JPS6323570A - Rotational actuator - Google Patents

Rotational actuator

Info

Publication number
JPS6323570A
JPS6323570A JP61164624A JP16462486A JPS6323570A JP S6323570 A JPS6323570 A JP S6323570A JP 61164624 A JP61164624 A JP 61164624A JP 16462486 A JP16462486 A JP 16462486A JP S6323570 A JPS6323570 A JP S6323570A
Authority
JP
Japan
Prior art keywords
cylindrical body
cylinder
piezoelectric element
piezoelectric elements
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61164624A
Other languages
Japanese (ja)
Inventor
Tsunehiko Omori
大森 恒彦
Toru Sugawara
徹 菅原
Norifumi Miyamoto
詔文 宮本
Masae Kiryu
桐生 正衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61164624A priority Critical patent/JPS6323570A/en
Publication of JPS6323570A publication Critical patent/JPS6323570A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H2049/006Wave generators producing a non-elliptical shape of flexsplines, i.e. with a qualified different shape than elliptical

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enable a high accuracy rotational positioning by exerting expansive and contractile force of piezoelectric elements on an outer periphery of a thin- wall cylinder to deform the cylinder so that it is urged to touch an output shaft arranged within the cylinder. CONSTITUTION:Piezoelectric elements 1-8 are uniformly arranged and secured within a casing 9 and a thin-wall cylinder 10 is further arranged inside the elements. Moreover, an output shaft 11 of a diameter smaller than the inner diameter of the cylinder 10 is arranged within the cylinder 10. An expansive and contractile force of the piezoelectric elements 1-8 is exerted on an outer periphery of the thin-wall cylinder 10 to deform the cylinder 10 which is pressed against the output shaft 11 inside the cylinder 10 to rotate the output shaft 11.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、精密位置決め装置の回転位置決め機構の回転
アクチュエータに係り、特に、光学機械等の回転微動ス
テージや、ロボットの直接駆動モータとして好適な回転
アクチュエータに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a rotary actuator of a rotary positioning mechanism of a precision positioning device, and is particularly suitable for a rotary fine movement stage of an optical machine or the like or a direct drive motor of a robot. Regarding actuators.

〔従来の技術〕[Conventional technology]

従来、圧電素子を応用した回転アクチュエータは、昭和
58年度精機学会秋季大会学術講演論文集、P423〜
P426電歪素子を用いた回転微動機構が発表されてい
る。この方式の回転原理を第7図、第8図によって説明
する。二分割した回転円板15.16間に、圧電素子1
7.18を固定し、回転円板16を固定した状態で、圧
電素子17が縮むように、圧電素子18は伸びるように
電圧を印加すると、回転円板15が矢印反時計方向に微
動する。次に回転円板15を固定し、圧電素子18が縮
み、圧電素子〕、7を伸ばすように電圧を印加すると、
回転円板16が矢印反時計方向に微動回転する。この動
作を繰り返すことによって回転円板15.16は反時計
方向に回転する、この方式は極微動の回転移動には優れ
た方式であるが、高精密な位置決めを行うには、位置の
フィードバックに工夫を要する欠点があった。さらに、
回転出力を得る超音波モータが発表されている。
Conventionally, rotary actuators using piezoelectric elements have been developed in the Proceedings of the 1981 Autumn Conference of the Japan Society of Precision Machinery, p.423~
A rotational fine movement mechanism using a P426 electrostrictive element has been announced. The rotation principle of this system will be explained with reference to FIGS. 7 and 8. A piezoelectric element 1 is placed between two divided rotating disks 15 and 16.
7.18 is fixed and the rotating disk 16 is fixed, and when a voltage is applied so that the piezoelectric element 17 contracts and the piezoelectric element 18 expands, the rotating disk 15 slightly moves in the counterclockwise direction of the arrow. Next, when the rotating disk 15 is fixed and a voltage is applied so that the piezoelectric element 18 contracts and the piezoelectric element 7 expands,
The rotating disk 16 slightly rotates in the counterclockwise direction of the arrow. By repeating this operation, the rotating disks 15 and 16 rotate counterclockwise.This method is excellent for extremely fine rotational movement, but in order to perform highly precise positioning, position feedback is required. There were some shortcomings that needed improvement. moreover,
Ultrasonic motors that obtain rotational output have been announced.

この方式の回転原理を第9図、第10図によって説明す
る。圧電素子34は弾性リング33に張り付けてあり1
弾性リング33が接触するロータ31側の部分には、摩
擦係数の高い材質でコーテングされたスライダ32があ
る。圧電素子34は分極処理が施され、この圧電素子3
4の固有振動数に合せた周期の交流電圧を印加すると弾
性リング33の表面に進行波が生じ、スライダ32は進
行波の頂点付近で弾性リング33に接している。
The rotation principle of this system will be explained with reference to FIGS. 9 and 10. The piezoelectric element 34 is attached to an elastic ring 33.
A slider 32 coated with a material having a high coefficient of friction is provided on the rotor 31 side that the elastic ring 33 contacts. The piezoelectric element 34 is subjected to polarization treatment, and the piezoelectric element 3
When an AC voltage with a period matching the natural frequency of 4 is applied, a traveling wave is generated on the surface of the elastic ring 33, and the slider 32 is in contact with the elastic ring 33 near the peak of the traveling wave.

つまり、弾性リング33−ヒの点が波の進行方向とは逆
方向に最も速く動く所とスライダ32が接しているため
、ロータ31は弾性リング33の進行波とは逆方向に回
転する。尚、回転出力は出力軸30より取り出す、37
は軸受、36はクッション、35はベースである。この
方式でも高精度な位置決めを行うには前者と同様な欠点
があった。
In other words, since the slider 32 is in contact with the point of the elastic ring 33-hi that moves fastest in the opposite direction to the traveling direction of the wave, the rotor 31 rotates in the opposite direction to the traveling wave of the elastic ring 33. Incidentally, the rotational output is taken out from the output shaft 30, 37
is a bearing, 36 is a cushion, and 35 is a base. This method also has the same drawbacks as the former when it comes to highly accurate positioning.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光学装置や高精密(iη転位置決め機
構の駆動源としてフィードバック回路なしでも高精度な
回転位置決めを可能とする回転アクチュエータを提供す
ることにある。
An object of the present invention is to provide a rotary actuator that enables highly accurate rotational positioning without a feedback circuit as a drive source for an optical device or a high precision (iη rotation positioning mechanism).

〔発明の概要〕[Summary of the invention]

本発明は、圧電素子が電圧に比例して伸縮する特性を利
用し、この伸縮力を薄肉の円筒の外周に及ぼして変形さ
せ、円筒内に配置した出力軸に圧接させることにより、
円筒の内周長、又は、セレーション歯形が成形されてい
るときはその歯数と、出力軸の外周長、又は、セレーシ
ョン歯形の数の差分を、円筒に均等角に配設された圧電
素子を順次電気的に励起伸縮させることにより、励起類
とは反対方向に、円筒内周と出力軸外周の圧接による摩
擦力、又はセレーション噛み合いにより回転させること
ができるようにしたものである。
The present invention utilizes the property of a piezoelectric element to expand and contract in proportion to voltage, and applies this expansion and contraction force to the outer periphery of a thin cylinder to deform it and press it against an output shaft placed inside the cylinder.
The difference between the inner circumference length of the cylinder, or the number of teeth when serration tooth profiles are formed, and the outer circumference length of the output shaft, or the number of serration tooth profiles, is determined by measuring the piezoelectric elements arranged at equal angles on the cylinder. By sequentially electrically exciting the cylinder to expand and contract, it is possible to rotate it in the opposite direction to the direction of excitation by the frictional force caused by pressure contact between the inner periphery of the cylinder and the outer periphery of the output shaft, or by the engagement of the serrations.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を、第1図、第2図により説明
する。圧電素子1〜8はケーシング9の内側に均等角に
配設固定され、その内側には、薄肉の円筒体10が配置
されている。さらに円筒体10の内径より小径の出力軸
11が円筒体10内に配置されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The piezoelectric elements 1 to 8 are arranged and fixed at equal angles inside a casing 9, and a thin cylindrical body 10 is arranged inside the casing 9. Further, an output shaft 11 having a smaller diameter than the inner diameter of the cylindrical body 10 is disposed within the cylindrical body 10 .

圧電素子1〜8に第2図に示したような波形の電圧を圧
電素子1には1aを印加し、圧電素子2には2aを印加
というように各圧電素子に電圧を印加すると、例えば、
第2図のOoのときは圧電素子1,5が最大電圧で最大
に伸び円筒体10を楕円形に変形させ、出力軸11を二
点で圧接し把持状態になる。この時、他の圧電素子2,
4,6゜8は中間の伸びであり、圧電素子3,7は電圧
がゼロで伸びゼロである。このように各圧電素子に交番
電圧を第1図の時計方向に変化するように印加し、−周
すると出力軸11は、円筒体10の内周長と出力軸11
の外周長の差だけ反時計方向、すなわち、図の矢印方向
に圧接摩擦力で回転する。
When voltages with waveforms as shown in FIG. 2 are applied to piezoelectric elements 1 to 8, 1a is applied to piezoelectric element 1, 2a is applied to piezoelectric element 2, and so on, the voltage is applied to each piezoelectric element, for example,
At Oo in FIG. 2, the piezoelectric elements 1 and 5 extend to the maximum with the maximum voltage, deforming the cylindrical body 10 into an elliptical shape, and press the output shaft 11 at two points to be in a gripping state. At this time, other piezoelectric elements 2,
4,6°8 is an intermediate elongation, and piezoelectric elements 3 and 7 have zero elongation when the voltage is zero. In this way, an alternating voltage is applied to each piezoelectric element so as to change in the clockwise direction in FIG.
It rotates counterclockwise by the difference in the outer circumference length, that is, in the direction of the arrow in the figure, due to pressure friction force.

なお、円筒体10の内周面と出力軸11の外周面にセレ
ーション歯形を成形し、円筒体10が楕円状に木彫した
時、互いにかみ合うようにしてあれば、その歯数の差分
、反時計方向に回転することになる。この場合の出力軸
回転数は、次式で表すことができる。
In addition, if serration tooth profiles are formed on the inner peripheral surface of the cylindrical body 10 and the outer peripheral surface of the output shaft 11 so that they mesh with each other when the cylindrical body 10 is carved into an elliptical shape, the difference in the number of teeth, counterclockwise It will rotate in the direction. The output shaft rotation speed in this case can be expressed by the following equation.

円等の内周長又はセレーション歯数・・・d1出力軸の
外周長又ははセレーション歯数・・・d2円筒体を二点
で把持することを条件に印加用波数をfH!とすれば。
Inner circumference length of circle or number of serration teeth...d1 Outer circumference length of output shaft or number of serration teeth...d2 Wave number for application on the condition that the cylindrical body is gripped at two points fH! given that.

(dz  dt)  ・f/2dz (rpS)となる
(dz dt) ・f/2dz (rpS).

なお、本発明の実施例は、各圧電素子に印加する電圧は
交番電圧であったが、この印加電圧は。
In addition, in the embodiment of the present invention, the voltage applied to each piezoelectric element was an alternating voltage, but this applied voltage is as follows.

各圧電素子の位置に見合ったパルス電圧を印加してもよ
い。この場合は信号系のデジタル化に対応できる利点が
ある。
A pulse voltage suitable for the position of each piezoelectric element may be applied. In this case, there is an advantage that the signal system can be digitized.

第3図は、本発明を回転ステージの駆動源に応用した例
である。1.は圧電素子で、第1図と同じに配列されて
いる。1oは円筒体、9はケーシング、12は軸受、1
3は回転軸である。
FIG. 3 is an example in which the present invention is applied to a drive source for a rotary stage. 1. are piezoelectric elements, arranged in the same manner as in FIG. 1o is a cylindrical body, 9 is a casing, 12 is a bearing, 1
3 is a rotation axis.

さらに第二の実施例を、第4図、第5図、第6図によっ
て説明する。本実施例は、円筒体25の内周面に複数個
の圧電素子21を固着し、さらに外周面にも複数個の圧
電素子22を固着しである。
Further, a second embodiment will be explained with reference to FIGS. 4, 5, and 6. In this embodiment, a plurality of piezoelectric elements 21 are fixed to the inner peripheral surface of a cylindrical body 25, and a plurality of piezoelectric elements 22 are further fixed to the outer peripheral surface.

圧電素子21..22に電圧が印加され円筒体25が変
形した時、圧電素子21.22が固着されていない部分
の円筒体25の内周面と外周面が接触し圧接力を受ける
内軸24と外輪23より構成されている。次に第二の実
施例の動作及び作用を説明する。本実施例は、円筒体2
5に固着された複数個の圧電素子21.22に第一の実
施例と同じように交番電圧を印加する。但し、外周面の
圧電素子22と内周面の圧電素子21は互いに逆方向の
電圧を印加する。円筒体25は変形し数個所の外軸23
との圧接部A、内内軸の圧接部Bが生じる。この圧接部
が、時計方向に回転するように第一の実施例、第2図の
ような電圧を印加すると、円筒体25が回転しないよう
に固定されているとした時、外輪23の内周長πd8と
円筒体25の外周長πd4の差分ΔM工、外軸は時計方
向に回転し、内輪は円筒体25の内周長πd6と内軸2
4の外周長πd6の差分ΔM2.、反時計方向に回転す
る。又、内輪24を固定した場合は、円筒体25は変形
しながら差分ΔM2時計方向に自転し、外軸23はさら
にΔM2にΔM1を加えた全時計方向に回転する。この
ように、第二の実施例は、内軸24.外輪23、又は、
円筒体25がらでも、必要であれば同時に二軸の回転出
方を取り出せる。
Piezoelectric element 21. .. When a voltage is applied to 22 and the cylindrical body 25 is deformed, the inner and outer circumferential surfaces of the cylindrical body 25 in the portions to which the piezoelectric elements 21 and 22 are not fixed contact each other, and the inner shaft 24 and the outer ring 23 receive pressure contact force. It is configured. Next, the operation and effect of the second embodiment will be explained. In this embodiment, the cylindrical body 2
An alternating voltage is applied to the plurality of piezoelectric elements 21 and 22 fixed to the substrate 5 in the same manner as in the first embodiment. However, voltages in opposite directions are applied to the piezoelectric element 22 on the outer peripheral surface and the piezoelectric element 21 on the inner peripheral surface. The cylindrical body 25 is deformed and the outer shaft 23 at several locations
A pressure contact portion A with the inner shaft and a pressure contact portion B of the inner inner shaft are formed. When a voltage is applied as shown in the first embodiment and FIG. 2 so that this pressure contact part rotates clockwise, the inner circumference of the outer ring 23 is The difference ΔM between the length πd8 and the outer circumference length πd4 of the cylindrical body 25, the outer shaft rotates clockwise, and the inner ring has the inner circumference length πd6 of the cylindrical body 25 and the inner shaft 2
The difference ΔM2.4 in the outer circumference length πd6. , rotate counterclockwise. Further, when the inner ring 24 is fixed, the cylindrical body 25 rotates clockwise by a difference ΔM2 while being deformed, and the outer shaft 23 further rotates fully clockwise by adding ΔM1 to ΔM2. Thus, the second embodiment has the inner shaft 24. Outer ring 23, or
Even if the cylindrical body 25 is empty, the rotation direction of two axes can be taken out at the same time if necessary.

なお、本実施例では内外周面に圧電素子21,22を固
着し、内軸24.外輸23に円筒体25を変形圧接した
が、圧電素子の固着は、内周面のみ、又は、外周面のみ
でもよい。さらに、圧電素子を固着した円筒体と外輪の
み、又は、圧電素子を固着した円筒体と内輪のみでも、
回転出力を取り出すことはできる。
In this embodiment, the piezoelectric elements 21 and 22 are fixed to the inner and outer peripheral surfaces of the inner shaft 24. Although the cylindrical body 25 is deformed and press-fitted to the external part 23, the piezoelectric element may be fixed only to the inner circumferential surface or only to the outer circumferential surface. Furthermore, even if you use only the cylindrical body and the outer ring to which the piezoelectric element is fixed, or only the cylindrical body and the inner ring to which the piezoelectric element is fixed,
It is possible to extract rotational output.

〔発明の効果〕〔Effect of the invention〕

本発明によれば電磁誘導障害を他の電子機器に及ぼすこ
となく、軽量化をはかることができる。
According to the present invention, weight reduction can be achieved without causing electromagnetic induction interference to other electronic devices.

さらに低速大トルクを取出すことができる。又、フィー
ドバック方式によらなくても各圧電素子の印加電圧によ
りインクリメンタルにオープンループで位置制御が可能
である。
Furthermore, it is possible to extract large torque at low speeds. Further, the position can be controlled incrementally in an open loop by applying a voltage to each piezoelectric element without using a feedback method.

【図面の簡単な説明】 第1図は本発明の一実施例の断面図、第2図は各電圧素
子に印加する電圧波形図、第3図は第1図の実施例の応
用例図、第4図、第5図、第6図は第二の実施例の、そ
れぞれ、平面図、断面図。 説明図、第7図、第8図は従来例の説明図、第9第7図 第Z(21 第3図 第4 図 第6団 Z 第7図 第80 1.9
[Brief Description of the Drawings] Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a voltage waveform diagram applied to each voltage element, Fig. 3 is an application example diagram of the embodiment of Fig. 1, FIG. 4, FIG. 5, and FIG. 6 are a plan view and a sectional view, respectively, of the second embodiment. Explanatory diagrams, Figures 7 and 8 are explanatory diagrams of conventional examples, Figure 9, Figure 7, Z (21, Figure 3, Figure 4, Group Z, Figure 7, Figure 80).

Claims (3)

【特許請求の範囲】[Claims] 1. 複数個の圧電素子と、前記圧電素子を内側に均等
角で配列し固着するケーシングと、前記ケーシングの内
側にあつて、前記圧電素子の先端に接するように配設さ
れた弾性体の円筒体と、前記円筒体の同心にあつて前記
円筒体が、前記圧電素子により変形した時、圧接力を受
ける前記円筒体の内径より小径の出力軸から成ることを
特徴とする回転アクチユエータ。
1. a plurality of piezoelectric elements; a casing in which the piezoelectric elements are arranged and fixed at equal angles; and an elastic cylindrical body disposed inside the casing so as to be in contact with the tips of the piezoelectric elements. . A rotary actuator comprising an output shaft that is concentric with the cylindrical body and has a smaller diameter than the inner diameter of the cylindrical body and receives a pressing force when the cylindrical body is deformed by the piezoelectric element.
2. 特許請求の範囲第1項において 前記円筒体の内周面にはセレーシヨン歯形が成形され、
前記円筒体が前記圧電素子により変形した時、前記セレ
ーシヨン歯形と噛み合うように成形されたセレーシヨン
軸からなることを特徴とする回転アクチユエータ。
2. In claim 1, a serration tooth profile is formed on the inner peripheral surface of the cylindrical body,
A rotary actuator comprising a serration shaft formed to mesh with the serration tooth profile when the cylindrical body is deformed by the piezoelectric element.
3. 特許請求の範囲第1項において、 前記円筒体の内周面と外周面に、前記圧電素子を複数個
固着させた弾性体と、前記弾性体が前記圧電素子により
変形した時、前記圧電素子が固着されていない部分の内
周面と外周面が接触し、圧接力を受ける内輪と外輪から
なることを特徴とする回転アクチユエータ。
3. In claim 1, there is provided an elastic body in which a plurality of piezoelectric elements are fixed to an inner circumferential surface and an outer circumferential surface of the cylindrical body, and when the elastic body is deformed by the piezoelectric element, the piezoelectric element A rotary actuator comprising an inner ring and an outer ring whose inner and outer peripheral surfaces are in contact with each other and receive a pressing force.
JP61164624A 1986-07-15 1986-07-15 Rotational actuator Pending JPS6323570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61164624A JPS6323570A (en) 1986-07-15 1986-07-15 Rotational actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61164624A JPS6323570A (en) 1986-07-15 1986-07-15 Rotational actuator

Publications (1)

Publication Number Publication Date
JPS6323570A true JPS6323570A (en) 1988-01-30

Family

ID=15796732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61164624A Pending JPS6323570A (en) 1986-07-15 1986-07-15 Rotational actuator

Country Status (1)

Country Link
JP (1) JPS6323570A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181681A (en) * 1987-01-23 1988-07-26 Canon Inc Piezoelectric element motor
JPH01182656A (en) * 1988-01-12 1989-07-20 Satake Kagaku Kikai Kogyo Kk Rotary driver
WO1994029946A1 (en) * 1993-06-14 1994-12-22 Geodetic Technology International Holdings N.V. Improvements relating to rotary drive mechanisms
WO2013038463A1 (en) * 2011-09-16 2013-03-21 株式会社ハーモニック・ドライブ・システムズ Vibration power-generating strain wave gearing
JP2014106231A (en) * 2012-11-23 2014-06-09 Eta Sa Manufacture Horlogere Suisse Mechanism with locking device, for driving hands of electro-mechanical wristwatch
ITUB20159424A1 (en) * 2015-12-15 2017-06-15 Phi Drive S R L Method of increasing the torque transmitted by a motor driven by linear actuators.
WO2017134749A1 (en) * 2016-02-02 2017-08-10 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing device and actuator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181681A (en) * 1987-01-23 1988-07-26 Canon Inc Piezoelectric element motor
JPH01182656A (en) * 1988-01-12 1989-07-20 Satake Kagaku Kikai Kogyo Kk Rotary driver
WO1994029946A1 (en) * 1993-06-14 1994-12-22 Geodetic Technology International Holdings N.V. Improvements relating to rotary drive mechanisms
WO2013038463A1 (en) * 2011-09-16 2013-03-21 株式会社ハーモニック・ドライブ・システムズ Vibration power-generating strain wave gearing
US9425712B2 (en) 2011-09-16 2016-08-23 Harmonic Drive Systems Inc. Vibration power-generating strain wave gearing
JP2014106231A (en) * 2012-11-23 2014-06-09 Eta Sa Manufacture Horlogere Suisse Mechanism with locking device, for driving hands of electro-mechanical wristwatch
ITUB20159424A1 (en) * 2015-12-15 2017-06-15 Phi Drive S R L Method of increasing the torque transmitted by a motor driven by linear actuators.
WO2017134749A1 (en) * 2016-02-02 2017-08-10 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing device and actuator
KR20180091086A (en) * 2016-02-02 2018-08-14 가부시키가이샤 하모닉 드라이브 시스템즈 Wave gear device and actuator
TWI704304B (en) * 2016-02-02 2020-09-11 日商和諧驅動系統股份有限公司 Wave gear device and actuator
US10865866B2 (en) 2016-02-02 2020-12-15 Harmonic Drive Systems Inc. Strain wave gearing and actuator

Similar Documents

Publication Publication Date Title
EP0449048B1 (en) Piezoelectric motor
EP0441540B1 (en) Vibration wave driven motor
JPS62293978A (en) Rotating actuator
Flynn Piezoelectric ultrasonic micromotors
EP0424609A1 (en) Piezoelectric actuator
JPS6323570A (en) Rotational actuator
WO2011125608A1 (en) Motor device, method for producing motor device, and robot device
Takemura et al. Characteristics of an ultrasonic motor capable of generating a multi-degrees of freedom motion
KR101177139B1 (en) Ultrasonic lead screw motor
US7245061B2 (en) Micro-beam friction liner and method of transferring energy
CN108494288B (en) Comb-tooth-type angular displacement stepping actuator and actuation method based on inverse flexure electricity principle
US5955820A (en) Ultrasonic motor
JPS62152381A (en) Rotating power device
Takemura et al. Development of a Bar-shaped Ultrasonic Motor for Multi-degrees of freedom Motion
JPH0349576A (en) Ultrasonic motor
JPS62213585A (en) Vibration wave motor
JPH09298893A (en) Ultrasonic actuator and biasing condition setting for a driven body in the ultrasonic actuator
JPH0824428B2 (en) Ultrasonic motor
Tomikawa et al. Some reformative trials of piezo-motors using longitudinal and flexural vibrations
JPS63110966A (en) Surface surge motor
RU1402207C (en) Device to initiate rotary motion
JPH0984368A (en) Piezoelectric motor
JPS6331480A (en) Ultrasonic motor
JP3025788B2 (en) Ultrasonic motor
JPS60190178A (en) Piezoelectric motor