JPS63232843A - Inorganic adsorbent for high-temperature water and its production - Google Patents

Inorganic adsorbent for high-temperature water and its production

Info

Publication number
JPS63232843A
JPS63232843A JP6585887A JP6585887A JPS63232843A JP S63232843 A JPS63232843 A JP S63232843A JP 6585887 A JP6585887 A JP 6585887A JP 6585887 A JP6585887 A JP 6585887A JP S63232843 A JPS63232843 A JP S63232843A
Authority
JP
Japan
Prior art keywords
water
adsorbent
reactor
temperature
iron oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6585887A
Other languages
Japanese (ja)
Inventor
Kozo Yoshikawa
孝三 吉川
Takashi Haruki
隆 春木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6585887A priority Critical patent/JPS63232843A/en
Publication of JPS63232843A publication Critical patent/JPS63232843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To enhance adsorptivity of transition metallic ions by adding water of specified amount to iron oxyhydroxide fine powder and kneading the mixture and subjecting it to consolidation molding and thereafter heating it in the atmosphere having >=1 partial pressure ratio of steam and gaseous hydrogen to dehydrate, reduce and sinter it. CONSTITUTION:After adding 80-120wt.% water to iron oxyhydroxide (Fe2O3.H2 O) powder of <=5mum and kneading the mixture, it is subjected to consolidation molding at >=250kg/cm<2> pressure. Then an inorganic adsorbent for high-temp. water is produced by heating it at 400-700 deg.C in the gaseous atmosphere having >=1 partial pressure ratio (PH2O/PH2) of steam and gaseous hydrogen to de hydrate, reduce and sinter it. In the case of applying this adsorbent to a pressu rized water reactor, primary cooling water of the reactor by-passed from the outlet of a primary series main circulation pump 5 is sent to a purifying installa tion 6 of reactor water charged with the adsorbent and radioactive cobalt ion contained in the cooling water of the reactor is adsorbed and removed herein.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は100℃以上の高温水中に含まれる遷移金属イ
オンを効率良く吸着しうる高温水用無機吸着剤及びその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inorganic adsorbent for high-temperature water that can efficiently adsorb transition metal ions contained in high-temperature water of 100° C. or higher, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、高温水特に100℃以上の水溶液中からコバルト
のような遷移金属イオンを吸着除去しうる吸着剤は極め
て少い。酸化物をはじめとする各種無機吸着剤は、耐放
射線性及び耐熱性があるため種々の分野で有望視されて
いるが応用例は殆んどない。
Conventionally, there are very few adsorbents capable of adsorbing and removing transition metal ions such as cobalt from high-temperature water, particularly from aqueous solutions at 100° C. or higher. Various inorganic adsorbents including oxides have radiation resistance and heat resistance, so they are considered promising in various fields, but there are almost no examples of their application.

高温水中の無機イオンを吸着する必要性がある列として
、原子力発電所における原子炉炉水浄化系を例として説
明する。加圧水型原子炉をはじめとする原子力発電所に
おいて、炉の定期点検時における放射線被曝の低減化を
図るうえで1次冷却系の放射性腐食生成物を高温の炉水
から直接除去することは最も有効な対策となる。
A reactor water purification system in a nuclear power plant will be explained as an example of a system that needs to adsorb inorganic ions in high-temperature water. In nuclear power plants, including pressurized water reactors, it is most effective to directly remove radioactive corrosion products from the primary cooling system from high-temperature reactor water in order to reduce radiation exposure during periodic reactor inspections. This is a countermeasure.

従来、1次冷却材から放射性腐食生成物等を除去するた
めの炉水浄化設備には主としてイオン交換樹脂が用いら
れており、炉水がこのイオン交換樹脂の隙間を通過する
間にイオン及びクラッド状の不純物が除去される。しか
しながらイオン交換樹脂は耐熱温度約60℃と低いため
高温の炉水?そのまま通水することができず、炉水分熱
交換器にて40’Cないし50℃まで冷却してイオン交
換樹脂塔に通水し、再び熱交換器にて炉水温度まで加熱
している。従ってイオン交換器、脂を使用して炉水浄化
をはかることは大きな熱損失(即ちプラントの熱効率像
″F)t−生ずるうえ、熱交換設備の容積及びコストが
嵩む不利がある。またこのため大きな浄化容、嘘をとる
ことVi発′砿プラントとしての実際の運用上から困難
があり、その解決のため高温高圧のもとて”co のよ
うな不純物を除去できる吸着剤を開発することは、放射
能低減化と熱損失の少ない発電を達成する上で重要な課
題である。
Conventionally, ion exchange resins have been mainly used in reactor water purification equipment to remove radioactive corrosion products etc. from the primary coolant, and while the reactor water passes through the gaps between the ion exchange resins, ions and crud are removed. impurities are removed. However, ion exchange resin has a low heat resistance temperature of about 60°C, so it is difficult to handle high-temperature reactor water. Water cannot be passed through as it is, so it is cooled down to 40'C to 50C using a reactor water heat exchanger, passed through the ion exchange resin tower, and then heated again to the reactor water temperature using a heat exchanger. Therefore, using an ion exchanger and oil to purify reactor water has the disadvantage of not only causing a large heat loss (that is, the thermal efficiency image of the plant "F") but also increasing the volume and cost of the heat exchange equipment. There are difficulties in actual operation of a large purification capacity and a wastewater treatment plant, and in order to solve these problems, it is necessary to develop an adsorbent that can remove impurities such as CO under high temperature and high pressure. This is an important issue in achieving power generation with reduced radioactivity and low heat loss.

高温水中のコバルトイオン等の遷移金属イオンを吸着す
る物質としてマグネタイトや酸化チタンなどの金ll!
酸化物が有る。〔例えばP、 H。
Gold such as magnetite and titanium oxide are substances that adsorb transition metal ions such as cobalt ions in high-temperature water!
There are oxides. [For example, P, H.

Tewari at ehl、 f:!anadian
 :f、 of Chem、 Vol。
Tewari at ehl, f:! anadian
:f, of Chem, Vol.

50.1642(1972’)、P、 E!、 Tew
ariand W、 Lse 、 J、 of Co’
1oid and工nterface 8ai。
50.1642 (1972'), P, E! , Tew
ariand W, Lse, J, of Co'
1oid and engineering interface 8ai.

VOl、2B、24(196B’)参照。]これらの酸
化物を吸着剤として固定床方式等で使用するためには吸
着剤のリークを生じないような粒度を有することが必要
となる。またこれらの酸化物の吸着官能基は第1図に示
されるような表面水酸基によるものであり、水酸基の多
いものほど吸着容量は大で性能が良い。
See Vol. 2B, 24 (196B'). ] In order to use these oxides as an adsorbent in a fixed bed system or the like, it is necessary to have a particle size that does not cause leakage of the adsorbent. Further, the adsorption functional groups of these oxides are due to surface hydroxyl groups as shown in FIG. 1, and the more hydroxyl groups there are, the higher the adsorption capacity and the better the performance.

また、吸着剤の吸着容量を大きくする方法として吸着剤
の比表面積を大きくする方法がちる。
Further, as a method of increasing the adsorption capacity of an adsorbent, there is a method of increasing the specific surface area of the adsorbent.

従来の方法では触媒の製造方法等においても見られるよ
うに、コバルトイオン等の金部酸化物イオンを吸着する
酸化物のみで、粒径が大きくかつ比表面積の大きな吸着
剤を製造することは極めて困難であり、比表面積の大き
なアルミナ等の担体に担持する方法が採用されている。
With conventional methods, it is extremely difficult to produce adsorbents with large particle sizes and large specific surface areas using only oxides that adsorb metal oxide ions such as cobalt ions, as seen in catalyst production methods. This is difficult, and a method of supporting it on a carrier such as alumina, which has a large specific surface area, has been adopted.

しかしながらこの方法によって製造される吸着材は、コ
バルトイオン等の遷移金属イオンを吸着する酸化物をア
ルミナ等の担体に担持する量には、担持量を多くすると
担体の細孔を埋めることになり比表面積が低下すること
から限度がある。また、担持されたコバルトイオン等の
遷移金属イオン金吸着する酸化物は、原子炉の運転及び
停止に伴う昇降温過程や高温運転時のコバ、ルトイオン
等の遷移金属イオンの吸着過程において、担体表面から
その一部が離脱して原子炉炉水冷却材中へリークする欠
点を有する。
However, the adsorbent produced by this method cannot support the amount of oxides that adsorb transition metal ions such as cobalt ions on a support such as alumina, since increasing the amount supported will fill the pores of the support. There is a limit due to the decrease in surface area. In addition, oxides that adsorb transition metal ions such as cobalt ions and gold on the surface of the carrier during the temperature raising and lowering process accompanying the operation and shutdown of a nuclear reactor and the adsorption process of transition metal ions such as cobalt and rut ions during high-temperature operation. It has the disadvantage that a part of it separates from the reactor and leaks into the reactor water coolant.

このためコバルトイオン等の遷移金属酸化物のみで比表
面積が大きく(従来のイオン交換樹脂と同程度の吸着容
量を得るためには、マグネタイトを吸着剤とする場合、
実験による検討の結果約5 m”/ 9以上の比表面積
があればよい)、また粒径が大きくかつ実用的な機械的
強度をも有する吸着剤の開発が望まれている。
Therefore, transition metal oxides such as cobalt ions have a large specific surface area (in order to obtain adsorption capacity comparable to that of conventional ion exchange resins, when using magnetite as an adsorbent
As a result of experimental studies, it is desired to develop an adsorbent that has a specific surface area of approximately 5 m''/9 or more), a large particle size, and a practical mechanical strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の要望に答えるため、特に比表面積を大き
くし、原子炉炉水のような高温水中からコバルトイオン
のような遷移金属イオンを効率よく除去できる無機吸着
剤とその製造方法を提供し、従来、イオン交換樹脂によ
る炉水浄化設備において必要とした熱交換設備及び加熱
器等の設備を不用としプラントの熱効率の向上と被−曝
低減を図ろうとするものである。
In order to meet the above needs, the present invention provides an inorganic adsorbent that has a particularly large specific surface area and can efficiently remove transition metal ions such as cobalt ions from high-temperature water such as reactor water, and a method for producing the same. This method aims to improve the thermal efficiency of the plant and reduce radiation exposure by eliminating the need for heat exchange equipment, heaters, and other equipment that were conventionally required in reactor water purification equipment using ion exchange resin.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 (1)  微粒のすキク水酸化鉄を原料とし、高温還元
雰囲気中でオ午り水酸化鉄を脱水還元焼結して得られる
比表面積が極めて大きい多孔質のマグネタイトであるこ
とを特徴とする高温水用無機吸着剤、及び (2)5μm以下のオキシ水酸化鉄粉末に対して80〜
120重量係の水を加えて混練し、250 kg/cm
2以上の圧力で圧密成形したのち、水蒸気と水−ガスの
分圧比(PH,o/ P)I、 〕を(L1以上のガス
雰囲気中で400℃〜700℃に加熱して、脱水還元焼
結することを特徴とする高温水用無機吸着剤の製造方法 である。
The present invention consists of: (1) Porous magnetite with an extremely large specific surface area obtained by dehydration reduction sintering of fine grained iron hydroxide in a high-temperature reducing atmosphere using fine grained iron hydroxide as a raw material. An inorganic adsorbent for high-temperature water characterized by
Add 120 weight of water and knead to 250 kg/cm
After compaction molding at a pressure of 2 or more, the water vapor and water-gas partial pressure ratio (PH, o/P) I, ] is heated to 400°C to 700°C in a gas atmosphere of This is a method for producing an inorganic adsorbent for high-temperature water, which is characterized by the following:

本発明の高温用吸着剤は、吸着剤原料としてずキシ水酸
化鉄(Fe103・U、O)微粒子を使用することを特
徴とするもので、オキシ水酸化鉄粒子は高温還元ガス中
で加熱脱水により3価の無水酸化鉄(Pe10g )に
変態するが、変態後の粒子は母塩であるオキシ水酸化鉄
粒子の形骸を留め、その形骸粒子内部には脱水に基づく
微細な細孔を有し比表面積が大きい特徴を有するもので
ある。
The high-temperature adsorbent of the present invention is characterized by using iron oxyhydroxide (Fe103.U, O) fine particles as the raw material for the adsorbent, and the iron oxyhydroxide particles are heated and dehydrated in a high-temperature reducing gas. The particles are transformed into trivalent anhydrous iron oxide (Pe10g), but the particles after the transformation retain the remains of iron oxyhydroxide particles, which are the mother salt, and have fine pores inside the remains due to dehydration. It is characterized by a large specific surface area.

また、本発明の高温用吸着剤の製造方法は、オキシ水酸
化鉄の高温還元焼結条件、すなわち還元焼結温度及び水
蒸気分圧と水素分圧の比を適正な条件に選定することに
より5価の無水酸化鉄が有していた大きな比表面積を著
しく低下させることなくまた実用的な機械的強度をもた
せるようにしたことを特徴とするものである。
In addition, the method for producing the high-temperature adsorbent of the present invention can be carried out by selecting appropriate conditions for high-temperature reduction sintering of iron oxyhydroxide, that is, reduction sintering temperature and ratio of water vapor partial pressure to hydrogen partial pressure. It is characterized by being able to provide practical mechanical strength without significantly reducing the large specific surface area that anhydrous iron oxide had.

なお、原料であるオキシ水酸化鉄粉末の粒径が大となる
に従い単位体積に充填された粒子間の接触点が少なくな
り、還元焼結による粒子間の接合点も少なくなり、吸着
剤としての機械的強度が保てなくなり実用に供し得なく
なるので、その粒径は5μm以下にする。
In addition, as the particle size of the iron oxyhydroxide powder used as a raw material increases, the number of contact points between particles packed in a unit volume decreases, and the number of bonding points between particles due to reduction sintering also decreases, making it difficult to use as an adsorbent. Since mechanical strength cannot be maintained and it cannot be put to practical use, the particle size should be 5 μm or less.

まな、水を加えることは充填密度を大きくする効果があ
り、このことにより粒子間の接触点を多くし還元焼結に
よる粒子間の接合点を多くするので機械的強度の向上が
計れる。厚誼に対する混練水分3180重量係以下では
充填密度を大きくする効果が小さく、120重i1%以
上では圧密成形時の水分排除が過剰となりすぎるため、
原料に対して添加する水の量は80〜120重fjk優
とする。
However, adding water has the effect of increasing the packing density, which increases the number of contact points between particles and increases the number of bonding points between particles due to reduction sintering, thereby improving mechanical strength. If the kneading moisture content for thickness is less than 3180% by weight, the effect of increasing the packing density will be small, and if it is more than 120% by weight, water removal during compaction will be excessive.
The amount of water added to the raw material is 80 to 120 fjk.

通常、酸化金属粒子などの圧密成形は、1000kg1
5I”以上にしなければ十分な充填密度が得られないが
、本発明においては上記条件を守る限り本発明目的の吸
着剤の機械的強度を得るに必要な圧力は250 kg7
exa”以上で十分であった。
Usually, compaction molding of metal oxide particles, etc.
A sufficient packing density cannot be obtained unless the pressure is 5I" or more, but in the present invention, as long as the above conditions are met, the pressure required to obtain the mechanical strength of the adsorbent for the purpose of the present invention is 250 kg7.
Exa” or more was sufficient.

以下、本発明者らが行った各種実験の内容を示し、本発
明完成の根拠を説明する。
The contents of various experiments conducted by the present inventors will be shown below, and the basis for completing the present invention will be explained.

〔実験1〕 5μm以下のオキシ水酸化鉄微粒子に80〜120fi
iilの水を加えて混練し250 kg7cm”以上の
圧力にて圧密成形し、次いで水蒸気分圧(PH,O) 
 と水素分圧(Pg、 )の比(PH,O/pH,)を
2とした還元ガス雰囲気中で400℃〜800℃の範囲
で一定時間脱水還元焼結して製造したマグネタイト吸着
剤の比表面積を測定したところ第2図に示される結果を
得た。このグラフから、吸着剤の比表面積は、脱水還元
焼結温度が高くなるにつれて減少し、5−/ を以上の
比表面積を得るための温度領域は700℃以下となって
いる。なお、400℃未満においては吸着剤の比表面積
は増加するが還元された微粒子間の焼結があ19進行し
ないため機械的強度が著しく小さいため実用に供しない
[Experiment 1] 80 to 120 fi to iron oxyhydroxide fine particles of 5 μm or less
iil of water was added, kneaded, and compacted at a pressure of 250 kg 7 cm or more, and then water vapor partial pressure (PH, O)
and hydrogen partial pressure (Pg, When the surface area was measured, the results shown in FIG. 2 were obtained. From this graph, the specific surface area of the adsorbent decreases as the dehydration reduction sintering temperature increases, and the temperature range for obtaining a specific surface area of 5-/ or more is 700° C. or lower. Note that, although the specific surface area of the adsorbent increases at temperatures below 400° C., sintering between the reduced fine particles does not proceed and the mechanical strength is extremely low, making it unusable for practical use.

従って実用的な高温用マグネタイト吸着剤をオキシ水酸
化鉄粒子から脱水還元焼結するための温度領域は400
℃〜700℃の範囲が望ましいことが確認された。
Therefore, the temperature range for dehydrating and reducing sintering a practical high-temperature magnetite adsorbent from iron oxyhydroxide particles is 400°C.
It has been confirmed that a range of 0.degree. C. to 700.degree. C. is desirable.

〔実験2〕 水蒸気と水素とからなる還元ガス組成比と加熱温度に対
して存在し得る鉄酸化物の相平衡は第3図に示される〔
株式会社地人書館発行、触媒学会編集、“元素別触媒便
覧”P423(1967)参照〕。従って、コバルトイ
オン等の遷移金属イオンを吸着するマグネタイトを上記
方法によって製造するためには、水蒸気分圧と水素分圧
の比に対する脱水還元焼結温[ft−第3図のマグネタ
イト(lFe504 )生成領域に対応させることが必
要であることはいうまでもない。なお第3図の縦軸は(
Kp = PTl、o/ PH,)、横軸は絶対温度の
逆数に104を掛けた値を採ったものである。
[Experiment 2] The phase equilibrium of iron oxide that can exist depending on the composition ratio of the reducing gas consisting of water vapor and hydrogen and the heating temperature is shown in Figure 3.
Published by Chijinshokan Co., Ltd., edited by the Catalysis Society of Japan, see "Handbook of Catalysts by Element," p. 423 (1967)]. Therefore, in order to produce magnetite that adsorbs transition metal ions such as cobalt ions by the above method, the dehydration reduction sintering temperature [ft - magnetite (lFe504 Needless to say, it is necessary to correspond to the area. The vertical axis of Figure 3 is (
Kp = PTl, o/PH,), and the horizontal axis is the value obtained by multiplying the reciprocal of the absolute temperature by 104.

この第5図工りマグネタイト生成領域はPl(,0/ 
PH1が11以上であることが分る。
This Fig. 5 engineered magnetite generation region is Pl(,0/
It can be seen that PH1 is 11 or more.

従って本発明の高温用吸着剤の製造方法は下記のように
集約される。
Therefore, the method for producing the high temperature adsorbent of the present invention can be summarized as follows.

吸着剤原料;オキシ水酸化鉄 原料の粒径;5μ以下 混線水分量;原料重量に対して80〜120重量係 圧密成形圧力;250鴎へ3以上 水蒸気分圧と水素分圧の比(Pg、o/pH,);α1
以上 脱水還元焼結温度;400℃〜700℃〔実施例〕 平均粒径α1μmのすキシ水酸化鉄4fに水4fを加え
て混練し、内径40■の型枠に充填した後、250 k
l/crs”の圧力にて圧密成形した。
Adsorbent raw material; Particle size of iron oxyhydroxide raw material; 5 μ or less Cross line water content; 80 to 120 weight relative to the weight of the raw material; compaction pressure; 250 to 3 or more Ratio of water vapor partial pressure to hydrogen partial pressure (Pg o/pH, ); α1
Dehydration reduction sintering temperature: 400°C to 700°C [Example] 4f of water was added to 4f of iron sulfur hydroxide with an average particle size of α1 μm, kneaded, and filled into a formwork with an inner diameter of 40μ, and then heated to 250k.
It was compacted at a pressure of 1/crs.

この成形ベレットを数−の寸法に粗粉砕して管径30■
の加熱炉内に充填し、水蒸気分圧と水素分圧の比を(L
5とした還元ガスを100−/minのitで通気しな
がら、脱水還元焼結温度を500℃として2時間保持し
てコバルトイオンの吸着実験の供試吸着とした。
This molded pellet is coarsely crushed into several dimensions and the tube diameter is 30mm.
The ratio of water vapor partial pressure to hydrogen partial pressure is (L).
The dehydration reduction and sintering temperature was set at 500° C. and held for 2 hours while passing reducing gas at a rate of 100 −/min to obtain a sample adsorption for a cobalt ion adsorption experiment.

高温水中のコバルト吸着実験はカラム流通法で行い、カ
ラム温1ii180℃、圧力をaokliZm2に保ち
コバルト濃度1 ppmの溶液をα5?の吸着剤の入っ
た内径α34−のテフロン内張り8U8製カラムに2 
d / minめ流量で20時間通水した。試験後吸着
剤を取り出して全量を酸溶解し、溶液中のコバルトtを
プラズマ発光分光分析装置により測定した。
The cobalt adsorption experiment in high-temperature water was carried out using the column flow method, and the column temperature was kept at 180°C and the pressure was kept at aokliZm2, and a solution with a cobalt concentration of 1 ppm was mixed with α5? 2 in a Teflon-lined 8U8 column with an inner diameter of α34 containing an adsorbent of
Water was passed for 20 hours at a flow rate of d/min. After the test, the adsorbent was taken out, the entire amount was dissolved in acid, and the cobalt t in the solution was measured using a plasma emission spectrometer.

得られ之結果を第1表に示す。第1表から明らかなよう
に本発明の高温用吸着剤は、対照〔化学組成; IFJ
O4、関西高純度化学(株)製、製品番号51404C
]と比較して著しくコバルト吸着量が増加し、その効果
は比表面積の増大に基づくものである。第1表では比表
面積の比とコバルト吸着量の比が一致していないが、そ
れは両者の製造方法の違いに基づく、単位比表面積当り
の水酸基の個数の差によるものと考えられる。いずれに
しても本発明のものは吸着剤の比表面積を増大させるこ
とにより吸着性能が著しく向上している。
The results obtained are shown in Table 1. As is clear from Table 1, the high temperature adsorbent of the present invention has the same chemical composition as the control [chemical composition; IFJ
O4, manufactured by Kansai Kojundo Kagaku Co., Ltd., product number 51404C
] The amount of cobalt adsorbed is significantly increased compared to the above, and this effect is based on the increase in specific surface area. In Table 1, the ratio of specific surface area and the ratio of cobalt adsorption amount do not match, but this is thought to be due to the difference in the number of hydroxyl groups per unit specific surface area, which is based on the difference in the manufacturing method of the two. In any case, the adsorption performance of the present invention is significantly improved by increasing the specific surface area of the adsorbent.

第  1  表 次に、高温用吸着剤を°加圧水型原子炉1次系に適用し
て1次系冷却材中のコバルトイオンを吸着・除去する場
合について説明する。第4図は加圧水型原子炉に適用す
る場合の1例を示すものである。図中符号6は本発明に
よる高温用吸着剤を装荷した炉水浄化設備であり、1次
系主循環ポンプ5の出口からバイパスされた1次系冷却
材(炉水)が前記炉水浄化設備6へ送られ、ζこで1次
系冷却材中に含まれる放射性コバルトイオンが吸着除去
され、浄化された1次系冷却材は再度系統に戻される。
Table 1 Next, a case will be described in which a high temperature adsorbent is applied to the primary system of a pressurized water reactor to adsorb and remove cobalt ions in the primary system coolant. FIG. 4 shows an example of application to a pressurized water reactor. Reference numeral 6 in the figure is a reactor water purification equipment loaded with a high-temperature adsorbent according to the present invention, and the primary system coolant (reactor water) bypassed from the outlet of the primary system main circulation pump 5 is supplied to the reactor water purification equipment. 6, where the radioactive cobalt ions contained in the primary coolant are adsorbed and removed, and the purified primary coolant is returned to the system again.

炉水浄化設備6を第4図に示した個所に設置したのは、
−次系冷却材の全量を炉水浄化設備6に通さなくてもC
Oイオンなどの遷移金属イオン除去に対して効果がある
からであり、更に炉水浄化設備6のトラブルによる炉水
浄化設備6の運転停止に際しても原子炉の運転を停止す
る必要がないからである。
The reactor water purification equipment 6 was installed at the location shown in Figure 4.
-C without passing the entire amount of secondary coolant through the reactor water purification equipment 6
This is because it is effective in removing transition metal ions such as O ions, and furthermore, there is no need to stop the operation of the reactor even when the reactor water purification equipment 6 is stopped due to trouble with the reactor water purification equipment 6. .

尚、図中符号1は原子炉、2は加圧器、3は蒸気発生器
、4は2次冷却水配管、7は1次冷却水配管、矢印は冷
却材の流れ方向を示している。
In the figure, reference numeral 1 indicates a nuclear reactor, 2 a pressurizer, 3 a steam generator, 4 a secondary cooling water pipe, 7 a primary cooling water pipe, and arrows indicating the flow direction of the coolant.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の炉水浄化設備のように、原子炉
炉水を一旦冷却して炉水を浄化した後再度炉水温度まで
加熱する。熱交換設備や加熱器などを必要とせず、高温
の炉水を直接吸着剤に接触させて、コバルトイオンなど
の遷移金属イオンを除去できる効果がある。このためプ
ラント設備のコストダウンが図れるとともに熱損失がほ
とんどないため大きな浄化容量をとることが可能となり
、従って炉水中の放射能量をより低減化することができ
放射線被曝低減に大きく寄与できる効果がある。
According to the present invention, like the conventional reactor water purification equipment, the reactor water is once cooled and purified, and then heated again to the reactor water temperature. It is effective in removing transition metal ions such as cobalt ions by bringing high-temperature reactor water into direct contact with the adsorbent without requiring heat exchange equipment or heaters. As a result, it is possible to reduce the cost of plant equipment, and because there is almost no heat loss, it is possible to have a large purification capacity.Therefore, the amount of radioactivity in the reactor water can be further reduced, which has the effect of greatly contributing to the reduction of radiation exposure. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水溶液中における金属酸化物表面における金
属イオンの吸着官能基と吸着機構の模式図、第2図は脱
水還元焼結温度と吸着剤の比表面積の変化を示す図、第
3図は水蒸気分圧と水素分圧の比(P)1,0/PH,
)  と脱水還元焼結温度に対応する鉄酸化物の相平衡
図、第4図は一般的な加圧水型原子炉の1次系系統図と
本発明の高温用吸着剤をそれに適用する場合の1例であ
る。
Figure 1 is a schematic diagram of adsorption functional groups and adsorption mechanisms for metal ions on the surface of metal oxides in aqueous solution, Figure 2 is a diagram showing changes in dehydration reduction sintering temperature and specific surface area of the adsorbent, and Figure 3 is the ratio of water vapor partial pressure to hydrogen partial pressure (P) 1,0/PH,
) and the phase equilibrium diagram of iron oxide corresponding to the dehydration reduction sintering temperature. Figure 4 is a primary system diagram of a general pressurized water nuclear reactor and a case in which the high temperature adsorbent of the present invention is applied to it. This is an example.

Claims (1)

【特許請求の範囲】 1、微粒のオキシ水酸化鉄を原料とし、高温還元雰囲気
中でオキシ水酸化鉄を脱水還元焼結して得られる比表面
積が極めて大きい多孔質のマグネタイトであることを特
徴とする高温水用無機吸着剤。 2、5μm以下のオキシ水酸化鉄粉末に対して80〜1
20重量%の水を加えて混練し、 250kg/cm^2以上の圧力で圧密成形したのち、
水蒸気と水素ガスの分圧比(P_H__2_O/P_H
__2)を0.1以上のガス雰囲気中で400℃〜70
0℃に加熱して、脱水還元焼結することを特徴とする高
温水用無機吸着剤の製造方法。
[Claims] 1. It is porous magnetite with an extremely large specific surface area obtained by dehydration reduction sintering of iron oxyhydroxide in a high-temperature reducing atmosphere using fine particles of iron oxyhydroxide as a raw material. Inorganic adsorbent for high temperature water. 2.80 to 1 for iron oxyhydroxide powder of 5 μm or less
After adding 20% by weight of water and kneading, compaction molding is performed at a pressure of 250 kg/cm^2 or more,
Partial pressure ratio of water vapor and hydrogen gas (P_H__2_O/P_H
___2) in a gas atmosphere of 0.1 or higher at 400℃ to 70℃
A method for producing an inorganic adsorbent for high-temperature water, which comprises heating to 0°C and dehydration reduction sintering.
JP6585887A 1987-03-23 1987-03-23 Inorganic adsorbent for high-temperature water and its production Pending JPS63232843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6585887A JPS63232843A (en) 1987-03-23 1987-03-23 Inorganic adsorbent for high-temperature water and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6585887A JPS63232843A (en) 1987-03-23 1987-03-23 Inorganic adsorbent for high-temperature water and its production

Publications (1)

Publication Number Publication Date
JPS63232843A true JPS63232843A (en) 1988-09-28

Family

ID=13299129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6585887A Pending JPS63232843A (en) 1987-03-23 1987-03-23 Inorganic adsorbent for high-temperature water and its production

Country Status (1)

Country Link
JP (1) JPS63232843A (en)

Similar Documents

Publication Publication Date Title
Saberi et al. Adsorption characteristic of 137 Cs from aqueous solution using PAN-based sodium titanosilicate composite
CN113070034B (en) Iodine adsorption material and preparation method thereof
CN113877517B (en) Bismuth sulfide aerogel adsorbent for removing radioactive iodine and preparation method and application thereof
US4374116A (en) Method of combining gaseous hydrogen and oxygen and apparatus therefor
WO2020206599A1 (en) System and method for separating mixed gas of xenon and krypton by using hydrate method
WO2018221531A1 (en) Method and device for reducing hto concentration in hto-containing aqueous solution
CN117427641B (en) Low-temperature ceramic catalyst and preparation method and application thereof
EP0105498B1 (en) Inorganic adsorbent, production thereof and use thereof
Maity et al. Selective U (VI) removal using phosphorous-doped graphitic carbon
US4282092A (en) Process for preparing inorganic particulate adsorbent and process for treating nuclear reactor core-circulating water
JPS63232843A (en) Inorganic adsorbent for high-temperature water and its production
Mimura et al. Removal of heat-generating nuclides from high-level liquid wastes through mixed zeolite columns
Wu et al. A method for the efficient removal of Pb (II) by D001 resin in a rotating packed bed
CN112427015A (en) Microporous carbon and preparation method thereof
JP2679726B2 (en) Reactor cooling water cleaning agent and cleaning method
Deng et al. Effects of Porous Graphene on LiOH Based Composite Materials for Low Temperature Thermochemical Heat Storage
CN115672263B (en) Preparation method of halloysite nanotube composite material and application of halloysite nanotube composite material in uranium pollution treatment
JP7282661B2 (en) purifier
CN117680109B (en) Immobilized ionic liquid and preparation method and application thereof
TWI839848B (en) Processing method of radioactive ionic resins
JPH0324995B2 (en)
JPS596243B2 (en) Method for recovering hydrogen isotope mixtures
CN117185390A (en) Rectification filler for tritium-containing wastewater treatment and preparation method thereof
Achour et al. Gamma spectrometry technique application to the 60Co sorption onto IRN-77 resin from radioactive wastewater: Equilibrium, Kinetic and Thermodynamic investigations
CN115925510A (en) For separating organic phase from organic phase 14 In C target material 14 Method of C