JPS63234121A - Method and device for analyzing polarized light - Google Patents

Method and device for analyzing polarized light

Info

Publication number
JPS63234121A
JPS63234121A JP6581287A JP6581287A JPS63234121A JP S63234121 A JPS63234121 A JP S63234121A JP 6581287 A JP6581287 A JP 6581287A JP 6581287 A JP6581287 A JP 6581287A JP S63234121 A JPS63234121 A JP S63234121A
Authority
JP
Japan
Prior art keywords
wave
light
sample
beat
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6581287A
Other languages
Japanese (ja)
Other versions
JPH0473738B2 (en
Inventor
Toshihiko Yoshino
俊彦 芳野
Takaharu Hashimoto
橋本 孝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6581287A priority Critical patent/JPS63234121A/en
Publication of JPS63234121A publication Critical patent/JPS63234121A/en
Publication of JPH0473738B2 publication Critical patent/JPH0473738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To analyze polarized light with high accuracy by finding the complex amplitude reflection factor ratio of an S wave and a P wave of a sample from both beat waves generated by making the S wave and P wave of incident light and the S wave and P wave of reflected light cause heterodyne interference. CONSTITUTION:Laser light from a laser 1 is made incident on an orthogonal two- frequency AO modulator 3 and converted into two-frequency orthogonal linear polarized light which has a constant frequency difference, and the light is made incident on the sample 5. Then, part of the incident light is reflected by a half-mirror 6 and made incident on a 1st photoelectric converter 9 through a 1st analyzer 7, and reflected light from the sample 5 is made incident on a 2nd photoelectric converter 12 through a 2nd analyzer 10. Consequently, the beat wave by the heterodyne interference between the P wave and S wave of the incident light to the sample 5 and the beat wave by the heterodyne interference between the P wave and S wave of the reflected light from the sample 5 are generated and signals corresponding to the beat signals are outputted from the converters 9 and 12. Then, a phase meter 18 calculates the phase difference between the beat waves and a computer 19 calculates the complex amplitude reflection factor ratio.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、試料の光学定数や試料表面の薄膜の厚さ等の
測定に用いられる偏光解析方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ellipsometry method and apparatus used for measuring the optical constants of a sample, the thickness of a thin film on the sample surface, and the like.

(従来の技術) 偏光解析では、試料の反射光の偏光変化を表す量として
、試料入射面に垂直な振動ベクトルを有するS波と、試
料入射面に平行な振動ベクトルを有するP波との複素振
幅反射率比pを求め、ρをパラメータとして光学定数や
膜厚を演算するようにしている。
(Prior art) In polarization analysis, the complex of an S wave with a vibration vector perpendicular to the sample incidence plane and a P wave with a vibration vector parallel to the sample incidence plane is used as a quantity representing the polarization change of reflected light from a sample. The amplitude reflectance ratio p is determined, and the optical constant and film thickness are calculated using ρ as a parameter.

ρは、試料表面のP波とS波の振幅反射率を夫々r、 
Irl 、試料に対する入射光と反射光とのそれぞれP
波とS波間の位相差を夫々ΔiΔrとして、 ’;s  −exp  (i(Δr−Δi) )rl ・tan φ・ei Δ         ・・・・・
・(1)(t= %/”T 、Δ=Δr−Δi)で表わ
され、膜厚dは、入射角を01、入射光の波長をλ、薄
膜の屈折率をn、として、次式から求められる。
ρ is the amplitude reflectance of P wave and S wave on the sample surface, respectively.
Irl, P of the incident light and reflected light to the sample, respectively.
Letting the phase difference between the wave and the S wave as ΔiΔr, ';s −exp (i(Δr−Δi)) rl ・tan φ・ei Δ ・・・・・・
・(1) (t=%/”T, Δ=Δr−Δi), and the film thickness d is expressed as follows, where the angle of incidence is 01, the wavelength of the incident light is λ, and the refractive index of the thin film is n. It can be found from Eq.

・・・・・・(2) A A”  9rIp  it  rzs  −γzp  
?+s  ’Fz*百= 7’CFzm+FH@ 71
pγzp )−γ1F71sγtm −7xpC” 1
)r+s −r+p 従来の偏光解析方法は、コリメータアームとテレスコー
プア6−ムとの2本のアームを有するエリプソメータを
用い、光源からの単色光をコリメータアームに取付けた
偏光子と補償板とを介して試料に入射し、反射光をテレ
スコープアームに取付けた検光子を介して光電素子から
成る検出器に入射させるようにし、偏光子と検光子とを
回転させて反射光のP波成分とS波成分の消光条件を計
測し、この消光条件から上記(1)式のtanφとΔと
を求めるようにしている。
・・・・・・(2) A A" 9rIp it rzs -γzp
? +s 'Fz*100= 7'CFzm+FH@71
pγzp)-γ1F71sγtm-7xpC" 1
) r+s -r+p The conventional polarization analysis method uses an ellipsometer that has two arms, a collimator arm and a telescope arm, and converts monochromatic light from a light source into a polarizer and a compensator attached to the collimator arm. The reflected light is made to enter a detector consisting of a photoelectric element via an analyzer attached to a telescope arm, and the P-wave component of the reflected light is detected by rotating the polarizer and analyzer. The extinction condition of the S wave component is measured, and tanφ and Δ in the above equation (1) are determined from this extinction condition.

(発明が解決しようとする問題点) 上記のものでは、偏光子と検光子とを回転させる可動部
が存在するため、振動等の機械的外乱による影響を受は
易く、更に保守性が悪くなり、又偏光子の方位と検光子
の方位との独立した2つのパラメータを変化させつつ消
光条件を求めるため、計測に時間がかかる問題がある。
(Problems to be Solved by the Invention) In the above-mentioned device, since there is a movable part that rotates the polarizer and analyzer, it is easily affected by mechanical disturbances such as vibrations, and maintainability is further deteriorated. In addition, since the extinction condition is determined while changing two independent parameters: the orientation of the polarizer and the orientation of the analyzer, there is a problem in that the measurement takes time.

本発明は、光波検波に用いられるヘテロダイン干渉の技
術を利用し、検光子等の光学部品を動かすことなく偏光
解析を行い得るようにして、上記従来技術の問題点を解
決することをその目的とする。
The purpose of the present invention is to solve the problems of the prior art described above by making it possible to perform polarization analysis without moving optical components such as an analyzer by using heterodyne interference technology used in optical wave detection. do.

(問題点を解決するための手段) 本願第1発明は、上記目的を達成する偏光解析方法を提
供するもので、試料入射面に垂直な振動ベクトルを有す
るS波と、試料入射面に平行な振動ベクトルを有し且つ
S波と周波数の異るP波とから成る2周波数直交直線偏
光を入射光とし、入射光のS波とP波とをヘテロダイン
干渉させたビート波と、反射光のS波とP波とをヘテロ
ダイン干渉させたビート波とに基いて試料におけるS波
とP波の複素振幅反射率比を求めるようにしたことを特
徴とする。
(Means for Solving the Problems) The first invention of the present application provides a polarization analysis method that achieves the above object. The incident light is two-frequency orthogonal linearly polarized light that has a vibration vector and is composed of an S wave and a P wave with different frequencies, and a beat wave that is the result of heterodyne interference between the S wave and P wave of the incident light, and the S wave of the reflected light. The present invention is characterized in that the complex amplitude reflectance ratio of the S wave and the P wave in the sample is determined based on the beat wave obtained by heterodyne interference between the wave and the P wave.

本願第2発明は、上記第1発明の実施に用いる偏光解析
装置を提供するもので、試料入射面に垂直な振動ベクト
ルを有するS波と、試料入射面に平行な振動ベクトルを
有し且つS波と周波数の異るP波とから成る2周波数直
交直線偏光に変換を生じせしめる光源と光源からの光波
を試料に入射する光ファイバと、該光ファイバからの試
料に対する入射光の一部を45@方位の第1検光子と光
ファイバとを介して入射する第1光電変換器と、該試料
からの反射光を45°方位の第2の検光子と光ファイバ
とを介して入射する第2光電変換器とを備えることを特
徴とする。
The second invention of the present application provides an ellipsometry device used for carrying out the first invention, and which has an S wave having a vibration vector perpendicular to the sample entrance plane and an S wave having a vibration vector parallel to the sample entrance plane. A light source that causes conversion into two-frequency orthogonal linearly polarized light consisting of P waves and P waves of different frequencies, an optical fiber that inputs the light waves from the light source into the sample, and a part of the light incident on the sample from the optical fiber. A first photoelectric converter receives light reflected from the sample through a first analyzer and an optical fiber in the @ direction, and a second photoelectric converter receives reflected light from the sample through a second analyzer and an optical fiber in a 45° direction. It is characterized by comprising a photoelectric converter.

(作 用) 入射光のS波の振幅と周波数を夫々a+fl。(for production) Let the amplitude and frequency of the S wave of the incident light be a+fl, respectively.

P波のそれをす、f*、P波とS波の位相差をΔiとす
ると、入射光を45°方位の第1検光子を通してヘテロ
ダイン干渉させたときのビート波の強度1.は、 11=a” +b”+2ab cos(act+Δi 
)  ・・・−(3)ω=2π、(f、−tz) となる。
Letting that of the P wave be f*, and the phase difference between the P wave and the S wave be Δi, the intensity of the beat wave when the incident light is subjected to heterodyne interference through the first analyzer oriented at 45 degrees is 1. is, 11=a"+b"+2ab cos(act+Δi
) ...-(3) ω=2π, (f, -tz).

又、振幅反射率rl+rllで反射された光は、光の入
射角に応じた試料固有の位相飛びを生じ、反射光のS波
とP波の振幅は夫々r、a、  rpbとなり、S波と
P波の位相差をΔrとすると、45°方位の第2検光子
を通してヘテロダイン干渉させたときのビート波の強度
!、は、!、=(rla)” + (rob)”+ 2
 rla −r、b cos(act+Δr ) ・・
・・・・・・(4)となる。
In addition, the light reflected by the amplitude reflectance rl + rll causes a sample-specific phase jump depending on the incident angle of the light, and the amplitudes of the S wave and P wave of the reflected light are r, a, and rpb, respectively, and the S wave and If the phase difference of the P wave is Δr, then the intensity of the beat wave when it is subjected to heterodyne interference through a second analyzer oriented at 45°! ,teeth,! ,=(rla)"+(rob)"+2
rla −r, b cos(act+Δr)...
...(4).

入射光と反射光とのそれぞれより得られたビート波間の
位相差Δr−Δlは、試料表面反射時に光波のP波、S
波間に生じた位相飛びがあられれ入射光のビート波と反
射光のビート波との位相差から上記(1)式のΔを求め
られる。
The phase difference Δr−Δl between the beat waves obtained from the incident light and the reflected light, respectively, is the P wave and S wave of the light wave when reflected from the sample surface.
The phase jump occurring between the waves is caused by the phase difference between the beat wave of the incident light and the beat wave of the reflected light, and Δ in the above equation (1) can be determined.

又、(1)式のtanφは、入射光と反射光のビート波
の変調度M、、M、を用いて、次式から求められる。
Further, tanφ in equation (1) can be obtained from the following equation using the modulation degrees M, , M of the beat waves of the incident light and reflected light.

(復号はr、 > rpで+r  rs <r、で−を
取る)尚、a−bであれば、 lr となるが、一般にはaとbは不一致となり、(5)式に
よりtan φを求める。
(For decoding, take r, +r for > rp, - for rs < r, etc.) If a-b, then lr, but generally a and b do not match, and tan φ is calculated using equation (5). .

以上の如く、入射光のビート波と反射光のビート波とに
基いてΔ、 tanφをもとめられるから、試料におけ
るP波とS波の複素振幅反射率比ρも求められる。
As described above, since Δ and tanφ can be obtained based on the beat wave of the incident light and the beat wave of the reflected light, the complex amplitude reflectance ratio ρ of the P wave and the S wave in the sample can also be obtained.

(実施例) 第1図を参照して、(1)はHe−Neレーザを示し、
該レーザ(1)からの波長633n−のレーザ光をアイ
ソレータ(2)を介して直交2周波AOモジュレータ(
3)に入射し、該モジユレータ(3)でレーザ光を所定
の周波数差例えばIM)tzの周波数差を持った2周波
数直交直線偏光に変換し、これを両端にセルフオフレン
ズ(4a)を取付けた偏波保持型の光ファイバ(4)を
介して試料(5)に入射するようにした。
(Example) Referring to FIG. 1, (1) shows a He-Ne laser,
The laser beam with a wavelength of 633n- from the laser (1) is passed through the isolator (2) to the orthogonal two-frequency AO modulator (
3), the modulator (3) converts the laser light into two-frequency orthogonal linearly polarized light having a predetermined frequency difference, for example, IM)tz, and attaches self-off lenses (4a) to both ends of the laser light. The light was made to enter the sample (5) via a polarization-maintaining optical fiber (4).

ここで、該光ファイバ(4)は、2周波数直交直線偏光
の一方の偏光成分が試料(5)の入射面に垂直な振動ベ
クトルを有するS波、他方の偏光、成分が当該入射面に
平行な振動ベクトルを有するP波となるように方位を合
わせ、且つ試料(5)に対する光線の入射角が所定角度
θ、になるように設けるものとし、その投光端のセルフ
オフレンズ(4a)と試料(5)との間の光路にハーフ
ミラ−(6)を介設して、該ミラー(6)により入射光
の一部を反射し、これを45°方位の第1検光子(7)
とバンドル型の光ファイバ(8)とを介して第1光電変
換器(9)に入射するようにした。 又、試料(5)か
らの反射光を45@方位の第2検光子0@とバンドル型
の光ファイバ00とを介して第2光電変換器Q2iに入
射するようにし、更に試料(5)と第2検光子Qlとの
間の光路にハーフミラ−側を介設し、該ミラー側により
反射光の一部を反射して、この反射光を偏光ビームスプ
リフタ側によりP波とS波とに分離し、分離されたP波
とS波とを夫々光ファイバ05)05)を介して1対の
ディテクタQ6)Q6)に導き、該両ディテクタ000
0からの信号を比較器Q?)に入力して、反射光のP波
とS波の光量の大小を求めるようにした。
Here, the optical fiber (4) is an S wave in which one polarization component of the two-frequency orthogonal linearly polarized light has a vibration vector perpendicular to the plane of incidence of the sample (5), and the other polarized light component is parallel to the plane of incidence of the sample (5). The direction of the light beam is adjusted so that the P wave has a vibration vector of A half mirror (6) is interposed in the optical path between the sample (5), a part of the incident light is reflected by the mirror (6), and the reflected light is passed to the first analyzer (7) at a 45° azimuth.
and a bundle-type optical fiber (8) to enter the first photoelectric converter (9). In addition, the reflected light from the sample (5) is made to enter the second photoelectric converter Q2i via the second analyzer 0@ with the 45@ direction and the bundle type optical fiber 00, and the light reflected from the sample (5) is A half mirror side is interposed in the optical path between the second analyzer Ql, a part of the reflected light is reflected by the mirror side, and this reflected light is converted into P waves and S waves by the polarizing beam splitter side. The separated P wave and S wave are respectively guided to a pair of detectors Q6)Q6) via optical fibers 05)05), and both detectors 000
Signal from 0 to comparator Q? ) to determine the magnitude of the light intensity of the P wave and S wave of the reflected light.

以上の構成によれば、第1検光子(7)を通して試料(
5)への入射光のP波とS波のへテロダイン干渉による
ビート波が形成されると共に、第2検光子Oのを通して
試料(5)からの反射光のP波とS波のへテロダイン干
渉によるビート波が形成され、入射光のビート波に応じ
た信号が第1光電変換器(9)と、反射光のビート波に
応じた信号が第2光電変換器021とから出力され、両
光電変換器(9)02)からの信号を位相計O・に入力
する。第2図にi線で入射光のビート波形と、r線で反
射光のビート波形との様子を示す。
According to the above configuration, the sample (
5) A beat wave is formed by heterodyne interference between the P wave and S wave of the incident light, and the heterodyne interference of the P wave and S wave of the reflected light from the sample (5) passes through the second analyzer O. A beat wave is formed by the beat wave of the incident light, and a signal corresponding to the beat wave of the incident light is output from the first photoelectric converter (9), and a signal corresponding to the beat wave of the reflected light is output from the second photoelectric converter 021. The signal from the converter (9) 02) is input to the phase meter O. FIG. 2 shows the beat waveform of incident light on the i-line and the beat waveform of reflected light on the r-line.

入射光のビート波形は上記(3)式に従った波形に、又
反射光のビート波形は上記(4)式に従った波形になり
、両波形の位相差(位相計出力)から上記作用の項で説
明したようにΔを求めることができる。
The beat waveform of the incident light is a waveform according to the above equation (3), and the beat waveform of the reflected light is a waveform according to the above equation (4), and the above effect can be calculated from the phase difference between the two waveforms (phase meter output). Δ can be determined as explained in section.

又、上記作用の項で説明したビート波の変調度Mi 、
Mrは、第2図にAi 、Arで示すビート波形の交流
振幅と、Di 、Drで示すビート波形の直流成分との
比Ai/Di 、Ar/Drに対応し、両光電変換器(
9)Q’bからの信号をコンピュータOg)に入力して
ML、Mrを求め、上記(5)式によるtanφの演算
を行う。この場合、前記比較器面からの信号により、反
射光のS波振幅r、aとP波振幅rpbの大小を判別し
、上記作用の項で説明した(5)式中の復号を選択する
Moreover, the modulation degree Mi of the beat wave explained in the above section of the effect,
Mr corresponds to the ratios Ai/Di and Ar/Dr of the AC amplitude of the beat waveform shown by Ai and Ar in FIG. 2 and the DC component of the beat waveform shown by Di and Dr, and
9) Input the signal from Q'b to the computer Og) to obtain ML and Mr, and calculate tanφ using the above equation (5). In this case, the magnitude of the S-wave amplitude r, a and the P-wave amplitude rpb of the reflected light is determined based on the signal from the comparator surface, and the decoding in equation (5) described in the above operation section is selected.

次表は、Si基材に熱酸化法でSi0g膜を形成したA
、82種の試料について行った測定結果を示す。同表の
dは、上記方法で求めたtanφ、Δから上記(1)式
により得られるρに基き上記(2)に従って演算したS
i0g膜の膜厚、d′は白色光干渉色でもとめた膜厚で
あり、両者の一致は良い。
The following table shows A in which a Si0g film was formed on a Si base material using a thermal oxidation method.
, shows the results of measurements conducted on 82 types of samples. d in the same table is S calculated according to (2) above based on ρ obtained from equation (1) above from tanφ and Δ obtained by the above method.
The film thickness of the i0g film, d', is the film thickness determined by white light interference color, and the two agree well.

°(発明の効果) 以上の如く本発明によるときは、入射光として2周波数
直交直線偏光を用い、P波とS波のヘテロダイン干渉に
より、検光子等の光学部品を動かすことなく試料の偏光
解析を行い得られ、可動部が不要となって、保守性が良
(なると共に、振動等の機械的外乱による影響を受けに
くくなり、実時間で高情度の偏光解析を行うことが可能
となる。
(Effects of the Invention) As described above, according to the present invention, polarization analysis of a sample is performed without moving optical parts such as an analyzer by using two-frequency orthogonal linearly polarized light as the incident light and by heterodyne interference of P waves and S waves. This eliminates the need for moving parts, improves maintainability, and makes it less susceptible to mechanical disturbances such as vibrations, making it possible to perform high-sensitivity polarization analysis in real time. .

又、第2発明によれば、2周波数直交直線偏光を生じせ
しめる光源からの光波を光ファイバを介して試料に入射
すると共に、入射光と反射光との各検光子を介しての各
光電変換器への伝送も光ファイバを用いて行うため、遠
隔測定が可能となると共に、光ファイバの可撓性により
設置性が良くなり、スパッタ装置の真空ベルジャ内等の
特殊な環境下での使用も可能となり、而も試料への投光
、受光部を光ファイバーで構成出来るため装置が小型軽
量化され、機械的外乱に一層強くなる等の効果を有する
Further, according to the second invention, a light wave from a light source that generates two-frequency orthogonal linearly polarized light is incident on the sample via an optical fiber, and each photoelectric conversion of the incident light and reflected light is performed via each analyzer. Since the transmission to the equipment is also carried out using optical fiber, remote measurement is possible, and the flexibility of optical fiber makes it easy to install, making it suitable for use in special environments such as inside the vacuum bell jar of sputtering equipment. In addition, since the light projecting part to the sample and the light receiving part can be composed of optical fibers, the apparatus can be made smaller and lighter, and it has effects such as being more resistant to mechanical disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の1例の線図、第2図は入射光と反
射光の夫々のビート波形を示す線図である。
FIG. 1 is a diagram of an example of the apparatus of the present invention, and FIG. 2 is a diagram showing beat waveforms of incident light and reflected light, respectively.

Claims (1)

【特許請求の範囲】 1、試料入射面に垂直な振動ベクトルを有するS波と、
試料入射面に平行な振動ベクトルを有し且つS波と周波
数の異るP波とから成る2周波数直交直線偏光を入射光
とし、入射光のS波とP波とをヘテロダイン干渉させた
ビート波と、反射光のS波とP波とをヘテロダイン干渉
させたビート波とに基いて試料におけるS波とP波の複
素振幅反射率比を求めるようにしたことを特徴とする偏
光解析方法。 2、試料入射面に垂直な振動ベクトルを有するS波と、
試料入射面に平行な振動ベクトルを有し且つS波と周波
数の異るP波とから成る2周波数直交直線偏光に変換を
生じせしめる光源と該光源からの光波を試料に入射する
光ファイバと、該光ファイバからの試料に対する入射光
の一部を45°方位の第1検光子と光ファイバとを介し
て入射する第1光電変換器と、該試料からの反射光を4
5°方位の第2の検光子と光ファイバとを介して入射す
る第2光電変換器とを備えることを特徴とする偏光解析
装置。
[Claims] 1. S wave having a vibration vector perpendicular to the sample incidence plane;
A beat wave is created by heterodyne interference between the S wave and P wave of the incident light, where the incident light is two-frequency orthogonal linearly polarized light that has a vibration vector parallel to the sample incidence plane and is composed of an S wave and a P wave with different frequencies. and a beat wave obtained by heterodyne interference between the S wave and the P wave of the reflected light. 2. S wave having a vibration vector perpendicular to the sample incidence plane,
a light source that has a vibration vector parallel to the sample incidence plane and that causes conversion into two-frequency orthogonal linearly polarized light consisting of an S wave and a P wave of different frequencies; an optical fiber that makes the light wave from the light source enter the sample; A first photoelectric converter makes a part of the light incident on the sample from the optical fiber enter the sample through the first analyzer and the optical fiber, and converts the reflected light from the sample into the first photoelectric converter.
A polarization analyzer comprising: a second analyzer oriented at 5°; and a second photoelectric converter that enters the light via an optical fiber.
JP6581287A 1987-03-23 1987-03-23 Method and device for analyzing polarized light Granted JPS63234121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6581287A JPS63234121A (en) 1987-03-23 1987-03-23 Method and device for analyzing polarized light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6581287A JPS63234121A (en) 1987-03-23 1987-03-23 Method and device for analyzing polarized light

Publications (2)

Publication Number Publication Date
JPS63234121A true JPS63234121A (en) 1988-09-29
JPH0473738B2 JPH0473738B2 (en) 1992-11-24

Family

ID=13297812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6581287A Granted JPS63234121A (en) 1987-03-23 1987-03-23 Method and device for analyzing polarized light

Country Status (1)

Country Link
JP (1) JPS63234121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147984A (en) * 1992-11-10 1994-05-27 Moritetsukusu:Kk Polarized light measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147984A (en) * 1992-11-10 1994-05-27 Moritetsukusu:Kk Polarized light measuring method

Also Published As

Publication number Publication date
JPH0473738B2 (en) 1992-11-24

Similar Documents

Publication Publication Date Title
US3728030A (en) Polarization interferometer
US4176951A (en) Rotating birefringent ellipsometer and its application to photoelasticimetry
JP3791975B2 (en) Homodyne interferometer and its reception method
US4480916A (en) Phase-modulated polarizing interferometer
US4309110A (en) Method and apparatus for measuring the quantities which characterize the optical properties of substances
CA1264959A (en) Static interferometric ellipsometer
JP3337734B2 (en) Infrared ellipsometer
CN1187600C (en) Apparatus and method for measuring equivalent refraction power of optical film and physical thickness
JPS5977319A (en) Method and device for measuring ultrasonic surface wave
US4583855A (en) Optical phase measuring apparatus
JPS58139006A (en) Method and device for measuring thickness and refractive index of transparent material
EP0075689A1 (en) Optical instruments for viewing a sample surface
US5351124A (en) Birefringent component axis alignment detector
JPH0131131B2 (en)
JPS63234121A (en) Method and device for analyzing polarized light
US4832492A (en) Heterodyne michelson interferometer for polarization measurements
JPS60122333A (en) Polarization analyzer
US5946096A (en) Heterodyne interferometry method for measuring physical parameters of medium
WO1994016310A1 (en) Zeeman ellipsometer
JP2529562B2 (en) Ellipsometer
JPS63148108A (en) Ellipsometer
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
JPH01143931A (en) Method and device for measuring mode double refractive index of birefringent fiber
JPH03282205A (en) Thickness measuring apparatus
Jin et al. Effect of multiple reflections on accuracy of electro-optic coefficient measurements