JPS63233259A - Multi-chamber type air conditioner - Google Patents

Multi-chamber type air conditioner

Info

Publication number
JPS63233259A
JPS63233259A JP6385487A JP6385487A JPS63233259A JP S63233259 A JPS63233259 A JP S63233259A JP 6385487 A JP6385487 A JP 6385487A JP 6385487 A JP6385487 A JP 6385487A JP S63233259 A JPS63233259 A JP S63233259A
Authority
JP
Japan
Prior art keywords
refrigerant
air conditioner
valve
room air
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6385487A
Other languages
Japanese (ja)
Inventor
浜出 信正
五月女 要
富夫 吉川
日吉 剛
関 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6385487A priority Critical patent/JPS63233259A/en
Publication of JPS63233259A publication Critical patent/JPS63233259A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多室形空気調和装置に係り、特に暖房運転開
始時の冷媒制御に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-room air conditioner, and particularly to refrigerant control at the start of heating operation.

〔従来の技術〕[Conventional technology]

空調装置として、例えば特公昭60−11789号に記
載されたものがある。この空調装置は、各室内ユニット
の設置された部屋の空調負荷の割合に比例して各室内ユ
ニット用の焦電形膨張弁の開度を開くように電圧を制御
し、また暖房時の一室運転の場合、休止中の室内ユニッ
トに冷媒が溜まり込まないようにするため、室内ユニッ
トのガス側の電磁弁を閉じ、油側の焦電形膨張弁を開い
ておくことにより電磁弁から洩れた冷媒を抜き出すこと
かできた。すなわち、暖房運転時の運転体止ユニツ1−
に溜まり込む冷媒を抜いて適正な冷凍サイクルを形成し
た。しかし、暖房運転開始時において立上りを早くして
特に−室運転の場合にサイクルを早く安定させることや
運転ユニットに対する適切な冷媒の配分については充分
な配慮がされていなかった。
As an example of an air conditioner, there is one described in Japanese Patent Publication No. 11789/1989. This air conditioner controls the voltage to open the pyroelectric expansion valve for each indoor unit in proportion to the air conditioning load of the room where each indoor unit is installed, and also During operation, in order to prevent refrigerant from accumulating in the indoor unit when it is inactive, close the solenoid valve on the gas side of the indoor unit and leave the pyroelectric expansion valve on the oil side open to prevent leakage from the solenoid valve. I was able to extract the refrigerant. In other words, the driver body stop unit 1- during heating operation
A proper refrigeration cycle was created by removing the refrigerant that had accumulated in the tank. However, sufficient consideration has not been given to quick start-up at the start of heating operation to quickly stabilize the cycle, especially in the case of room operation, and to appropriate refrigerant distribution to the operating units.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の多室形空気調和装着では、暖房運転開始時に
おいて一室運転の場合、他の室内ユニットは休止してい
るので運転ユニツI〜−一台に対して封入冷媒のすべて
が流入することになるため、圧縮機の吐出ガス圧力の過
昇など不安定な状態がつづくことになる。過渡状態では
焦電形膨張弁の性能を充分に発揮することができないと
いう欠点があった。また、−室運転に必要な冷媒を確保
しようということで焦電形膨張弁と室内熱交換器との間
に受液器を設けることにより運転ユニットへの冷媒量を
調節するわけであるが、多室形空調和装置に応用した場
合、室内ユニツ1への数に応じて受液器の数が多くなり
コスト的に高くつくという欠点があった。
In this conventional multi-room air conditioner installation, in the case of single-room operation at the start of heating operation, all the sealed refrigerant flows into one operating unit since the other indoor units are inactive. As a result, unstable conditions such as an excessive rise in the discharge gas pressure of the compressor continue. There is a drawback that the performance of the pyroelectric expansion valve cannot be fully demonstrated in a transient state. In addition, in order to secure the refrigerant necessary for room operation, a liquid receiver is installed between the pyroelectric expansion valve and the indoor heat exchanger to adjust the amount of refrigerant to the operating unit. When applied to a multi-room air conditioner, there is a drawback that the number of liquid receivers increases depending on the number of indoor units 1, resulting in high cost.

本発明の目的は、簡単な構造で暖房運転開始時の立上り
が早く適切な冷媒の配分を行なえる多室形空気調和装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-room air conditioner that has a simple structure, has a quick start-up at the start of heating operation, and can appropriately distribute refrigerant.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、容量可変の圧縮機、室外熱交換器、四方弁
等を設けた1台の室外ユニットに室内熱交換器をそれぞ
れ設けた複数台の室内ユニットを油側分岐箱およびガス
側分岐管にそれぞれ電気式膨張弁、電磁弁を設けである
多室形空気調和装置において、暖房運転開始時、すべて
の電磁弁と電気式膨張弁を開けて運転指示のない休止し
ている室内ユニツ1−の冷媒回路にも冷媒を循環させ、
一定時間経過後、運転指示のない休止している室内二ニ
ットの電気式膨張弁を閉めることにより達成される。さ
らに前記電気式膨張弁を閉じた後も前記電磁弁を一定時
間開けておくことで、冷媒を適切に配分することにより
達成される。さらに前記電磁弁を閉じる方法として前記
電気式膨張弁入口側で過冷却度(サブクール)を検出し
て曲部電磁弁を閉じる時間を決定することで、冷媒を適
切に配分することにより達成される。また、運転周波数
は高周波で全室運転されるから吐出ガス圧力が過昇に上
るのを防止するため保護装置(例えば高圧遮断装置)が
運転開始時にすぐ作動して運転が止まるようでは意味が
ない。そこで圧縮機の吐出口部と低圧側(例えばアキュ
ムレータ入口部)との間に電磁弁を有するバイパス回路
を設け、前記保護装置が作動する前に電磁弁を開いて高
圧ガス冷媒を低圧側にバイパスさせることにより達成さ
れる。
The above purpose is to connect multiple indoor units each equipped with an indoor heat exchanger to one outdoor unit equipped with a variable capacity compressor, outdoor heat exchanger, four-way valve, etc. to an oil side branch box and a gas side branch pipe. In a multi-room air conditioner that is equipped with an electric expansion valve and a solenoid valve, respectively, when heating operation starts, all the solenoid valves and electric expansion valves are opened and indoor units 1- The refrigerant is also circulated through the refrigerant circuit,
This is achieved by closing the electric expansion valves of indoor units that are not operating after a certain period of time. Furthermore, by keeping the electromagnetic valve open for a certain period of time even after closing the electric expansion valve, this can be achieved by appropriately distributing the refrigerant. Furthermore, as a method for closing the solenoid valve, the degree of subcooling is detected on the inlet side of the electric expansion valve and the time to close the curved solenoid valve is determined, thereby achieving appropriate distribution of the refrigerant. . In addition, since all rooms are operated at a high frequency, it would be pointless if a protective device (for example, a high-pressure cutoff device) was activated immediately at the start of operation to prevent the discharge gas pressure from rising too high and stop operation. . Therefore, a bypass circuit having a solenoid valve is provided between the discharge port of the compressor and the low pressure side (for example, the inlet of the accumulator), and the solenoid valve is opened before the protection device is activated to bypass the high pressure gas refrigerant to the low pressure side. This is achieved by

〔作 用〕[For production]

全室に冷媒を供給するには先に第1図に示す電磁弁13
a、13b、13c、電気式膨張弁]−1a 、 1 
l b 、 ]、 1 c 、を開く。それによって全
室に冷媒を循環させる準備ができる。圧縮機]を3室運
転に必要な高周波数で運転させることにより、早く冷媒
を全室に循環させるとともに運転冷凍サイクルの安定も
早くなる。全室運転を行なうことにより各室内ユニット
に冷媒が適切に配分され、一室運転に入るとき冷媒が適
切に配分されているのですぐに安定した運転ができる。
To supply refrigerant to all rooms, first open the solenoid valve 13 shown in Figure 1.
a, 13b, 13c, electric expansion valve]-1a, 1
Open l b , ], 1 c . This prepares the refrigerant to be circulated throughout the room. By operating the compressor at a high frequency necessary for three-compartment operation, the refrigerant can be quickly circulated to all rooms, and the operating refrigeration cycle can be stabilized quickly. By performing full-room operation, the refrigerant is appropriately distributed to each indoor unit, and when single-room operation is started, the refrigerant is appropriately distributed, so stable operation can be performed immediately.

ここで室内ユニッ1−24が1台暖房運転されるとする
。前記電気式膨張弁]、]、b、llcが閉じた後、曲
部電磁弁13b、13cを閉じる時間を遅らすことによ
り室内ユニッ1−25.26にさらに冷媒を溜め込み室
内ユニット24の冷媒量をより適切または不足気味なも
のにする。また、前記電磁弁を閉じる場合過冷却度(サ
ブクール)を検出し、サブクールが例えば5°C以下に
なったら前記電磁弁を閉じることにより安定な運転が実
現する。さらにまた運転始動時の吐出ガス圧力の過昇は
電磁弁16を開けて低圧側にバイパスさせることで防止
するものである。
Here, it is assumed that one indoor unit 1-24 is operated for heating. After the electric expansion valves], ], b, and llc are closed, refrigerant is further stored in the indoor unit 1-25 and 26 by delaying the closing time of the curved solenoid valves 13b and 13c, and the amount of refrigerant in the indoor unit 24 is reduced. Make it more appropriate or lacking. Further, when closing the solenoid valve, the degree of supercooling (subcooling) is detected, and when the subcooling reaches 5° C. or less, the solenoid valve is closed, thereby achieving stable operation. Furthermore, an excessive rise in discharge gas pressure at the time of starting operation is prevented by opening the solenoid valve 16 and bypassing it to the low pressure side.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図に従って
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1−図において、この多室形空気調和装置は、1台の
室外ユニットに3台の室内ユニット24゜25.26を
接続した構成となっていて、室外ユニット内には容量可
変の圧縮機1、四方弁2、アキュムレータ3および室外
熱交換器4と冷房時に液冷媒が流れる油側主管7に設け
られたレシーバ5および開閉弁6と同じく冷房時にガス
冷媒が流れるカス側主管9に設けられた開閉弁とが設け
られている。また各室内二二ソ1〜内にはそれぞれ室内
熱交換器10a、10b、10cが設けられると共に、
冷房時に液冷媒が流れる液側分岐管12a 、 ]、 
2 b 、 12 cに設けられる正逆流式の電気式膨
張弁11a、llb、llcと、同じく冷房時にガス冷
媒が流れるガス側分岐管14a、14b、14cに設け
られる電磁弁13a、13b。
In Figure 1, this multi-room air conditioner has a configuration in which three indoor units 24°25.26 are connected to one outdoor unit, and a variable capacity compressor is installed in the outdoor unit. 1. The four-way valve 2, the accumulator 3, the outdoor heat exchanger 4, and the receiver 5 and the on-off valve 6, which are provided in the oil side main pipe 7 through which liquid refrigerant flows during cooling, are installed in the waste side main pipe 9 through which gas refrigerant flows during cooling. An on-off valve is provided. In addition, indoor heat exchangers 10a, 10b, and 10c are provided in each indoor 22-so 1 to 1, respectively, and
Liquid side branch pipe 12a through which liquid refrigerant flows during cooling, ],
2b, 12c, and the electromagnetic valves 13a, 13b are provided in the gas side branch pipes 14a, 14b, 14c through which gas refrigerant flows during cooling.

13cとがそれぞれ設けられている。13c are provided respectively.

そして前記室外ユニット内には圧縮機1の吐出部から分
岐して低圧側(例えばアキュムレータ4)に電磁弁]6
、減圧器(キャピラリチューブ)17を介して接続した
バイパス回路15が設けられている。また、前記バイパ
ス回路15の電磁弁16の開閉出力装置18、電気式膨
張式Lla”cの開閉出力装置20、電磁弁13 a 
−cの開閉出刃装置21、液側分岐管の圧力を検知する
検知器、それを温度信号に変換し、そのときの圧力のと
きの冷媒の飽和温度との差を出力する温度差信号出力装
置23、それらを制御する制御器22より構成されてい
る。
In the outdoor unit, a solenoid valve] 6 is branched from the discharge part of the compressor 1 and connected to the low pressure side (for example, the accumulator 4).
, a bypass circuit 15 connected via a pressure reducer (capillary tube) 17 is provided. Further, the opening/closing output device 18 of the solenoid valve 16 of the bypass circuit 15, the opening/closing output device 20 of the electric expansion type Lla"c, and the solenoid valve 13 a
-c opening/closing blade device 21, a detector that detects the pressure of the liquid side branch pipe, and a temperature difference signal output device that converts it into a temperature signal and outputs the difference between the refrigerant saturation temperature and the pressure at that time. 23, and a controller 22 that controls them.

以」この構成にてその作用を説明する。3室運転におい
て冷房時には、圧縮機]−より吐出された高温高圧冷媒
ガスは四方弁2を通って室外熱交換器4に入り、ここで
凝縮液化される。流化された冷媒が液側分岐管12a、
]、2b、1.2cを通って各電気式膨張弁11a、l
lb、llcにて減圧され、室内熱交換器10a、10
b、10cで蒸発ガス化して負荷空間を冷房する。
The operation will be explained below using this configuration. During cooling in three-room operation, high-temperature, high-pressure refrigerant gas discharged from the compressor passes through the four-way valve 2 and enters the outdoor heat exchanger 4, where it is condensed and liquefied. The fluidized refrigerant is transferred to the liquid side branch pipe 12a,
], 2b, 1.2c to each electric expansion valve 11a, l.
The pressure is reduced in lb, llc, and the indoor heat exchangers 10a, 10
It is evaporated into gas in steps b and 10c to cool the load space.

室内熱交換器10a、10b、10cを出た冷媒ガスは
電磁弁13a、13b、13cおよびガス側分岐管14
 a 、 14 b 、 1.4 cを通り四方弁2を
経てアキュムレータ3に入り再び圧縮機1に戻る。
The refrigerant gas that has exited the indoor heat exchangers 10a, 10b, 10c is passed through the solenoid valves 13a, 13b, 13c and the gas side branch pipe 14.
a, 14b, 1.4c, enters the accumulator 3 via the four-way valve 2, and returns to the compressor 1 again.

次に暖房時には、圧縮機1より吐出した冷媒は四方弁2
〜ガス側分岐管14 a 、 14. b 、 l 4
 c〜室内熱交換器10 a 、 10 b 、 10
 c 〜液側分岐管12 a 、 12 b 、 1−
2 cおよび電気式膨張弁11a、コ−1b、 1.1
 c−室外熱交換器4〜四方弁2〜アキユムレータ3〜
圧縮機1の順に流れて負荷空間を暖房する。
Next, during heating, the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2.
~Gas side branch pipe 14a, 14. b, l 4
c~Indoor heat exchanger 10a, 10b, 10
c~liquid side branch pipe 12a, 12b, 1-
2c and electric expansion valve 11a, co-1b, 1.1
c-Outdoor heat exchanger 4 ~ Four-way valve 2 ~ Accumulator 3 ~
It flows in the order of compressor 1 and heats the load space.

次に暖房運転開始時の一室運転の場合の動作を第1図な
いし第2図をもとに説明する。まず室内ユニット24の
み1台が運転されるとする。電磁弁13a、13b、1
3cと電気式膨張弁1 ]、 d rl、1b、llc
とを開けて運転指示のない休止している室内ユニットの
冷媒回路にも冷媒を循環させるようにする(A点)。圧
縮機1から吐出された冷媒ガスは四方弁2〜ガス側分岐
管14a、14b、14cへ向うが、一部はバイパス回
路15を通り低圧側へ行く。これは吐出ガス圧力が過昇
となるのを防ぐため電磁弁16を開けたのである。
Next, the operation in single room operation at the start of heating operation will be explained based on FIGS. 1 and 2. First, it is assumed that only one indoor unit 24 is operated. Solenoid valves 13a, 13b, 1
3c and electric expansion valve 1 ], d rl, 1b, llc
and the refrigerant is circulated to the refrigerant circuit of the indoor unit that is not in operation and is not being instructed to operate (point A). The refrigerant gas discharged from the compressor 1 goes from the four-way valve 2 to the gas side branch pipes 14a, 14b, and 14c, but a portion passes through the bypass circuit 15 and goes to the low pressure side. This is because the solenoid valve 16 was opened to prevent the discharge gas pressure from rising excessively.

開かれた双方向性電磁弁11 a 、 i ]、 b 
、 1− ICを通り室内ユニッh 24 、25 、
26の室内熱交換器10a、10b、10cにて液化さ
れる。
Opened two-way solenoid valves 11a, i], b
, 1- Pass through the IC and enter the indoor unit h 24 , 25 ,
It is liquefied in 26 indoor heat exchangers 10a, 10b, and 10c.

引続いてこの液化冷媒は、電気式膨張弁13a。Subsequently, this liquefied refrigerant is passed through an electric expansion valve 13a.

13b、13cを通過して低圧液となり、さらに液側分
岐管12a、12b、12c、油側主管7を通り室外熱
交換器4で蒸発し、四方弁2、アキュムレータ3を通っ
て圧縮機1に戻る。
13b and 13c, it becomes a low-pressure liquid, further passes through the liquid side branch pipes 12a, 12b, 12c, and the oil side main pipe 7, evaporates in the outdoor heat exchanger 4, and passes through the four-way valve 2 and accumulator 3 to the compressor 1. return.

全室運転1〜10分経過後、電磁弁16を閉じる。B点
で休止ユニッh25,26の電気式膨張弁11b、il
cは閉じるが、電磁弁13b、13cはまだ開けておく
。それは一定時間の全室運転だけではまだ冷媒が多いと
いう判断から電磁弁を閉じるのを遅らせているのである
。ここで過冷却度を利用した場合を見ると電気式膨張弁
11aの入口側に設けた検知器19 aで圧力を測定し
その圧力に相当する温度とその圧力の飽和温度との差す
なわち過冷却度の大きさ例えば5℃以下となったら電磁
弁]、3b、13cを閉じると温度差信号出力装置23
が電磁弁開閉出力装置21に閉じるという信号を出力す
る。過冷却度が大きいと吐出ガス圧力が高くなり不安定
となる。この過冷却度を小さくするために一室運転に入
っても休止ユニッ1への電磁弁を開けて過冷却度を下げ
、吐出ガス圧力の過度な上昇を防止する。
After 1 to 10 minutes of full room operation, the solenoid valve 16 is closed. At point B, the electric expansion valves 11b and il of the pause units h25 and 26
c is closed, but the solenoid valves 13b and 13c are still open. This is because the solenoid valve is delayed in closing because it is determined that there is still a large amount of refrigerant if all the rooms are operated for a certain period of time. Here, looking at the case where the degree of supercooling is used, the pressure is measured with a detector 19a installed on the inlet side of the electric expansion valve 11a, and the difference between the temperature corresponding to that pressure and the saturation temperature of that pressure, that is, supercooling. For example, when the temperature is below 5℃, the solenoid valve], 3b and 13c are closed, the temperature difference signal output device 23
outputs a signal indicating closure to the electromagnetic valve opening/closing output device 21. When the degree of supercooling is large, the discharge gas pressure becomes high and unstable. In order to reduce the degree of supercooling, even when single-room operation is started, the solenoid valve to the pause unit 1 is opened to reduce the degree of supercooling and prevent the discharge gas pressure from rising excessively.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、暖房運転、特に
−室の暖房運転開始時に全室内ユニットに適切な冷媒量
を高周波運転で分配するので、−室運転の立」ユリ時に
も適正な冷媒量で運転かできると共に、立]こりが早い
ので快適な空調空間を得ることができる。
As explained above, according to the present invention, an appropriate amount of refrigerant is distributed to all indoor units by high-frequency operation at the start of heating operation, especially when heating operation for a room. It can be operated with only a small amount of refrigerant, and since it cools down quickly, it can provide a comfortable air-conditioned space.

尚、本実施例は3台の室内ユニン1へに対し1台の運転
について説明したが、2台の運転においても何らかわる
ことはない。
Although this embodiment has been described with respect to the operation of one unit for three indoor units 1, there is no difference in the operation of two units.

【図面の簡単な説明】[Brief explanation of drawings]

第1−図は本発明の多室形空気調和装置の一実施例を示
す冷凍サイクル系統図、 第2図は一室運転開始時における各制御弁の動作を示す
タイムチャー1−1第3図は第2図をフローチャートに
まとめたものである。
Figure 1-1 is a refrigeration cycle system diagram showing an embodiment of the multi-room air conditioner of the present invention. Figure 2 is a time chart 1-1 showing the operation of each control valve at the start of single-room operation. Figure 2 is summarized in a flowchart.

Claims (1)

【特許請求の範囲】 1、容量制御可能の圧縮機、室外熱交換器、四方弁等か
らなる1台の室外ユニットに、室内熱交換器をそれぞれ
設けた複数台の室内ユニットを液側分岐管およびガス側
分岐管を介して接続し、各液側分岐管にそれぞれ電気式
膨張弁を設け、各ガス側分岐管にそれぞれ電磁弁を設け
てなる多室形空気調和装置において、暖房運転開始時に
、電気式膨張弁と電磁弁を全て開とし、一定時間運転指
示のない室内ユニットにも冷媒を循環させるようにした
ことを特徴とする多室形空気調和装置。 2、休止ユニットの電気式膨張弁を閉じた後も前記電磁
弁を一定時間開ける特許請求の範囲第1項記載の多室形
空気調和装置。 3、冷媒の過冷却度を検出して過冷却度が小さくなるま
で前記電磁弁を開けておく特許請求の範囲第2項記載の
多室形空気調和装置。 4、運転開始時に高圧側と低圧側を結ぶバイパス回路に
設けた電磁弁を開にして高圧ガス冷媒を低圧側にバイパ
スさせる特許請求の範囲第1項及至第3項のいずれか一
つに記載の多室形空気調和装置。
[Scope of Claims] 1. One outdoor unit consisting of a capacity-controllable compressor, an outdoor heat exchanger, a four-way valve, etc., and a plurality of indoor units each equipped with an indoor heat exchanger are connected to a liquid side branch pipe. In a multi-room air conditioner that is connected via a gas-side branch pipe, each liquid-side branch pipe is provided with an electric expansion valve, and each gas-side branch pipe is provided with a solenoid valve, when heating operation starts. A multi-room air conditioner characterized in that all electric expansion valves and solenoid valves are opened, and refrigerant is circulated even to indoor units that are not instructed to operate for a certain period of time. 2. The multi-room air conditioner according to claim 1, wherein the electromagnetic valve is kept open for a certain period of time even after the electric expansion valve of the rest unit is closed. 3. The multi-room air conditioner according to claim 2, wherein the degree of subcooling of the refrigerant is detected and the solenoid valve is kept open until the degree of subcooling becomes small. 4. At the start of operation, a solenoid valve provided in a bypass circuit connecting the high-pressure side and the low-pressure side is opened to bypass the high-pressure gas refrigerant to the low-pressure side as described in any one of claims 1 to 3. multi-room air conditioner.
JP6385487A 1987-03-20 1987-03-20 Multi-chamber type air conditioner Pending JPS63233259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6385487A JPS63233259A (en) 1987-03-20 1987-03-20 Multi-chamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6385487A JPS63233259A (en) 1987-03-20 1987-03-20 Multi-chamber type air conditioner

Publications (1)

Publication Number Publication Date
JPS63233259A true JPS63233259A (en) 1988-09-28

Family

ID=13241338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6385487A Pending JPS63233259A (en) 1987-03-20 1987-03-20 Multi-chamber type air conditioner

Country Status (1)

Country Link
JP (1) JPS63233259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164152A1 (en) * 2016-03-25 2017-09-28 三菱重工サーマルシステムズ株式会社 Air conditioning operation control device, air conditioning system, air conditioning control method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164152A1 (en) * 2016-03-25 2017-09-28 三菱重工サーマルシステムズ株式会社 Air conditioning operation control device, air conditioning system, air conditioning control method, and program

Similar Documents

Publication Publication Date Title
US9958171B2 (en) Air-conditioning apparatus
US9683768B2 (en) Air-conditioning apparatus
EP1659348B1 (en) Freezing apparatus
EP3492840B1 (en) Air conditioner system and control method of air conditioner system
US7028492B2 (en) Hybrid dehumidication system
US20110146306A1 (en) Start-up for refrigerant system with hot gas reheat
WO2015097787A1 (en) Air conditioner
US20220026082A1 (en) Sequential Hot Gas Reheat System In An Air Conditioning Unit
JPWO2019053876A1 (en) Air conditioner
EP2584285B1 (en) Refrigerating air-conditioning device
US20240102700A1 (en) Heating, Ventilation, and Air-Conditioning Systems and Methods
WO2016189739A1 (en) Air conditioning device
JP3356485B2 (en) Multi-room air conditioner
US20240151438A1 (en) Air-conditioning apparatus and air-conditioning system
JP2522065B2 (en) Operation control device for air conditioner
JPS63233259A (en) Multi-chamber type air conditioner
JP2641058B2 (en) Three-tube water-cooled heat pump unit
JP3082560B2 (en) Dual cooling system
JPH0682113A (en) Multi-room air-conditioning apparatus
JPH0784956B2 (en) Operation control device for air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JP2512072B2 (en) Air conditioner refrigeration cycle
JP3301828B2 (en) Air conditioner
JP2001174089A (en) Multiple-chamber-type air-conditioner
JP2005007983A (en) Air conditioner for rolling stock and its control method