JPS6323395B2 - - Google Patents

Info

Publication number
JPS6323395B2
JPS6323395B2 JP16756979A JP16756979A JPS6323395B2 JP S6323395 B2 JPS6323395 B2 JP S6323395B2 JP 16756979 A JP16756979 A JP 16756979A JP 16756979 A JP16756979 A JP 16756979A JP S6323395 B2 JPS6323395 B2 JP S6323395B2
Authority
JP
Japan
Prior art keywords
valve
chamber
compressor
separation tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16756979A
Other languages
Japanese (ja)
Other versions
JPS5692393A (en
Inventor
Masanori Tanaka
Kaoru Tokunaga
Takashi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP16756979A priority Critical patent/JPS5692393A/en
Publication of JPS5692393A publication Critical patent/JPS5692393A/en
Publication of JPS6323395B2 publication Critical patent/JPS6323395B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rotary-Type Compressors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、吸気閉塞型容量調整装置を備えた
回転圧縮機における始動時の負荷軽減装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a load reduction device at the time of startup in a rotary compressor equipped with an intake blockage type capacity adjustment device.

(従来技術及び問題点) 回転圧縮機にはベーン型あるいはスクリユー型
などの形式が一般に使用されている。
(Prior Art and Problems) Vane type or screw type rotary compressors are generally used.

いずれの形式の圧縮機においても始動時の負荷
はできるだけ少ないことが望ましく従来種々の形
式の始動時負荷軽減装置が提案されている。
In any type of compressor, it is desirable that the load at start-up be as small as possible, and various types of start-up load reduction devices have been proposed.

第1図,第2図は従来一般に用いられている始
動時負荷軽減装置の一例を示すもので、第1図は
その配管系統図、第2図はその配線図である。第
1図中1は吸気閉塞型容量調整装置で、弁2の開
閉によつて圧縮機3に吸入される空気量を、消費
側における圧縮空気の使用量に応じて容量調整を
行つている。
FIGS. 1 and 2 show an example of a conventional start-up load reduction device generally used. FIG. 1 is a piping system diagram thereof, and FIG. 2 is a wiring diagram thereof. Reference numeral 1 in FIG. 1 denotes an intake blockage type capacity adjustment device, which adjusts the amount of air taken into the compressor 3 by opening and closing a valve 2 in accordance with the amount of compressed air used on the consumption side.

そして、圧縮機3に吸入された空気は作用空間
内(図示せず)で圧縮されると共に、油分離槽4
から油冷却器12を介して前記作用空間に噴射さ
れる冷却、潤滑、密封用の油と共に気液混合状態
となつて油分離槽4に圧入され、該油分離槽で圧
縮空気と油は分離され、油は油分離槽4の下方に
流下貯溜し、再び圧縮機の前記作用空間に噴射さ
れ循環を繰り返す。
The air sucked into the compressor 3 is compressed in a working space (not shown), and the oil separation tank 4
The oil for cooling, lubrication, and sealing is injected into the working space through the oil cooler 12, and the mixture becomes a gas-liquid state and is pressurized into the oil separation tank 4, where the compressed air and oil are separated. The oil flows down and is stored below the oil separation tank 4, and is again injected into the working space of the compressor to repeat the circulation.

一方、油分離槽4で油分を除去された圧縮空気
は、保圧弁5によつて該油分離槽内の圧力を一定
圧力以上に維持されながら逆止弁6を介して吐出
主管7より空気工具等に供給される。保圧弁5は
定格吐出圧力が7Kg/cm2のいわゆる汎用圧縮機の
場合には概略4Kg/cm2に設定されるが、これは油
分離槽4内の圧力がこれ以下に低下すると該槽内
の油分離効率が著しく低下するのでこれを防止す
る為に設けられている。
On the other hand, the compressed air from which oil has been removed in the oil separation tank 4 is supplied to the air tool from the main discharge pipe 7 via the check valve 6 while the pressure in the oil separation tank is maintained above a certain pressure by the pressure holding valve 5. etc. will be supplied. The pressure holding valve 5 is set to approximately 4 kg/cm 2 in the case of a general-purpose compressor with a rated discharge pressure of 7 kg/cm 2 , but this means that if the pressure in the oil separation tank 4 drops below this value, This is provided to prevent the oil separation efficiency from dropping significantly.

また、容量調整装置1内に設けられた弁2は、
開弁室11と閉弁室9を区画するピストン又はダ
イヤフラム等の壁体と連結固定し、吐出主管7側
の消費空気量に応じて圧縮機3内に吸入する空気
の容量制御を行う。
Moreover, the valve 2 provided in the capacity adjustment device 1 is
It is connected and fixed to a wall such as a piston or a diaphragm that partitions the valve-opening chamber 11 and the valve-closing chamber 9, and controls the volume of air sucked into the compressor 3 according to the amount of air consumed on the discharge main pipe 7 side.

そしてその動作は、圧縮空気の消費量が減少す
ると油分離槽内の圧力が上昇し、該圧力が圧力調
整弁8の設定圧力値に達すると容量調整装置1の
閉弁室9に圧縮空気が流入する。これにより油分
離槽4より減圧弁10を介して導入された圧縮空
気により一定の圧力に保たれている開弁室11の
圧力と、前記閉弁室9の圧力とが釣り合う位置ま
で弁2を移動させて容量調整を行う。
The operation is such that when the consumption of compressed air decreases, the pressure in the oil separation tank increases, and when the pressure reaches the set pressure value of the pressure regulating valve 8, compressed air flows into the valve-closing chamber 9 of the capacity regulating device 1. Inflow. As a result, the valve 2 is moved to a position where the pressure in the open valve chamber 11, which is maintained at a constant pressure by compressed air introduced from the oil separation tank 4 via the pressure reducing valve 10, and the pressure in the closed valve chamber 9 are balanced. Move it to adjust the capacity.

また、この減圧弁10の設定圧力は概ね2Kg/
cm2程度に設定され、閉弁室9に圧力がないときに
弁2のピストンの摺動抵抗に打ち勝つて該弁をス
ムースに開弁させると共に、全開状態から急激に
閉弁したときのクツシヨン効果を持たせるように
なつている。
Moreover, the set pressure of this pressure reducing valve 10 is approximately 2 kg/
cm2 , and when there is no pressure in the valve closing chamber 9, it overcomes the sliding resistance of the piston of the valve 2 to smoothly open the valve, and also has a cushioning effect when the valve is suddenly closed from a fully open state. It is becoming more and more common to have

第2図は減電圧始動装置としてY―△始動装置
を使用した場合の電気配線図で、その動作は圧縮
機駆動用電動機の始動スイツチ50をONするこ
とにより主接触器51が励磁され、その接点51
xがONすることにより自己保持回路が形成され
る。
Fig. 2 is an electrical wiring diagram when a Y-△ starter is used as a reduced-voltage starter.The main contactor 51 is energized by turning on the starter switch 50 of the compressor drive motor. Contact point 51
A self-holding circuit is formed by turning on x.

同時にタイマー52,53、Y用電磁接触器5
4が励磁され前記主接触器51の接点51XとY
用電磁接触器54の接点54XがONするため電
動機55はY運転に入る。タイマー52の設定時
間経過後(通常は5〜10秒)タイマー52の接点
52xがOFFして52yがONするためY用電磁
接触器54の励磁が解かれ△用電磁接触器56が
励磁される。これによりY用電磁接触器の接点5
4XがOFFし△用電磁接触器の接点56XがON
し電動機55は全電圧で運転される。なお、Y用
電磁接触器54の接点54xと△用電磁接触器の
接点56xは相互インターロツク回路を形成し、
接点54Xと接点56Xとを同時にONすること
によつて電源を短絡し、重大事故が発生すること
を防止している。なお、49はサーマルリレーで
電動機55の過負荷を検知して接点49xを
OFFし電動機を停止させる。57は停止スイツ
チである。タイマー53はY運転から△運転に切
り換つた後に接点53xをONするように時間を
設定され、電磁弁70は非通電時に油分離槽4と
閉弁室9とを連通するように配管されている。
At the same time, timers 52, 53, Y magnetic contactor 5
4 is energized, and the contacts 51X and Y of the main contactor 51
Since the contact 54X of the electromagnetic contactor 54 is turned on, the motor 55 enters Y operation. After the set time of the timer 52 has elapsed (usually 5 to 10 seconds), the contact 52x of the timer 52 turns OFF and the contact 52y turns ON, so that the Y electromagnetic contactor 54 is deenergized and the △ electromagnetic contactor 56 is energized. . As a result, contact 5 of the Y electromagnetic contactor
4X is OFF and contact 56X of the △ magnetic contactor is ON.
The electric motor 55 is operated at full voltage. Note that the contact 54x of the Y electromagnetic contactor 54 and the contact 56x of the △ electromagnetic contactor form a mutual interlock circuit,
By turning on contacts 54X and 56X at the same time, the power supply is short-circuited to prevent serious accidents from occurring. In addition, 49 is a thermal relay that detects the overload of the motor 55 and closes the contact 49x.
Turn OFF to stop the electric motor. 57 is a stop switch. The timer 53 is set to turn on the contact 53x after switching from Y operation to △ operation, and the solenoid valve 70 is piped to communicate between the oil separation tank 4 and the valve-closing chamber 9 when not energized. There is.

一方、圧縮機側においては始動スイツチ50の
ONによつて圧縮機3が運転されると、該圧縮機
の吸入室13に生ずる負圧で弁2が開き、空気は
圧縮機内で圧縮されて油分離槽4内に圧送され
る。このとき電磁弁70はまだ通電されていない
ために閉弁室9には油分離槽と同一圧力が導入さ
れる。一方、油分離槽の圧力は減圧弁10を通つ
て開弁室11に対しても供給されている。
On the other hand, on the compressor side, the start switch 50 is turned on.
When the compressor 3 is operated by ON, the valve 2 is opened by the negative pressure generated in the suction chamber 13 of the compressor, and the air is compressed within the compressor and forced into the oil separation tank 4. At this time, since the electromagnetic valve 70 is not energized yet, the same pressure as that of the oil separation tank is introduced into the valve-closing chamber 9. On the other hand, the pressure of the oil separation tank is also supplied to the valve opening chamber 11 through the pressure reducing valve 10.

このため閉弁室9の圧力が弁2の移動時の摺動
抵抗に打ち勝つに必要な荷重と開弁室に作用する
荷重と、さらに吸入口13側より弁2に作用する
負圧による荷重を上廻る圧力となつて始めて弁2
を完全に閉止し無負荷運転となる。
Therefore, the pressure in the valve-closing chamber 9 combines the load necessary to overcome the sliding resistance when the valve 2 moves, the load acting on the valve-opening chamber, and the load due to the negative pressure acting on the valve 2 from the suction port 13 side. Valve 2 is opened only when the pressure exceeds
is completely closed and becomes no-load operation.

実測によればこのときの開弁室内圧力は約4
Kg/cm2で、油分離槽の圧力も当然4Kg/cm2となつ
ており、該圧力への到達時間は通常始動後約4秒
である。この後、タイマー52の設定時間に達し
て圧縮機が無負荷運転の状態で電動機のY―△切
り換えが行われる。Y―△の切り換え完了後タイ
マー53の設定時間になつて始めてタイマー53
の接点53xがONし電磁弁70が通電され、油
分離槽4と閉弁室9の配管は遮断されるので弁2
は開き圧縮機は負荷運転に移る。以後再始動され
るまで電磁弁70はこの状態を保つ。油分離槽の
圧力が上昇し圧力調整弁8の設定圧力に達した後
該圧力調整弁の作用で閉弁室9内への圧力供給を
増減させて弁2の開閉による容量調整を行う。
According to actual measurements, the pressure in the valve opening chamber at this time was approximately 4
Kg/cm 2 , and the pressure in the oil separation tank is naturally 4 Kg/cm 2 , and the time it takes to reach this pressure is usually about 4 seconds after startup. Thereafter, when the set time of the timer 52 is reached, the Y--Δ switching of the motor is performed while the compressor is in no-load operation. The timer 53 does not start until the set time of the timer 53 is reached after the switching of Y-△ is completed.
Contact 53
opens and the compressor shifts to load operation. Thereafter, the solenoid valve 70 maintains this state until it is restarted. After the pressure in the oil separation tank rises and reaches the set pressure of the pressure regulating valve 8, the pressure regulating valve increases or decreases the pressure supply into the valve-closing chamber 9, and the capacity is adjusted by opening and closing the valve 2.

また、その他の負荷軽減装置を用いた圧縮機と
して特開昭51―28207号公報に示すものが公知で
あるが、この圧縮機は前述吸気閉塞型容量調整装
置を用い、かつ吐出室内に排出される気液混合状
態の油と空気を前記吐出室にて分離し、油は回収
ポンプにて常時油分離槽内に回収する一方、圧縮
空気は逆止弁を介して油分離槽内に圧入するよう
構成し、始動時前記容量調整装置が動作し圧縮機
が無負荷運転状態となつたときに、前記圧縮機の
吐出室内における圧縮機ロータにかかる背圧を回
収ポンプにて除去し無負荷時の消費動力を大巾に
低減したものであるが、何れの場合に於ても該圧
縮機の始動後吸気閉塞装置の弁を閉じ、無負荷運
転になるまでに時間がかかると共に、その吸気閉
塞圧力も高い為、始動直後における圧縮機ロータ
の吐出側背圧が高く、よつて原動機側の起動トル
クもさほど下がらず充分な始動負荷の軽減効果が
得られていないのが実情である。
In addition, a compressor using another load reduction device is disclosed in Japanese Patent Application Laid-Open No. 51-28207, but this compressor uses the aforementioned intake occlusion type capacity adjustment device and has no air discharged into the discharge chamber. Oil and air in a gas-liquid mixed state are separated in the discharge chamber, and the oil is constantly recovered into the oil separation tank by a recovery pump, while the compressed air is forced into the oil separation tank via a check valve. When the capacity adjustment device operates at startup and the compressor enters a no-load operation state, the back pressure applied to the compressor rotor in the discharge chamber of the compressor is removed by a recovery pump, and the no-load operation is performed. However, in both cases, it takes time to close the valve of the intake blocking device after the compressor starts, and it takes time to reach no-load operation. Since the pressure is also high, the back pressure on the discharge side of the compressor rotor is high immediately after starting, and the starting torque on the prime mover side does not decrease much, so the actual situation is that a sufficient starting load reduction effect cannot be obtained.

その為、特に寒冷時に於ては前記吸気閉塞装置
の弁のピストン部及び軸部の摺動抵抗も増すた
め、閉弁遅れが生じ、これにより閉弁圧力も一段
と上昇し、しばしば起動渋滞を生ずる他、電源事
情の悪い土木工事現場等に於ては電圧降下に伴う
起動の失敗や、これに伴う電動機の焼損事故も多
かつた。
Therefore, especially in cold weather, the sliding resistance of the piston and shaft parts of the valve of the intake blocking device also increases, resulting in a delay in valve closing, which further increases the valve closing pressure, often resulting in startup jams. In addition, at civil engineering construction sites where power supply conditions are poor, there have been many startup failures due to voltage drops and motor burnout accidents caused by this.

(目的) 本発明は、叙上の問題点に鑑み圧縮機の始動直
後における容量調整装置の閉弁時間を従来機以上
に短縮し、該容量調整装置の応答性を高めると共
に、最終吐出室における圧縮機ロータにかかる背
圧を最小限に押さえ、始動時原動機にかかる過大
な起動トルクを低減し、該原動機の保護及び耐久
性の向上を図り、高性能で経済的な始動負荷軽減
装置を提供することを目的とする。
(Objective) In view of the above-mentioned problems, the present invention shortens the valve closing time of the capacity adjustment device immediately after starting the compressor compared to conventional machines, improves the responsiveness of the capacity adjustment device, and Minimizes the back pressure applied to the compressor rotor, reduces excessive starting torque applied to the prime mover during startup, protects the prime mover and improves its durability, and provides a high-performance and economical starting load reduction device. The purpose is to

(構成) 本発明は、以上の目的を達成するために、開弁
室と閉弁室との圧力差により圧縮機への吸入空気
通路を開閉する吸気閉塞型容量調整装置と、該圧
縮機の吐出室と油分離槽間には逆止弁を設け、前
記吐出室内に滞溜する潤滑油を運転中常時回収ポ
ンプにより油分離槽内に回収するように構成した
回転圧縮機において、油分離槽から電磁弁70を
介して前記閉弁室に連結する空気配管と、油分離
槽から三方電磁弁71に接続する空気配管と、該
三方電磁弁より前記開弁室に連結する空気配管と
前記三方電磁弁の他の一方のポートから圧縮機の
吸入室に接続する空気配管とを設け、圧縮機の始
動直後の一定時間電磁弁70を介して油分離槽と
前記閉弁室とを連通せしめる一方、三方電磁弁7
1を介して前記開弁室と吸入室とを連通せしめる
ように構成したことを特徴とする。
(Structure) In order to achieve the above objects, the present invention provides an intake obstruction type capacity adjustment device that opens and closes an intake air passage to a compressor based on a pressure difference between a valve open chamber and a valve closed chamber, and In a rotary compressor configured such that a check valve is provided between a discharge chamber and an oil separation tank, and lubricating oil accumulated in the discharge chamber is constantly collected into the oil separation tank by a collection pump during operation, the oil separation tank an air pipe connected to the valve-closing chamber via the solenoid valve 70; an air pipe connected from the oil separation tank to the three-way solenoid valve 71; an air pipe connected from the three-way solenoid valve to the valve-opening chamber; An air pipe is provided that connects the other port of the solenoid valve to the suction chamber of the compressor, and the oil separation tank and the valve-closing chamber are communicated through the solenoid valve 70 for a certain period of time immediately after the start of the compressor. , three-way solenoid valve 7
The valve opening chamber and the suction chamber are configured to communicate with each other via the valve opening chamber 1.

(実施例) 以下、本発明の実施例を第3図及び第4図に基
づいて説明する。なお、従来例で説明した第1
図,第2図と同一番号を付した部位は同一名称、
同一機能を有するものであるから詳細説明は省略
する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 3 and 4. Note that the first example explained in the conventional example
Parts with the same numbers as in Figures and Figure 2 have the same names.
Since they have the same functions, detailed explanation will be omitted.

まず、第3図は特開昭51―28207号公報に示す
吸気閉塞、給油量調整、吐出圧力除去型の回転圧
縮機で、圧縮機3の上方には吸気閉塞型容量調整
装置1が配設されると共に、その下方には吐出室
23が設けられ、逆止弁24を介して油分離槽4
と配管で連通している。
First, Fig. 3 shows a rotary compressor with intake blockage, oil supply amount adjustment, and discharge pressure removal type shown in Japanese Patent Application Laid-open No. 51-28207. Above the compressor 3, an intake blockage type capacity adjustment device 1 is installed. At the same time, a discharge chamber 23 is provided below the oil separation tank 4 through a check valve 24.
It is connected by piping.

また、圧縮機3の図中左端には潤滑油圧送用の
オイルポンプ27と並列に回収ポンプ26が設け
られ、吐出室23下方に滞溜する潤滑油を圧縮機
の運転中常時油回収口25から配管を介して油分
離槽4内に回収するようになつている。
In addition, a recovery pump 26 is provided at the left end of the compressor 3 in parallel with an oil pump 27 for supplying lubricating oil pressure, and the lubricating oil accumulated below the discharge chamber 23 is constantly pumped to an oil recovery port 25 during operation of the compressor. The oil is then collected into an oil separation tank 4 via piping.

また、油分離槽4の下方からは該槽内の潤滑油
を油冷却器12、油フイルター22、油量調整弁
21を介してオイルポンプ27に接続し、そこか
ら圧縮機3の作用空間(図示せず)に接続する潤
滑油供給配管が設けられている。
Furthermore, from below the oil separation tank 4, the lubricating oil in the tank is connected to an oil pump 27 via an oil cooler 12, an oil filter 22, and an oil amount adjustment valve 21, and from there the lubricating oil is connected to the working space of the compressor 3 ( (not shown) is provided.

そして、本発明においては、容量調整装置1に
対する制御配管系統を、油分離槽4から減圧弁1
0を介して第2の電磁弁である三方電磁弁71に
配管で接続すると共に、もう一方のポートには圧
縮機の吸入室13に連通する配管を接続し、両配
管を開弁室11に対し選択的に連通可能とし、始
動後一定時間は開弁室11と吸入室13は連通、
その後減圧弁10と開弁室11とが連通するよう
に電気回路を構成する。
In the present invention, the control piping system for the capacity adjustment device 1 is connected from the oil separation tank 4 to the pressure reducing valve 1.
0 to the three-way solenoid valve 71, which is the second solenoid valve, and the other port is connected to a pipe that communicates with the suction chamber 13 of the compressor, and both pipes are connected to the valve opening chamber 11. However, the valve opening chamber 11 and the suction chamber 13 are communicated with each other for a certain period of time after starting.
Thereafter, an electric circuit is configured so that the pressure reducing valve 10 and the valve opening chamber 11 communicate with each other.

一方、第1の電磁弁70には油分離槽4からの
配管と、吸入室13からの配管とが接続し、後述
する電気回路によつて閉弁室9に対して選択的に
連通するようになつており、その結線は第4図に
示すように第2の電磁弁71と共に電源に対して
並列に接続している。
On the other hand, the first electromagnetic valve 70 is connected to piping from the oil separation tank 4 and piping from the suction chamber 13, and selectively communicates with the valve-closing chamber 9 by an electric circuit to be described later. As shown in FIG. 4, the second solenoid valve 71 and the second solenoid valve 71 are connected in parallel to the power supply.

なお、20は圧力スイツチで油分離槽4の圧力
が圧力スイツチの設定圧力(通常7Kg/cm2)より
高くなつた時第4図の接点20xをOFFにし、
油分離槽の圧力が設定圧力(通常6Kg/cm2)より
低くなつた時に接点20xをONにする。また、
第1の電磁弁70は非通電時に油分離槽4と閉弁
室9とを連通、通電時に吸入室13と閉弁室9と
を連通するように配管されると共に、第2の電磁
弁である三方電磁弁71は非通電時に吸入室13
と開弁室11とを連通し、通電時に減圧弁10と
開弁室11とを連通するように配管されている。
In addition, 20 is a pressure switch, and when the pressure in the oil separation tank 4 becomes higher than the set pressure of the pressure switch (usually 7 kg/cm 2 ), the contact 20x shown in Fig. 4 is turned OFF.
Turn on contact 20x when the pressure in the oil separation tank becomes lower than the set pressure (usually 6Kg/cm 2 ). Also,
The first solenoid valve 70 is piped to communicate between the oil separation tank 4 and the valve-closing chamber 9 when not energized, and to communicate between the suction chamber 13 and the valve-closed chamber 9 when energized. A certain three-way solenoid valve 71 closes the suction chamber 13 when not energized.
The pressure reducing valve 10 and the valve opening chamber 11 are connected to each other, and the pressure reducing valve 10 and the valve opening chamber 11 are connected to each other when energized.

次いで、作用について説明すると、まず、第4
図の始動スイツチ50をONすると、電動機55
がY運転に入る。すると、タイマー53の働きで
Y―△の切り換えが完了するまでの間電磁弁70
は励磁されないために油分離槽の圧力は電磁弁7
0を通つて直接閉弁室9に作用する。
Next, to explain the effect, first, the fourth
When the start switch 50 shown in the figure is turned on, the electric motor 55
enters Y operation. Then, due to the action of the timer 53, the solenoid valve 70 is closed until the Y-△ switching is completed.
is not excited, so the pressure in the oil separation tank is reduced by solenoid valve 7.
0 and acts directly on the valve closing chamber 9.

同時に、三方電磁弁71もタイマー53の働き
でY―△の切り換えが完了するまで励磁されない
ため、減圧弁10と開弁室11の配管は遮断さ
れ、開弁室11は吸入室13と連通状態にある。
このため開弁室11には吸入室13内の負圧が作
用するので弁2はますます閉じる方向に荷重が働
く。したがつて、この開弁室11の負圧による荷
重と閉弁室9に作用する荷重との相乗効果によつ
て油分離槽4内の圧力は約1.5Kg/cm2程度で停滞
し、弁2を確実に閉止して圧縮機を即座に無負荷
運転状態とする。このとき、圧縮機が無負荷運転
に達するまでの時間は概ね圧縮機の始動後約1.5
秒程度である。
At the same time, the three-way solenoid valve 71 is not energized by the timer 53 until the Y-△ switching is completed, so the piping between the pressure reducing valve 10 and the valve opening chamber 11 is cut off, and the valve opening chamber 11 is in communication with the suction chamber 13. It is in.
For this reason, the negative pressure in the suction chamber 13 acts on the valve opening chamber 11, so that a load acts on the valve 2 in the direction of closing it more and more. Therefore, due to the synergistic effect of the load due to the negative pressure in the valve opening chamber 11 and the load acting on the valve closing chamber 9, the pressure in the oil separation tank 4 stagnates at about 1.5 kg/cm 2 and the valve closes. 2 is securely closed and the compressor is immediately put into a no-load operating state. At this time, the time it takes for the compressor to reach no-load operation is approximately 1.5 hours after the compressor starts.
It is about seconds.

それと同時に、電磁弁70を経て油分離槽4内
の圧力は、図中点線で示した配管を介して油量調
整弁21にも作用し、オイルポンプ27により圧
縮機3内に供給する潤滑油量を最少必要量まで絞
る。他方、吐出室23内に於ても、前記動作と並
行し油分離槽4内の圧力と同圧の1.5Kg/cm2の圧
力が作用すると共に、容量調整装置1の弁2の閉
止に伴い吐出空気の流通も停止するので逆止弁2
4も閉じる。
At the same time, the pressure in the oil separation tank 4 via the solenoid valve 70 also acts on the oil amount adjustment valve 21 via the piping shown by the dotted line in the figure, and the lubricating oil is supplied to the compressor 3 by the oil pump 27. Reduce the amount to the minimum required amount. On the other hand, a pressure of 1.5 kg/cm 2 , which is the same pressure as the pressure inside the oil separation tank 4, acts in the discharge chamber 23 in parallel with the above operation, and as the valve 2 of the capacity adjustment device 1 closes, Since the flow of discharged air also stops, check valve 2
4 is also closed.

それと共に、吐出室23の低部に流下した吐出
潤滑油は液体回収口25からオイルポンプ26に
より、常時油分離槽4内に回収されている為、前
記吐出室内の圧力は約1.5Kg/cm2と極めて低い圧
力状態から短時間のうちに圧力除去される。
At the same time, since the discharged lubricating oil that has flowed down to the lower part of the discharge chamber 23 is constantly collected into the oil separation tank 4 from the liquid recovery port 25 by the oil pump 26, the pressure inside the discharge chamber is approximately 1.5 Kg/cm. Pressure is removed in a short time from an extremely low pressure state of 2 .

したがつて、この吐出室内の圧力除去によつて
圧縮機の最終吐出工程において圧縮機ロータに加
わる背圧はほぼ零となる。
Therefore, by removing the pressure within the discharge chamber, the back pressure applied to the compressor rotor during the final discharge stroke of the compressor becomes approximately zero.

そして、その後電動機55はY運転より△運転
に切り換わり、全電圧運転に移行することとなる
が、このY―△切り換わり時の電動機突入電流
は、従来装置を100とすると、本発明装置は約50
となり、大巾な起動電流の低減が可能となる。
Then, the electric motor 55 switches from Y operation to △ operation and shifts to full voltage operation, but when the motor inrush current at the time of this Y-△ switching is 100 for the conventional device, the present invention device about 50
This makes it possible to significantly reduce the starting current.

以上により、電動機55が確実に全電圧運転に
移行するとタイマー53の働きで接点53xが
ONになり電磁弁70,71が励磁される。
As described above, when the electric motor 55 reliably shifts to full voltage operation, the contact 53x is turned on by the action of the timer 53.
It turns on and the solenoid valves 70 and 71 are energized.

これにより開弁室11と減圧弁10が三方電磁
弁71を通つて連通し、閉弁室9と吸入室13が
電磁弁70を通つて連通するために弁2は開き圧
縮機は負荷運転に移行する。
As a result, the valve opening chamber 11 and the pressure reducing valve 10 communicate with each other through the three-way solenoid valve 71, and the valve closing chamber 9 and the suction chamber 13 communicate with each other through the solenoid valve 70, so that the valve 2 opens and the compressor enters load operation. Transition.

以後、消費側における圧縮空気の消費が停止
し、油分離槽4内の圧力が圧力スイツチ20の設
定圧力に達すると、圧力スイツチの接点20xが
OFFになり電磁弁70の励磁が解かれて再び前
述と同様油分離槽4の圧力が閉弁室9に作用し、
弁2を閉止して圧縮機を無負荷運転状態とする。
Thereafter, when the consumption of compressed air on the consumption side stops and the pressure in the oil separation tank 4 reaches the set pressure of the pressure switch 20, the contact point 20x of the pressure switch closes.
OFF, the excitation of the solenoid valve 70 is released, and the pressure in the oil separation tank 4 acts on the valve closing chamber 9 again as described above.
Valve 2 is closed to put the compressor into a no-load operating state.

なお、以上の実施例の説明においては電動機駆
動のY―△始動の場合を例にとつて説明してきた
が、本発明を他の減電圧始動に利用しても同一の
効果が得られることはいうまでもなく、また、直
入始動に使用した場合にも始動後短時間で負荷が
軽減するために電動機の加速時間が短縮され、始
動性能は一段と向上する。
In addition, in the above description of the embodiment, the case of motor-driven Y-△ starting has been explained as an example, but the same effect can be obtained even if the present invention is applied to other reduced voltage starting. Needless to say, even when used for direct starting, the load is reduced in a short time after starting, so the acceleration time of the motor is shortened, and the starting performance is further improved.

(発明の効果) 以上詳述したように、本発明は圧縮機の始動後
自らが圧縮した極めて低い空気圧力により容量調
整装置の弁を閉じ、さらに前記閉弁によつて生じ
た吸入室内の負圧によてさらに前記弁の閉弁荷重
を増加せしめ、極めて短時間のうちに吸気を完全
閉塞し一定時間継続して閉弁し続けると共に、当
該圧縮機の最終吐出工程における圧縮機ロータに
加わる背圧も極めて低い状態で始動できるので、
原動機の起動トルクも極めて小さくて済む。
(Effects of the Invention) As described in detail above, the present invention closes the valve of the capacity adjustment device using the extremely low air pressure compressed by itself after the compressor starts, and furthermore, the negative The pressure further increases the closing load of the valve, completely occluding the intake air in an extremely short period of time, keeping the valve closed for a certain period of time, and applying pressure to the compressor rotor during the final discharge process of the compressor. Since it can be started with extremely low back pressure,
The starting torque of the prime mover also needs to be extremely small.

したがつて、電動機の突入電流値を従来の始動
時負荷軽減装置の約半分にすることができる他、
過大な電源容量を持つ電源設備を要することもな
い。
Therefore, in addition to being able to reduce the inrush current value of the motor to approximately half that of conventional starting load reduction devices,
There is no need for power supply equipment with excessive power supply capacity.

さらに、寒冷時における起動渋滞や電源事情の
悪い土木工事現場等において、電圧降下等による
起動の失敗等を防止できると共に、これに伴う電
動機の焼損事故等も皆無にすることができる。
Furthermore, startup failures due to voltage drop, etc. can be prevented in startup congestion in cold weather or at civil engineering construction sites where power supply conditions are poor, and the resulting motor burnout accidents can be completely eliminated.

また、本発明装置をエンジン駆動型圧縮機に適
用した場合にも同様に、エンジンの始動トルクを
軽減できるので、スムースな始動が可能となる他
エンジンの耐久性も増し、無駄な燃料消費を避け
ることができる。
Furthermore, when the device of the present invention is applied to an engine-driven compressor, the starting torque of the engine can be reduced, allowing smooth starting, increasing the durability of the engine, and avoiding wasteful fuel consumption. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の始動時負荷軽減装置の配管系統
図、第2図はその配線図。第3図は本発明実施例
の配管系統図、第4図はその配線図。 1…容量調整装置、3…圧縮機、4…油分離
槽、8…圧力調整弁、9…閉弁室、10…減圧
弁、11…開弁室、13…吸入室、20…圧力ス
イツチ、21…油量調整弁、23…吐出室、24
…逆止弁、25…液体回収口、26…回収ポン
プ、27…オイルポンプ、53…タイマー、70
…電磁弁、71…三方電磁弁。
Figure 1 is a piping system diagram of a conventional starting load reduction device, and Figure 2 is its wiring diagram. FIG. 3 is a piping system diagram of an embodiment of the present invention, and FIG. 4 is its wiring diagram. DESCRIPTION OF SYMBOLS 1... Capacity adjustment device, 3... Compressor, 4... Oil separation tank, 8... Pressure regulating valve, 9... Valve closing chamber, 10... Pressure reducing valve, 11... Valve opening chamber, 13... Suction chamber, 20... Pressure switch, 21...oil amount adjustment valve, 23...discharge chamber, 24
...Check valve, 25...Liquid recovery port, 26...Recovery pump, 27...Oil pump, 53...Timer, 70
...Solenoid valve, 71...Three-way solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 開弁室と閉弁室との圧力差により圧縮機への
吸入空気通路を開閉する吸気閉塞型容量調整装置
と、該圧縮機の吐出室と油分離槽間には逆止弁を
設け、前記吐出室内に滞溜する潤滑油を運転中常
時回収ポンプにより油分離槽内に回収するように
構成した回転圧縮機において、油分離槽から電磁
弁70を介して前記閉弁室に連結する空気配管
と、油分離槽から三方電磁弁71に接続する空気
配管と、該三方電磁弁より前記開弁室に連結する
空気配管と、前記三方電磁弁の他の一方のポート
から圧縮機の吸入室に接続する空気配管とを設
け、圧縮機の始動直後の一定時間電磁弁70を介
して油分離槽と前記閉弁室とを連通せしめる一
方、三方電磁弁71を介して前記開弁室と吸入室
とを連通せしめるように構成したことを特徴とす
る回転圧縮機の始動時負荷軽減装置。
1. An intake blockage type capacity adjustment device that opens and closes the intake air passage to the compressor based on the pressure difference between the valve open chamber and the valve closed chamber, and a check valve between the discharge chamber of the compressor and the oil separation tank, In a rotary compressor configured to collect lubricating oil accumulated in the discharge chamber into an oil separation tank by a recovery pump at all times during operation, air is connected from the oil separation tank to the valve closing chamber via a solenoid valve 70. piping, an air piping connecting from the oil separation tank to the three-way solenoid valve 71, an air piping connecting the three-way solenoid valve to the valve opening chamber, and a suction chamber of the compressor from the other port of the three-way solenoid valve. The oil separation tank is connected to the valve-closed chamber via the solenoid valve 70 for a certain period of time immediately after the start of the compressor, while the oil separation tank is connected to the valve-open chamber via the three-way solenoid valve 71. 1. A start-up load reduction device for a rotary compressor, characterized in that the device is configured to communicate with a chamber.
JP16756979A 1979-12-25 1979-12-25 Load reduction device for rotary compressor at time of starting Granted JPS5692393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16756979A JPS5692393A (en) 1979-12-25 1979-12-25 Load reduction device for rotary compressor at time of starting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16756979A JPS5692393A (en) 1979-12-25 1979-12-25 Load reduction device for rotary compressor at time of starting

Publications (2)

Publication Number Publication Date
JPS5692393A JPS5692393A (en) 1981-07-27
JPS6323395B2 true JPS6323395B2 (en) 1988-05-16

Family

ID=15852159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16756979A Granted JPS5692393A (en) 1979-12-25 1979-12-25 Load reduction device for rotary compressor at time of starting

Country Status (1)

Country Link
JP (1) JPS5692393A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617014Y2 (en) * 1986-06-26 1994-05-02 北越工業株式会社 Compressor capacity control device
JP2599728B2 (en) * 1987-09-08 1997-04-16 株式会社日立製作所 Oil-cooled screw compressor lubrication system
AT401551B (en) * 1994-03-30 1996-10-25 Hoerbiger Ventilwerke Ag DEVICE FOR REDUCING THE PRESSURE OF A COMPRESSOR

Also Published As

Publication number Publication date
JPS5692393A (en) 1981-07-27

Similar Documents

Publication Publication Date Title
CA2493895C (en) Method and apparatus for reducing inrush current in a multi-stage compressor
JP4627492B2 (en) Oil-cooled screw compressor
JP3262011B2 (en) Operating method of screw compressor and screw compressor
CN108397368B (en) Method for controlling engine-driven compressor and engine-driven compressor
JP5506830B2 (en) Screw compressor
JPS6323395B2 (en)
JP4792383B2 (en) Operation method of screw compressor
JP3384225B2 (en) Oil-cooled screw compressor and operating method thereof
CN115434888A (en) Method for controlling operation of engine-driven compressor and engine-driven compressor
JP3914713B2 (en) Screw compressor operating method and screw compressor
CN110966202A (en) Compressor assembly, control method of compressor assembly and refrigeration equipment
JP4521967B2 (en) Oil-cooled compression refrigerator
JPH10132401A (en) Control for multi-stage refrigerant compressor
JPH0147633B2 (en)
JP2001289189A (en) Two-stage compressible refrigerant compressor
JP2506141B2 (en) Refrigeration equipment
JP3390935B2 (en) Motor compressor restart time reduction device
JPH0160678B2 (en)
JP3413783B2 (en) Compressor starting load reduction device
JPH077592Y2 (en) Compressor capacity control device
JPS6120718B2 (en)
JPH0234474Y2 (en)
JPH09242673A (en) Starting load reducing device for compressor
JPH06123295A (en) Capacity controller in compressor
JP2510297Y2 (en) Starter for engine-driven compressor with clutch