en) * 2009-03-11 2010-09-16 住友化学株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device
JP2010239130A (en) * 2009-03-11 2010-10-21 Sumitomo Chemical Co Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device, and method for manufacturing electronic device
US8823141B2 (en) 2009-03-11 2014-09-02 Sumitomo Chemical Company, Limited Semiconductor wafer, method of producing semiconductor wafer, electronic device, and method of producing electronic device

Also Published As

Publication number Publication date
JP2828974B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US3461360A (en) Semiconductor devices with cup-shaped regions
JPS61256675A (en) Manufacture of schottky gate field effect transistor
JPS63236313A (en) Compound semiconductor integrated circuit
JPS60189250A (en) Semiconductor device
JP2714034B2 (en) Method for manufacturing compound semiconductor integrated circuit
US5180688A (en) Method of forming tunneling diffusion barrier for local interconnect and polysilicon high impedance device
JPS59222965A (en) Manufacture of schottky barrier gate type field-effect transistor
JP2691571B2 (en) Method for manufacturing compound semiconductor device
JP2796303B2 (en) Method for manufacturing semiconductor integrated circuit
JP2691572B2 (en) Method for manufacturing compound semiconductor device
JPH028458B2 (en)
JPH02210821A (en) Manufacture of compound semiconductor device
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPS63158836A (en) Manufacture of semiconductor element
JPH049387B2 (en)
JPS5918679A (en) Semiconductor device
JPS5863170A (en) Manufacture of semiconductor device
JPS59123222A (en) Semiconductor crystal growth method
JPH03214741A (en) Iii-v compound semiconductor field effect transistor
JPH01208870A (en) Manufacture of compound semiconductor device
JPH0283917A (en) Vapor growth method for semiconductor thin film
JPH08264724A (en) Semiconductor device and fabrication thereof
JPS60116178A (en) Semiconductor device and manufacture thereof
JPH06140326A (en) Manufacture of compound semiconductor substrate
JPH01202865A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees