JPS63232468A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPS63232468A
JPS63232468A JP62067174A JP6717487A JPS63232468A JP S63232468 A JPS63232468 A JP S63232468A JP 62067174 A JP62067174 A JP 62067174A JP 6717487 A JP6717487 A JP 6717487A JP S63232468 A JPS63232468 A JP S63232468A
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
film
thin film
polyimide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62067174A
Other languages
Japanese (ja)
Inventor
Toshio Nakajima
中島 登志雄
Ken Noda
謙 野田
Takeshi Tsunohashi
角橋 武
Kazumi Azuma
東 一美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP62067174A priority Critical patent/JPS63232468A/en
Publication of JPS63232468A publication Critical patent/JPS63232468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the photoelectric conversion efficiency of a photoelectric converter by using a specific colorless transparent polyimide film as a substrate, and irradiating a light from the substrate. CONSTITUTION:In a photoelectric converter having a photoelectric conversion element for converting optical energy into electric energy on a substrate, a colorless transparent light transmission polyimide film is employed as a substrate. The used colorless transparent polyimide film is formed of polyimide which mainly contains repetition unit represented by the formula (I). In the formula (I), X1-X4 are-H,-CH3-C2H5,-NO2,-F,-COOH or-Cl. Thus, the colorless transparent polyimide film is used as the substrate, and a light is irradiated from the substrate side, i.e., the side having excellent quality to remarkably improve the photoelectric conversion efficiency.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明は基板に無色透明なポリイミドフィルムを用い、
該基板側から光を照射することにより光電変換効率を向
上させた光電変換装置に関する。
Detailed description of the invention (a) Industrial application field The present invention uses a colorless and transparent polyimide film as a substrate,
The present invention relates to a photoelectric conversion device that improves photoelectric conversion efficiency by irradiating light from the substrate side.

rh)保寥/7′1 堵9蒔 非晶質シリコン薄膜等を用いて光エネルギーを電気エネ
ルギーに変換する光電変換装置は、低コストの太l!1
電池(本発明では太陽電池も光電変換装置に含める)や
光センサー等に応用されている。
rh) Yasutaka / 7'1 To 9 Maki A photoelectric conversion device that converts light energy into electrical energy using an amorphous silicon thin film is a low-cost product! 1
It is applied to batteries (solar cells are also included in photoelectric conversion devices in the present invention), optical sensors, and the like.

光電変換装置、例えば太陽電池は、従来、ステンレス箔
等の金属板上にp形、i形、n形の非晶質シリコン薄膜
を順次堆積し、更に光透過性の導電性薄膜を積層した構
造のもの、及びガラス板上に光透過性の導電性薄膜とp
形、i形、n形の非晶質シリコン薄膜を順次堆積し、更
にアルミニウム等の導電性薄膜を積層した構造のもの等
が実用化されている。
Photoelectric conversion devices, such as solar cells, conventionally have a structure in which p-type, i-type, and n-type amorphous silicon thin films are sequentially deposited on a metal plate such as stainless steel foil, and a light-transmitting conductive thin film is further laminated. and a light-transmitting conductive thin film on a glass plate.
A structure in which amorphous silicon thin films of type, i-type, and n-type are sequentially deposited and a conductive thin film of aluminum or the like is further laminated has been put into practical use.

ステンレス等の金属基板の場合、基板のシート抵抗が十
分に低いので、−基板上に単一の太陽電池を形成でき、
一定面積の基板から大出力の電流を得ることができる。
In the case of metal substrates such as stainless steel, the sheet resistance of the substrate is low enough that - a single solar cell can be formed on the substrate;
A large output current can be obtained from a board with a fixed area.

一方ガラス等の絶縁基板を用いる場合には、2以上の光
電変換素子を互に隣接させて配置し、これを導電体で容
易に直列接続して2倍以上の電圧を得るのに都合がよい
On the other hand, when using an insulating substrate such as glass, it is convenient to arrange two or more photoelectric conversion elements adjacent to each other and easily connect them in series with a conductor to obtain more than twice the voltage. .

ところで現在、非晶質シリコン太陽電池;こ関してその
光電変換効率の改善と共に材料面及び生産工程面の改善
により低コ′スト化の努力がなされている。この−環と
してポリイミドフィルム等の耐熱性プラスチックフィル
ム上にステンレス等の薄膜を設け、その上に非晶質シリ
コン薄膜を堆積し、その上に酸化インジウム−酸化錫(
以下、ITO導電性薄膜と略記する)又は酸化錫等の透
明導電性薄膜を付したものが提案されている(例えば、
特開昭54−149489号公報、同55−4994号
公報、同55−29154号公報及び同57−1038
39号公報など)。これらは材料コストが低く、しかも
基板が可撓性でロール状に巻回して連続処理できるため
生産コスト面上で大きな利点があり、更に形状を任意に
選択できることから広範にわたる応用、用途が期待され
ている。
Currently, efforts are being made to reduce the cost of amorphous silicon solar cells by improving their photoelectric conversion efficiency, as well as improving materials and production processes. As this ring, a thin film of stainless steel or the like is provided on a heat-resistant plastic film such as a polyimide film, an amorphous silicon thin film is deposited on it, and indium oxide-tin oxide (
A transparent conductive thin film such as tin oxide (hereinafter abbreviated as ITO conductive thin film) or tin oxide (for example,
JP-A-54-149489, JP-A No. 55-4994, JP-A No. 55-29154, and JP-A No. 57-1038
Publication No. 39, etc.). These materials have low material costs, and because the substrate is flexible and can be rolled into a roll for continuous processing, they have great advantages in terms of production costs.Furthermore, since the shape can be selected arbitrarily, a wide range of applications and uses are expected. ing.

しかし、現在ポリイミドフィルムを基板とする非晶質シ
リコン太陽電池は多くの可能性を期待されながらも実用
化されるに至っていない。これは、ステンレス箔やガラ
ス板を基板とするものに比して、一般に光電変換効率が
大幅に低いこと、経日安定性及び曲げ応力に対する安定
性に欠けるためである。
However, although amorphous silicon solar cells using a polyimide film as a substrate are currently expected to have many possibilities, they have not yet been put into practical use. This is because the photoelectric conversion efficiency is generally much lower than that of substrates made of stainless steel foil or glass plates, and they lack stability over time and stability against bending stress.

これらの欠点の理由の一つは、温度250℃〜350℃
の条件下、基板上に非晶質シリコン薄膜を堆積する際に
、当該基板に吸着されている水分やポリイミドフィルム
中の残留溶媒、更に残留未反応部の縮合により発生する
水分等が不純物として膜中に取り込まれること、又他の
理由は非可逆的な熱収縮性(薄膜を堆積後室温に戻した
ときに初期の寸法よりも収縮していること)により基板
フィルムと電極用ステンレス薄膜等との界面に歪が残留
している点にある。これらの改良策として、非晶質シリ
コン薄膜を堆積する前に基板を予め加熱処理しておく方
法が提案されている(特公昭59−53178号公報)
One of the reasons for these shortcomings is that the temperature between 250℃ and 350℃
When depositing an amorphous silicon thin film on a substrate under these conditions, moisture adsorbed on the substrate, residual solvent in the polyimide film, and moisture generated by condensation of residual unreacted parts form impurities in the film. Another reason is that the substrate film and stainless steel thin film for electrodes, etc. The point is that strain remains at the interface. As a measure to improve these, a method has been proposed in which the substrate is preheated before depositing the amorphous silicon thin film (Japanese Patent Publication No. 59-53178).
.

(C)発明が解決しようとする問題点 上述の基板を予熱処理する方法は当該基板が有する本質
的な問題を緩和した点で極めて優れているが、太陽電池
の光電変換効率を向上させる方法としでは本質的な改養
策にはなっていない。
(C) Problems to be Solved by the Invention Although the method of preheating a substrate described above is extremely superior in that it alleviates the essential problem of the substrate, it is not a method for improving the photoelectric conversion efficiency of solar cells. However, it is not an essential reform measure.

叩ち、ポリイミドフィルムを基板とする太[E池は、従
来非透光性のポリイミドフィルム上にステンレスのスパ
ッタRII!Iを設け、この上に非晶質シリコン薄膜を
順次堆積させ、次いでITO導電性薄膜を積層した構造
を有する。そして、光を基板と反対側、つまりITO膜
側から照射させて光エネルギーを電気エネルギーに変換
させている。
The sputtering of stainless steel on polyimide film, which has conventionally been non-transparent, was performed using polyimide film as a substrate. It has a structure in which an amorphous silicon thin film is sequentially deposited on the ITO conductive thin film, and then an ITO conductive thin film is laminated thereon. Then, light is irradiated from the side opposite to the substrate, that is, from the ITO film side, and the light energy is converted into electrical energy.

ところで、非晶質シリコン薄膜の堆積状態は、下地基板
の平滑性に対応して、換言すると、表面の微細な凹凸に
沿ってドメインを形成しながら成長し、この結果上記非
晶質シリコン薄膜の膜厚が1〜2μm程度までは膜厚が
厚くなる程、一般に構造欠陥の多い膜が形成される。
By the way, the deposition state of the amorphous silicon thin film corresponds to the smoothness of the base substrate. In other words, it grows while forming domains along the minute irregularities on the surface. As a result, the amorphous silicon thin film Up to a film thickness of about 1 to 2 μm, the thicker the film, the more structural defects the film is generally formed.

又、主として真性層中で発生した電子と正孔はrII膜
の構造欠陥の多い箇所で再結合しやすく、当該筒所で光
電流の損失が大であると思われる。したがって、光電変
換効率は基板から遠い箇所、つまり基板側の面とは反対
側の表面に近い程劣悪になると推考されるから、上述の
如く、光を基板と反対側、つまりITO導電性薄膜側か
ら照射させた場合、基板としてポリイミドフィルムを用
いたものと鏡面ステンレス箔を用いたものとではポリイ
ミドフィルムの表面粗さが大であることがら光電変換効
率がポリイミドフィルムの方が劣悪になると考えられる
(ポリイミドフィルムの表面平滑性には限界がある)。
Further, electrons and holes mainly generated in the intrinsic layer are likely to recombine at locations where there are many structural defects in the rII film, and it is thought that the loss of photocurrent is large at these locations. Therefore, it is assumed that the photoelectric conversion efficiency becomes worse as the distance from the substrate increases, that is, closer to the surface opposite to the substrate side. When irradiated from the substrate, the polyimide film has a higher surface roughness than the one using a mirror-finished stainless steel foil as the substrate, so it is thought that the photoelectric conversion efficiency will be worse with the polyimide film. (There is a limit to the surface smoothness of polyimide film.)

(d)問題点を解決するための手段 そこで、本発明者らは耐熱性に優れるポリイミドフィル
ムであって、しかも無色透明なポリイミドフィルムを開
1発し、これを基板に用いた光電変換装置を作成し、光
をこの基板側から照射させて光電変換効率を調査した結
果、この種の光電変換装置ではその基板による光の吸収
は避けられないが、驚くべきことにそれにも拘わらず、
従来のポリイミド基板型の太陽電池に比較して大幅な光
電変換効率の向上が認められることを見い出し、本発明
を完成するに至ったものである。
(d) Means for solving the problem Therefore, the present inventors developed a colorless and transparent polyimide film that has excellent heat resistance, and created a photoelectric conversion device using this as a substrate. However, as a result of investigating the photoelectric conversion efficiency by irradiating light from this substrate side, it was surprisingly found that in this type of photoelectric conversion device, absorption of light by the substrate is unavoidable.
The present invention was completed based on the discovery that the photoelectric conversion efficiency is significantly improved compared to conventional polyimide substrate type solar cells.

即ち、本発明は基板上に光エネルギーを電気エネルギー
に変換する光電変換素子を設けた光電変換装置にぷいて
、該基板が一般式 %式%(1) で示される繰返し単位の少なくとも1つを主成分とする
ポリイミドフィルムで形成されていることを特徴とする
ものである。
That is, the present invention provides a photoelectric conversion device in which a photoelectric conversion element for converting light energy into electrical energy is provided on a substrate, and the substrate has at least one repeating unit represented by the general formula % (1). It is characterized by being formed from a polyimide film as the main component.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において光電変換装置とは光エネルギーを電気エ
ネルギ一番こ変換する装置のことであって、基板に光層
変換素子を設けたものであれば総てのものに適用でき、
具体的には、例えば太陽電池や光センサー等が挙げられ
る。
In the present invention, the photoelectric conversion device refers to a device that converts light energy into electrical energy, and can be applied to any device that has an optical layer conversion element on a substrate.
Specific examples include solar cells and optical sensors.

そして、本発明の最も大きな特徴は、上記基板として無
色透明な光透過性のポリイミドフィルムを採用した点に
ある。
The most significant feature of the present invention is that a colorless and transparent light-transmitting polyimide film is used as the substrate.

そして、この無色透明とは、膜厚50±5amのポリイ
ミドフィルムに対する可視光線(500nm)透過率が
70%以とであって、且つ黄色度(イエローネスインデ
ックス)が40以下のことをいう。
Colorless and transparent means that the visible light (500 nm) transmittance for a polyimide film having a thickness of 50±5 am is 70% or more, and the yellowness index is 40 or less.

ポリイミドフィルムは耐熱性であるが、従来無色透明な
ポリイミドフィルムは存在せず、本発明者らの研究の結
果、完成されたものである。
Although polyimide film is heat resistant, there has never been a colorless and transparent polyimide film, and this film was completed as a result of research by the present inventors.

本発明に用いる無色透明なポリイミドフィルムは、一般
式 ・・・ (1) で示される繰返し単位の少なくとも1つを主成分とする
ポリイミドによって形成される。
The colorless and transparent polyimide film used in the present invention is formed from a polyimide containing at least one repeating unit represented by the general formula (1) as a main component.

本発明に用いられる無色透明なポリイミドは、式(■) で示される3、 3: 4.4 ’−ジフェニルスルホ
ンテトラカルボン酸二無水物と一般式(v)ないしく■
)で表されるメタ位置にアミノ基を有する芳香族ジアミ
ンとの反応によって得ることができる。
The colorless and transparent polyimide used in the present invention is composed of 3,3:4,4'-diphenylsulfonetetracarboxylic dianhydride represented by the formula (■) and the general formula (v) or (■).
) can be obtained by reaction with an aromatic diamine having an amino group at the meta position.

X富 H2N  @−xター(T−NH2・・・ (Vl)H
2N$O−o−Xs−Q−OtNH2・(’W)上記メ
タ位置にアミノ基を有する芳香族ジアミンの代表例とし
ては下記のものがあげられる。
X wealth H2N @-xter (T-NH2... (Vl)H
2N$O-o-Xs-Q-OtNH2.('W) Representative examples of the aromatic diamine having an amino group at the above meta position include the following.

H2N tNH2 メタフェニレンジアミン 2.4−トルエンジアミン 4.6−シメチルーメタフエニレンジアミン2.4−ジ
アミノメシチレン 4−クロル−メタフェニレンジアミン 4−フルオロ−メタフェニレンジアミン3.5−ジアミ
ノ安息香酸 5−二トローメタフェニレンジアミン 3.3′−ジアミノジフェニルエーテル3.3−ジアミ
ノジフヱニルスルホン 3.3′−ジアミノジフェニルチオエーテル3.3′−
ジアミノジフェニルメタン ’2’−19rO台o−0N)(2 1,4−ビス(3−’rアミノェノキシ)ベンゼンH2
Nt o? o−◎−NH2 1,3−ビス(3−アミノフェノキシ)ベンゼンビス(
4−(3−アミノフェノキシ)フェニル〕スルホン 2.2−ビスC4−(3−アミノフェノキシ)フェニル
〕プロパン と記メタ位置にアミノ基を有する芳香族ジアミンは、そ
れぞれ単独で用いてもよいし、適宜組み合わせて用いて
もよい。
H2N tNH2 Metaphenylenediamine 2.4-Toluenediamine 4.6-dimethyl-Metaphenylenediamine 2.4-Diaminomesitylene 4-Chlor-Metaphenylenediamine 4-Fluoro-Metaphenylenediamine 3.5- Diaminobenzoic acid 5- Nitrometaphenylenediamine 3.3'-Diaminodiphenyl ether 3.3-Diaminodiphenyl sulfone 3.3'-Diaminodiphenylthioether 3.3'-
Diaminodiphenylmethane '2'-19rO-ON) (2 1,4-bis(3-'r aminophenoxy)benzene H2
Nto? o-◎-NH2 1,3-bis(3-aminophenoxy)benzenebis(
4-(3-aminophenoxy)phenyl]sulfone 2.2-bisC4-(3-aminophenoxy)phenyl]propane and the aromatic diamine having an amino group at the meta position may be used alone, or They may be used in appropriate combinations.

メタ位置にアミノ基を有する上記芳香族ジアミンと反応
させるテトラカルボン酸二無水物は、前記式(■)で表
される3、 3’、 4.4’−ジフェニルスルホンテ
トラカルボン酸二無水物であるが、そのエステル、アミ
ド、ハロゲン化物、−無水物等の誘導体も使用すること
ができ、これらは上記二無水物も含めてテトラカルボン
酸化合物として一括される。しかし、上記化合物の中で
も、二無水物を用いることが好結果をもたらす。
The tetracarboxylic dianhydride to be reacted with the aromatic diamine having an amino group at the meta position is 3, 3', 4,4'-diphenylsulfone tetracarboxylic dianhydride represented by the formula (■). However, derivatives such as esters, amides, halides, and anhydrides thereof can also be used, and these, including the dianhydrides mentioned above, are collectively referred to as tetracarboxylic acid compounds. However, among the above compounds, the use of dianhydrides gives good results.

そして、上記の3.3’、 4.4’−ジフェニルスル
ホンテトラカルボン酸二無水物とメタ位置にアミノ基を
有する芳香族ジアミンとを組み合わせて反応させること
により、初めて前記一般式(1)〜(1)で表される繰
返し単位の一種もしくは二種以上を主成分とする無色透
明なポリイミドフィルムが得られるのである。ここで主
成分とするとは、全体が主成分のみからなる場合も含め
てる趣旨であるこの場合において、無色透明なポリイミ
ドフィルムの主成分となる上記一般式(1)〜(1)で
表される繰返し単位の含有量が多いほど得られるポリイ
ミドフィルムの無色透明性が高くなる。しかしながら、
上記一般式<r)〜(I)で表される繰返し単位の少な
くとも一つが70モル%以上含有されていれば、少なく
ともこの発明で求める無色透明性が確保されるので、そ
の範囲内に詔いて上記3゜3’、44’−ジフェニルス
ルホンテトラカルボン酸二無水物以外のその池の芳香族
テトラカルボン酸二無水物およびメタ位置にアミノ基を
有する芳香族ジアミン以外のその他のジアミノ化合物を
用いることができ令。しかし、上記一般式(1)〜(1
)で表される繰返し単位の含有量の好ましい範囲は70
モル%以上であり、算も好ましい範囲は95モル%以上
である。
By reacting the above 3.3', 4,4'-diphenylsulfone tetracarboxylic dianhydride in combination with an aromatic diamine having an amino group at the meta position, the above general formulas (1) to A colorless and transparent polyimide film containing one or more repeating units represented by (1) as a main component can be obtained. Here, the term "main component" includes the case where the entire component consists only of the main component.In this case, the main component of the colorless and transparent polyimide film is expressed by the general formulas (1) to (1) above. The greater the content of repeating units, the higher the colorless transparency of the resulting polyimide film. however,
If at least one of the repeating units represented by the above general formulas <r) to (I) is contained in an amount of 70 mol% or more, at least the colorless transparency required in this invention is ensured, so it is possible to maintain the colorless transparency required within this range. Using aromatic tetracarboxylic dianhydrides other than the above-mentioned 3゜3',44'-diphenylsulfonetetracarboxylic dianhydride and other diamino compounds other than aromatic diamines having an amino group at the meta position. The order is ready. However, the above general formulas (1) to (1
) The preferred range of the content of repeating units is 70
It is mol% or more, and a preferable range is 95 mol% or more.

上記その他の芳香族テトラカルボン酸二無水物としては
、ピロメリット酸二無水物、3.3’、 4.4’−ビ
フェニルテトラカルボン酸二無水物、2.3’4.4′
−オキシシフタル酸二無水物、4.4’−ビス(3,4
−ジカルボキシフェノキシ)ジフェニルスルホンニ無水
物、2.2−ビス(3,4−ジカルボキジフェニル)へ
キサフルオロプロパンニ無水物、2.3.6.7−ナフ
タレンテトラカルボン酸二無水物、1.2.5.6−ナ
フタレンテトラカルボン酸二無水物、1,4,5.8−
ナフタレンテトラカルボン酸二無水物ないしはそのエス
テル等の誘導体が挙げられ、これらは単独で又は併せて
用いることができる。
Examples of the other aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3.3', 4.4'-biphenyltetracarboxylic dianhydride, 2.3'4.4'
-oxycyphthalic dianhydride, 4,4'-bis(3,4
-dicarboxyphenoxy)diphenylsulfone dianhydride, 2.2-bis(3,4-dicarboxydiphenyl)hexafluoropropane dianhydride, 2.3.6.7-naphthalenetetracarboxylic dianhydride, 1 .2.5.6-Naphthalenetetracarboxylic dianhydride, 1,4,5.8-
Examples include derivatives such as naphthalenetetracarboxylic dianhydride or its ester, and these can be used alone or in combination.

また、その他のジアミノ化合物たしては、4゜4′−ジ
アミノジフェニルエーテル、3.4’−ジアミノジフェ
ニルエーテル、4.4’−ジアミノジフェニルスルホン
、4.4’−ジアミノジフェニルメタン、4.4′−ジ
アミノベンゾフェノン、4.4’−ジアミノジフェニル
プロパン、p−フェニレンジアミン、2.5−トリレン
ジアミン、2.5−ジアミノクロロベンゼン、ベンジジ
ン、3.3−ジメチルベンジジン、4.4’−ジアミノ
ジフェニルチオエーテル、3.3′−ジメトキシ−4,
4′−ジアミノジフェニルメタン、3.3’−ジメチル
−4,4′−ジアミノジフェニルメタン、ビスC4−(
4−アミノフェノキ−アミノフェノキシ)フェニル〕−
へキサフルオロプロパン、1,3−ビス(4−アミノフ
ェノキシ)ベンゼン、l、4−ビス(5,4−アミノフ
ェノキシ)ベンゼンが挙げられ、これらは単独で、もし
くは併せて用いることができる。
In addition, other diamino compounds include 4゜4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylmethane, 4,4'-diamino Benzophenone, 4,4'-diaminodiphenylpropane, p-phenylenediamine, 2,5-tolylenediamine, 2,5-diaminochlorobenzene, benzidine, 3,3-dimethylbenzidine, 4,4'-diaminodiphenylthioether, 3 .3'-dimethoxy-4,
4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, bisC4-(
4-Aminophenoky-aminophenoxy)phenyl]-
Examples include hexafluoropropane, 1,3-bis(4-aminophenoxy)benzene, and 1,4-bis(5,4-aminophenoxy)benzene, and these can be used alone or in combination.

本発明に用いる無色透明なポリイミドフィルムは、上記
の芳香族テトラカルボン酸二無水物及びジアミノ化合物
を有機極性溶媒中において、温度80℃以下で重合させ
ることによりポリイミド前駆体溶液をつくり、このポリ
イミド前駆体溶液を用いて流延、ロールコーティング等
の方法で所望の形状の賦形体を形成し、この賦形体を空
気中又は不活性ガス中において、温度:50〜350℃
、圧カニ常圧もしくは減圧の条件下で有機極性溶媒を蒸
発除去すると同時にポリイミド前駆体を脱水閉環して得
られる。
The colorless and transparent polyimide film used in the present invention is prepared by polymerizing the above-mentioned aromatic tetracarboxylic dianhydride and diamino compound in an organic polar solvent at a temperature of 80°C or lower to prepare a polyimide precursor solution. A body solution is used to form a shaped body in a desired shape by a method such as casting or roll coating, and this shaped body is placed in air or an inert gas at a temperature of 50 to 350°C.
It is obtained by evaporating and removing the organic polar solvent under normal or reduced pressure conditions and simultaneously dehydrating and ring-closing the polyimide precursor.

また、上記方法に代えて、上記ポリイミド前駆体をピリ
ジンと無水酢酸のベンゼン溶液等を用い、脱溶媒とイミ
ド化を行いポリイミドにすること等の方法によっても得
ることができる。
Further, instead of the above method, the polyimide precursor can be obtained by a method such as using a benzene solution of pyridine and acetic anhydride, and removing the solvent and imidizing the polyimide precursor to form a polyimide.

上記の有機極性溶媒として($、N、N−ジメチルホル
ムアミド、N、N−ジメチルアセトアミド、ジグライム
、クレゾール、ハロゲン化フェノール等が好適であるが
、特にN、N−ジメチルアセトアミドが良溶媒で、しか
も沸点が極めて低いから好ましい。これらの有機極性溶
媒は単独で用いてもよいし、或はこれに代えて2種以上
を混合して用いても支障はない。
As the above organic polar solvent, ($, N, N-dimethylformamide, N, N-dimethylacetamide, diglyme, cresol, halogenated phenol, etc.) are suitable, but N, N-dimethylacetamide is a particularly good solvent, and These organic polar solvents are preferred because they have extremely low boiling points.These organic polar solvents may be used alone, or alternatively, two or more may be used in combination without any problem.

有機極性溶媒として、上記に例示した各溶媒は、沸点が
低いため、加熱による脱水閉環の際に分解してその分解
物がポリイミド中に残留して当該ポリイミドが着色する
といった問題を生じないのである。
As organic polar solvents, the above-mentioned solvents have low boiling points, so they do not cause problems such as decomposition during dehydration and ring closure by heating, and the decomposed products remain in the polyimide and color the polyimide. .

しかしながら、高沸点の重合用溶媒、例えばN−メチル
−2−ピロリドンを用い、ポリイミド前駆体合成後、溶
媒置換により、上記例示の好適な溶媒に生成ポリイミド
前駆体を溶解するようにすれば上記弊害を排除しつる。
However, if a high boiling point polymerization solvent such as N-methyl-2-pyrrolidone is used to synthesize the polyimide precursor and the resulting polyimide precursor is dissolved in the above-mentioned suitable solvent by solvent substitution, the above-mentioned disadvantages can be avoided. Eliminate the vines.

この場合、上記例示の好適な溶媒は希釈溶媒となる。上
記ポリイミドフィルムの製造に際しては、このように、
重合溶媒と希釈溶媒とを別種のものにし、溶媒置換によ
って生成ポリイミド前駆体を希釈溶媒に溶解するように
してもよいのである。
In this case, the suitable solvent exemplified above is a diluting solvent. When manufacturing the above polyimide film, in this way,
It is also possible to use different types of polymerization solvent and dilution solvent, and to dissolve the produced polyimide precursor in the dilution solvent by solvent substitution.

なお、上記に例示した好適な有機極性溶媒を使用する際
に、この溶媒に、エタノール、トルエン、ベンゼン、キ
シレン、ジオキサン、テトラヒドロフラン、ニトロベン
ゼン等の溶媒を、ポリイミドフィルムの無色透明性を損
なわない範囲内において一種もしくは二種以上適宜混合
して用いてもよい。
When using the suitable organic polar solvents listed above, add solvents such as ethanol, toluene, benzene, xylene, dioxane, tetrahydrofuran, nitrobenzene, etc. to this solvent within a range that does not impair the colorless transparency of the polyimide film. One type or two or more types may be appropriately mixed and used.

上記のようにして、無色透明なポリイミドフィルムを製
造する際にポリイミド前駆体溶液の対数粘度(N、N−
ジメチルアセトアミド溶媒中0.5g7100m/の温
度において30℃で測定)が0.3〜5.0の範囲にな
るように調整するのが好ましい。
As described above, when manufacturing a colorless and transparent polyimide film, the logarithmic viscosity (N, N-
(measured at 30° C. at a temperature of 0.5 g 7100 m/m in dimethylacetamide solvent) is preferably adjusted to be in the range of 0.3 to 5.0.

より好適なのは0.4〜2.0である。この対数粘度が
低すぎると得られるポリイミドフィルムの機械的強度が
低くなるため好ましくない。逆に、対数粘度が高すぎる
とポリイミド前駆体溶液を流延させにくく作業が困難と
なるため好ましくない。また、ポリイミド前駆体溶液の
濃度も、作業性等の観点から、5〜3011量%、好ま
しくは15〜25重量%に設定することが望ましいので
ある。
More preferred is 0.4 to 2.0. If the logarithmic viscosity is too low, the resulting polyimide film will have low mechanical strength, which is not preferable. On the other hand, if the logarithmic viscosity is too high, it is difficult to cast the polyimide precursor solution and the work becomes difficult, which is not preferable. Further, from the viewpoint of workability, etc., the concentration of the polyimide precursor solution is desirably set to 5 to 3011% by weight, preferably 15 to 25% by weight.

なお、上記対数粘度は次式で計算されるものであり、式
中の粘度は毛細管粘度計により測定されるものである。
Note that the above-mentioned logarithmic viscosity is calculated by the following formula, and the viscosity in the formula is measured by a capillary viscometer.

ポリイミド前駆体溶液を用いての無色透明性に優れるポ
リイミドフィルムを得るにはガラス板、ステンレス板等
の鏡面に上記ポリイミド前駆体溶液を一定の厚みになる
ように流延し、100〜350℃の温度で徐々に加熱し
て脱水閉環させ、これにポリイミド前駆体をイミド化す
ることにより行なわれる。ポリイミド前駆体溶液からの
ポリイミドフィルム形成における有機極性溶媒の除去及
びポリイミド前駆体のイミド化のための加熱は、連続し
て行ってもよく、又これらの工程を減圧下もしくは不活
性ガス雰囲気中で行ってもよい。更に短時間であれば4
00′cm後まで最終的に加熱することにより生成ポリ
イミドフィルムの特性を白土させることができる。 ′ また、ポリイミドフィルム形成の他の方法は、上記のポ
リイミド前駆体溶液をガラス板上等に流延して100〜
150℃で30〜120分間加熱乾燥して皮膜を形成し
、この皮膜をピリジンと無水酢酸のベンゼン溶液等に浸
漬して脱溶剤とイミド化反応を行い、上記皮膜をポリイ
ミドフィルムとする方法であり、この方法によっても無
色透明なポリイミドフィルムを得ることができる。
To obtain a polyimide film with excellent colorless transparency using a polyimide precursor solution, the polyimide precursor solution is cast onto a mirror surface such as a glass plate or stainless steel plate to a certain thickness, and then heated at 100 to 350°C. This is carried out by gradually heating at a high temperature to cause dehydration and ring closure, and then imidizing the polyimide precursor. In forming a polyimide film from a polyimide precursor solution, the removal of the organic polar solvent and the heating for imidization of the polyimide precursor may be performed continuously, or these steps may be performed under reduced pressure or in an inert gas atmosphere. You may go. If it is even shorter, 4
By final heating until after 00' cm, the properties of the resulting polyimide film can be made clay. ' Another method for forming a polyimide film is to cast the above polyimide precursor solution onto a glass plate or the like.
A film is formed by heating and drying at 150°C for 30 to 120 minutes, and this film is immersed in a benzene solution of pyridine and acetic anhydride to remove the solvent and undergo an imidization reaction, thereby converting the film into a polyimide film. A colorless and transparent polyimide film can also be obtained by this method.

このようにして得られるポリイミドフィルムはその厚み
を7〜5505m程度に設定することが好ましい。この
厚さが550amを越えると光の透過率が悪化すると共
に可撓性に欠けて連続的にロール状に巻回するのが困難
となり、つまり生産性に問題が生じるのであり、逆に厚
さが7μm未満になると充分な機械的強度が得られない
と共に非晶質シリコン薄膜を堆積する際の温度(250
℃〜350℃)に耐えることができず、この熱応力によ
って基板が変形することがあるから好ましくない。この
ポリイミドフィルムは、無色透明であって従来のように
黄色ないし黄褐色に着色していないため、比較的厚膜で
ありでも極めて無色透明性が良好である。
The thickness of the polyimide film thus obtained is preferably set to about 7 to 5,505 m. If the thickness exceeds 550 am, the light transmittance will deteriorate and the flexibility will be lacking, making it difficult to continuously wind the film into a roll, which will cause problems in productivity. If it is less than 7 μm, sufficient mechanical strength will not be obtained and the temperature (250
C to 350 C), and the substrate may be deformed by this thermal stress, which is not preferable. This polyimide film is colorless and transparent and is not colored yellow or yellowish brown as in conventional films, so it has extremely good colorless transparency even though it is a relatively thick film.

以上のようにして、ポリイミド前駆体溶液をイミド化し
てポリイミドとする場合において、生成ポリイミドは、
特性の点から対数粘度(97重量%硫酸中0.5117
diの濃度で30℃のもとて測定)を0.3〜5.0の
範囲内に設定することが好ましい。
In the case where the polyimide precursor solution is imidized to form polyimide as described above, the generated polyimide is
From the point of view of properties, the logarithmic viscosity (0.5117 in 97% by weight sulfuric acid)
(measured at 30° C.) is preferably set within the range of 0.3 to 5.0.

最も好ましいのは0.4〜4.0である。The most preferred range is 0.4 to 4.0.

このようにして得られたポリイミドフィルムは、従来の
ものとは全く異なり、無色透明であって極めて透明度が
高いものである。
The polyimide film obtained in this manner is completely different from conventional films, and is colorless and transparent, and has extremely high transparency.

そして、特に、無色透明性が優れて本発明に用いる基板
に最適なのは一般式([)及び([)で示される芳香族
2核体ジアミン及び芳香族4核体ジアミンにおいて、x
5及びx6がSO2であるものを用いたものである。こ
のものを用いて得られたポリイミドフィルムは、無色透
明性が極めて優れているばかりでなく耐熱性にも著しく
優れて熱収縮率が小さいのである。
In particular, the aromatic dinuclear diamines and aromatic tetranuclear diamines represented by the general formulas ([) and ([), which have excellent colorless transparency and are most suitable for the substrate used in the present invention, are x
5 and x6 are SO2. The polyimide film obtained using this material not only has excellent colorless transparency but also excellent heat resistance and low heat shrinkage.

このようにして得たポリイミドフィルム製基板上に光電
変換素子を堆積して光電変換装置を形成する。
A photoelectric conversion device is formed by depositing photoelectric conversion elements on the polyimide film substrate thus obtained.

本発明においては、先ず基板上にITO膜や酸化スズ薄
膜等の光透過型の導電性薄膜を蒸着法やスパッタリング
法で積層する工程Aを実施する。
In the present invention, first, step A is performed in which a light-transmitting conductive thin film such as an ITO film or a tin oxide thin film is laminated on a substrate by vapor deposition or sputtering.

導電性(表面抵抗が1000Ω/口以下)が得られず、
逆に1.OJmを越えるとポリイミドフィルムの導電性
薄膜の透明性が損なわれるから好ましくない。
Conductivity (surface resistance of 1000Ω/mouth or less) cannot be obtained,
On the contrary, 1. If it exceeds OJm, the transparency of the conductive thin film of the polyimide film will be impaired, which is not preferable.

本発明においては、次に上記導電性薄膜上に光電変換素
子を堆積する工程Bを実施する。
In the present invention, next step B is performed in which a photoelectric conversion element is deposited on the conductive thin film.

該光電変換素子としては、上記導電性薄膜上に、例えば
p−1−n又はn−1−pの順序で堆積して成る非晶質
シリコン薄膜の他、上記導電性薄膜上に、p形非晶質炭
化珪素薄膜、i形非晶質シリコン薄膜及びn形非晶質シ
リコン薄膜の順序で堆積して成る光電変換素子等の各種
のものが挙げられる。
The photoelectric conversion element may include an amorphous silicon thin film deposited on the conductive thin film, for example, in the p-1-n or n-1-p order, or a p-type silicon thin film deposited on the conductive thin film. Examples include a variety of photoelectric conversion elements formed by depositing an amorphous silicon carbide thin film, an i-type amorphous silicon thin film, and an n-type amorphous silicon thin film in this order.

そして、p形非晶質シリコン薄膜、i形非晶質シリコン
薄膜、n形非晶質シリコン薄膜の堆積方法としては、ス
パッタリング法、グロー放電法、光CVD法、イオンブ
レーティング法等の各種の方法を採用しつる。
The p-type amorphous silicon thin film, i-type amorphous silicon thin film, and n-type amorphous silicon thin film can be deposited using various methods such as sputtering, glow discharge, photo-CVD, and ion blating. Adopt the method.

例えば、グロー放電法の場合、温度200〜350℃に
加熱された基板ホルダーに、片面に透明導電性薄膜を形
成した基板を保持させ、該基板ホルダ例えばn形非晶質
シリコン薄膜を形成するには、シランにホスフィン(P
H3)を混入し、一方p形非晶質シリコン薄膜を形成す
るには、シランにジボラン(B2H6)を導入すればよ
いのである。
For example, in the case of the glow discharge method, a substrate on which a transparent conductive thin film is formed on one side is held in a substrate holder heated to a temperature of 200 to 350°C. is silane with phosphine (P
In order to form a p-type amorphous silicon thin film by mixing H3), diborane (B2H6) may be introduced into the silane.

又、上記の非晶質シリコン薄膜とは、水素化非晶質シリ
コンと、フッ素化非晶質シリコンをいう。
Further, the above-mentioned amorphous silicon thin film refers to hydrogenated amorphous silicon and fluorinated amorphous silicon.

本発明においては、かくして得られた光電変換素子上に
アルミニウム、ニッケル、チタン、クロム、鉄、ステン
レス、ニッケルクロム合金等の金h’f4薄膜を蒸着法
、スパッタリング法等の適宜の方法で形成するのである
。・例えば蒸着法では真空度10−4〜1torr、 
 蒸菅源温度は用いる材料の融点付近の条件下で行なわ
れる。
In the present invention, a gold h'f4 thin film of aluminum, nickel, titanium, chromium, iron, stainless steel, nickel-chromium alloy, etc. is formed on the thus obtained photoelectric conversion element by an appropriate method such as vapor deposition or sputtering. It is.・For example, in the vapor deposition method, the degree of vacuum is 10-4 to 1 torr,
The evaporation is carried out at a temperature near the melting point of the material used.

(c)作用 基viとに非晶質シリコン薄膜を堆積する場合、膜厚が
1〜2μm迄は、基板表面の平滑性の影響で膜厚が厚く
なる程!質が悪くなる(構造欠陥が多くなる)。この傾
向は、基板と非晶質シリコン薄膜との境界の電極用金g
4薄膜の有無には関係ない。
(c) When depositing an amorphous silicon thin film on the functional group vi, up to a film thickness of 1 to 2 μm, the thicker the film becomes due to the influence of the smoothness of the substrate surface! The quality deteriorates (more structural defects occur). This tendency is due to the fact that the electrode gold at the boundary between the substrate and the amorphous silicon thin film
4 It does not matter whether there is a thin film or not.

非道光性のプラスチックフィルムを基板とし、金v4薄
膜電極を介して、光電変換素子と透明導電性薄膜を堆積
した構造の従来のアモルファスシリコン太陽電池では膜
質の良い基板とは反対側の表面より光を照射しているの
に対し、換言すると、膜質の劣悪な方より光を照射して
いるのに対し、本発明1こよる無色透明なポリイミドフ
ィルムを基板とするアモルファスシリコン太ms池の場
合には、膜質が良好な基板側から光を照射させ、これに
よって、主として真性シリコン薄膜で発生した電子と正
孔が構造欠陥の多い箇所で再結合して損失する率を極力
抑制しているものと推考される。
Conventional amorphous silicon solar cells have a structure in which a photoelectric conversion element and a transparent conductive thin film are deposited on a non-photogenic plastic film as a substrate via a gold V4 thin film electrode. In other words, the light is irradiated from the side with poorer film quality, whereas in the case of an amorphous silicon thick substrate using a colorless and transparent polyimide film according to the present invention 1, In this method, light is irradiated from the substrate side with good film quality, thereby minimizing the rate at which electrons and holes mainly generated in the intrinsic silicon thin film recombine and are lost in areas with many structural defects. It is estimated.

つまり、本発明の光電変換装置では膜質の良い方何(構
造欠陥の少ない方何)、換言すると基板側から光を照射
しているから光を受けて発生した電子と正孔が再結合す
る率が低くなって光電変換効率が大幅に高くなる作用を
有するものと考えられる。
In other words, in the photoelectric conversion device of the present invention, the film quality is better (the one with fewer structural defects). In other words, since light is irradiated from the substrate side, the rate at which electrons and holes generated upon receiving light recombine is higher. This is thought to have the effect of lowering the photoelectric conversion efficiency and significantly increasing the photoelectric conversion efficiency.

(f)実施例 実施例1 溶媒としてN、N−ジメチルアセトアミドを用いて、3
.3’−ジアミノジフェニスルホン1mo/に対し、3
.3’、 4.4’−ジフェニルスルホンテトラカルボ
ン酸二無水物を1 m o /反応させ、ポリイミド前
駆体の溶液を得た。この溶液をガラス板上に流延して皮
膜を形成し、この皮膜を熱風乾燥し、最後には300℃
で5時間加熱してイミド化反応を完全に行い、厚み50
amのポリイミドフィルムを得た。
(f) Examples Example 1 Using N,N-dimethylacetamide as a solvent, 3
.. 3 for 1 mo/3'-diaminodiphenysulfone
.. 3', 4,4'-diphenylsulfone tetracarboxylic dianhydride was reacted in an amount of 1 mo/to obtain a solution of a polyimide precursor. This solution is cast onto a glass plate to form a film, which is dried with hot air and finally heated to 300°C.
The imidization reaction was completed by heating for 5 hours, and the thickness was 50 mm.
A polyimide film of am was obtained.

このフィルムの光線透過率(波長500nm)は87%
、又表面粗さは両面共に70^、温度350℃での熱収
縮率2%以下であった。
The light transmittance of this film (wavelength 500nm) is 87%
The surface roughness was 70^ on both sides, and the thermal shrinkage rate at 350°C was 2% or less.

このようにして得られた無色透明なポリイミドフィルム
を基板として用いて、以下の手順によりアモルファスシ
リコン太陽電池を作製した。
Using the thus obtained colorless and transparent polyimide film as a substrate, an amorphous silicon solar cell was produced according to the following procedure.

該基板の片面にはスパッタリング法によって厚み600
AのITO導電性薄膜を設け、このITO導電性薄膜付
き基板を、内部電極型の高周波(13,56MHz)グ
ロー放電装置内のヒーター付きホルダーに保持し、25
0℃前後に保った後、水素で10モル%に希釈したシラ
ンと、水素で5,000ppm に希釈したジポランを
混合(B2 H,7(S i H4+ B2H6) =
 0.5モル%)し、グロー放電装置内に導入し、真空
度0.2 Torrの雰囲気下で10Wの高周波電力を
印加して該基板上にほう素を°ドープした200λのp
形非晶質シリコン層を設けた。引き続いて上記の水素希
釈シランのみを導入し同様に反応を行いノンドープで厚
み4500穴のi形弁晶質シリコン薄膜を堆積し、更に
水素希釈シランと、水素で5,000ppm に希釈し
たフォスフイン(PH3)を混合(PHs / (S 
iH4+ PH3) = 0゜5モル%)し、グロー放
電装置内に導入してi形弁晶質シリコン薄膜上にリンを
ドープした500大のn形弁晶質シリコン薄膜を設けた
One side of the substrate is coated with a thickness of 600 mm by sputtering.
The ITO conductive thin film of A was provided, and the substrate with this ITO conductive thin film was held in a holder equipped with a heater in an internal electrode type high frequency (13,56 MHz) glow discharge device.
After keeping the temperature around 0°C, silane diluted to 10 mol% with hydrogen and diporan diluted with hydrogen to 5,000 ppm were mixed (B2 H,7(S i H4 + B2H6) =
0.5 mol %) was introduced into a glow discharge device, and 10 W of high-frequency power was applied in an atmosphere with a degree of vacuum of 0.2 Torr.
A shaped amorphous silicon layer was provided. Subsequently, only the above hydrogen-diluted silane was introduced and the same reaction was carried out to deposit a non-doped i-type crystalline silicon thin film with a thickness of 4,500 holes.Furthermore, hydrogen-diluted silane and phosphine (PH3 ) mixed (PHs / (S
iH4+PH3) = 0.5 mol%) and introduced into a glow discharge device to provide a phosphorus-doped n-type valvate silicon thin film of 500 µm on the i-type valvate silicon thin film.

即ち、無色透明のポリイミドフィルム製基板上に、IT
Oの導電性薄膜を介して、n形−1形−n形の非晶質シ
リコン薄膜から成る光電変換素子を形成した。
That is, IT is placed on a colorless and transparent polyimide film substrate.
A photoelectric conversion element consisting of an n-type-1-n type amorphous silicon thin film was formed via an O conductive thin film.

次にこれを真空蒸着装置内に保持し、常法の蒸着によっ
て、n形弁晶質シリコン薄膜上に厚み0゜1 pmのア
ルミニウム製導電性薄膜を積層した。
Next, this was held in a vacuum evaporation apparatus, and a conductive thin film made of aluminum having a thickness of 0.1 pm was laminated on the n-type crystalline silicon thin film by a conventional vapor deposition method.

かくして得られた太陽電池の光電変換効率を4M −1
,100mW/aj  のソーラーシミュレーターで測
定した。この場合、光を基板側から照射した。
The photoelectric conversion efficiency of the solar cell thus obtained was 4M −1
, 100 mW/aj using a solar simulator. In this case, light was irradiated from the substrate side.

その結果を第1表に示した。The results are shown in Table 1.

実施例2 3.3′−ジアミノジフェニルスルホンに代えて、3.
3′−ジアミノジフェニルエーテルを用いた以外は実施
例1と同様にして厚み50 smのボリイミ゛ドフィル
ムを得た。
Example 2 In place of 3.3'-diaminodiphenylsulfone, 3.
A polyimide film having a thickness of 50 sm was obtained in the same manner as in Example 1 except that 3'-diaminodiphenyl ether was used.

このフィルムの光線透過率(波長500nm)は86%
、又表面粗さは両面共に75X、温度350℃での熱収
縮率は2%以下であった。
The light transmittance of this film (wavelength 500nm) is 86%
The surface roughness was 75X on both sides, and the heat shrinkage rate at 350°C was 2% or less.

このようにして得られた無色透明なポリイミドフィルム
を基板として用い、実施例1と同様の手順によりアモル
ファスシリコン太陽電池基板を作製した。得られた太陽
電池の光電変換効率を実施例1と同様に測定し、第1表
に示した。
Using the thus obtained colorless and transparent polyimide film as a substrate, an amorphous silicon solar cell substrate was produced in the same manner as in Example 1. The photoelectric conversion efficiency of the obtained solar cell was measured in the same manner as in Example 1, and is shown in Table 1.

実施例3 3.3′−ジアミノジフェニルスルホンに代えて、ビス
C4−(3−アミノフェノキシ)フェニル〕スルホンを
用いた以外は実施例1と同様にして厚み50 smのポ
リイミドフィルムを得た。
Example 3 A polyimide film with a thickness of 50 sm was obtained in the same manner as in Example 1, except that bisC4-(3-aminophenoxy)phenyl]sulfone was used in place of 3.3'-diaminodiphenylsulfone.

このフィルムの光線透過率(波長500nm)は88%
、又表面粗さは両面共に70A%温度350℃での熱収
縮率は2%以下であった。
The light transmittance of this film (wavelength 500nm) is 88%
Also, the surface roughness was 70A% on both sides, and the heat shrinkage rate at a temperature of 350°C was 2% or less.

このようにして得られた無色透明なポリイミドフィルム
を基板として用い、実施例1と同様の手順番こよりアモ
ルファスシリコン太陽電池基板を作製した。得られた太
陽電池の光電変換効率を実施例1と同様に測定し、第1
表に示した。
Using the thus obtained colorless and transparent polyimide film as a substrate, an amorphous silicon solar cell substrate was produced by following the same procedure as in Example 1. The photoelectric conversion efficiency of the obtained solar cell was measured in the same manner as in Example 1.
Shown in the table.

実施例4 3.3′−ジアミノジフェニルスルホンに代えてm−7
エニレンジアミンを、N、N−ジメチルアセトアミドに
代えてN、N−ジメチルホルムアミドを用いた以外は実
施例1と同様にして厚み50μmのポリイミドフィルム
を得た。
Example 4 m-7 in place of 3.3'-diaminodiphenylsulfone
A polyimide film with a thickness of 50 μm was obtained in the same manner as in Example 1 except that N,N-dimethylformamide was used in place of enylenediamine and N,N-dimethylacetamide.

このフィルムの光線透過率(波長500nm)は83%
、又表面粗さは両面共に8OA、温度350℃での熱収
縮率は2%以下であった。
The light transmittance of this film (wavelength 500nm) is 83%
Also, the surface roughness was 8OA on both sides, and the heat shrinkage rate at a temperature of 350°C was 2% or less.

このようにして得られた無色透明なポリイミドフィルム
を基板として用い、実施例1と同様の手順によりアモル
ファスシリコン太11!1W&池基板を作製した。得ら
れた太陽電池の光電変換効率を実施例1と同様に測定し
、第1表に示した。
Using the thus obtained colorless and transparent polyimide film as a substrate, an amorphous silicon thick 11!1W & pond substrate was produced in the same manner as in Example 1. The photoelectric conversion efficiency of the obtained solar cell was measured in the same manner as in Example 1, and is shown in Table 1.

比較例1 実施例1〜4と特性を比較するために、厚さ50nm、
  表面粗さ80Aの非透過性ポリイミドフィルム(デ
ュポン社製カプトンH)を基板とする従来型のアモルフ
ァスシリコン太ra電池を作製した。
Comparative Example 1 In order to compare the characteristics with Examples 1 to 4, a sample with a thickness of 50 nm,
A conventional amorphous silicon thick battery was fabricated using a non-transparent polyimide film (Kapton H manufactured by DuPont) as a substrate with a surface roughness of 80A.

なお、この電池の基本的構造は実施例1と同様である。Note that the basic structure of this battery is the same as in Example 1.

その具体的作成方法は以下の通りである。The specific method for creating it is as follows.

即ち、上記基板の片面に、スパッタ蒸着法により厚み5
.000^のステンレス鋼製の導電性薄膜を設けた。次
に、実施例1と同様の装置、同様条件で、該導電性薄膜
上に、リンをドープした厚み500^のn形弁晶質シリ
コン薄膜、ノンドープで厚み450OAのi形弁晶質シ
リコン簿膜及び・はう素をドープした厚み200大のp
形弁晶質シリコン薄膜を順次堆積して光電変換素子を形
成した。更に、該p形弁晶質シリコン薄膜上に、スパッ
タ蒸着法により厚み600AのITO導電性薄膜を設け
た。次に、この電池の光電変換効率を実施例1と同様に
測定した。この場合、光を基板と反対側、つまりITO
導電性薄膜側から照射した。
That is, a layer with a thickness of 5 mm was formed on one side of the substrate by sputter deposition.
.. A conductive thin film made of 000^ stainless steel was provided. Next, using the same apparatus as in Example 1 and under the same conditions, a phosphorous-doped n-type valvous silicon thin film with a thickness of 500^ and a non-doped i-type valvous silicon film with a thickness of 450 OA were deposited on the conductive thin film. Film and 200 mm thick P doped with boron
A photoelectric conversion element was formed by sequentially depositing crystalline silicon thin films. Furthermore, an ITO conductive thin film with a thickness of 600 Å was provided on the p-type crystalline silicon thin film by sputter deposition. Next, the photoelectric conversion efficiency of this battery was measured in the same manner as in Example 1. In this case, the light is directed to the opposite side of the substrate, that is, to the ITO
Irradiation was performed from the conductive thin film side.

参考例1 基板として厚み1.0 mmのパイレックスガラスを用
いる以外は、実施例1と同様の構造のアモルファスシリ
コン太at池を製作し、実施例1と同様に光電変換効率
を測定した。
Reference Example 1 An amorphous silicon thick plate having the same structure as in Example 1 was manufactured, except that Pyrex glass with a thickness of 1.0 mm was used as the substrate, and the photoelectric conversion efficiency was measured in the same manner as in Example 1.

実施例5 実施例1で得た無色透明なポリイミドフィルムを基板と
して用いて、以下の手順によりアモルファスシリコン太
陽電池を作製した。
Example 5 Using the colorless and transparent polyimide film obtained in Example 1 as a substrate, an amorphous silicon solar cell was produced according to the following procedure.

該基板の片面に、実施例1と同様にITO導電性薄膜を
形成し、実施例1と同様にグロー放電装置内の温度を2
50℃前後に保った後、該グロー放電装置内に水素で各
々10モル%、10モル%及び5.OOOppmに希釈
したシラン、エチレン及びジボランの混合(B2H6/
 (S i H4+ C2H4) −0,5モル%、C
2H4/ (S i H4+ C2H4°)=10モル
%)ガスを導入し、真空度0−2 Torrの雰囲気下
で10Wの高周波電力を印加して該基板上にほう素をド
ープした厚さ200Aのp形弁晶質炭化珪素薄膜を設け
た。
An ITO conductive thin film was formed on one side of the substrate in the same manner as in Example 1, and the temperature in the glow discharge device was lowered to 2 as in Example 1.
After maintaining the temperature at around 50°C, 10 mol %, 10 mol % and 5. Mixture of silane, ethylene and diborane diluted to OOppm (B2H6/
(S i H4+ C2H4) -0.5 mol%, C
2H4/ (S i H4 + C2H4°) = 10 mol %) gas was introduced, and 10 W of high frequency power was applied in an atmosphere with a degree of vacuum of 0-2 Torr to form a 200 A thick doped substrate with boron. A p-type crystalline silicon carbide thin film was provided.

次いで、実施例1と同様の操作により、ノンドープで厚
み4500Aのi形弁晶質シリコン薄膜及びリンをドー
プした厚み500Aのn形弁晶質シリコン薄膜を設けた
Next, by the same operation as in Example 1, a non-doped i-type valvus silicon thin film having a thickness of 4500 Å and a phosphorus-doped n-type valvulite silicon thin film having a thickness of 500 Å were provided.

即ち、ITO導電性薄膜を介してp形弁晶質炭化珪素薄
膜、i形弁晶質シリコン薄膜及びn形弁晶質シリコン薄
膜から成る光電変換素子を形成した。次に、実施例1と
同様の方法により厚み0.1#mのアルミニウム製導電
性薄膜を設けた。
That is, a photoelectric conversion element consisting of a p-type valvus silicon carbide thin film, an i-type valvus crystalline silicon thin film, and an n-type valvus crystalline silicon thin film was formed via an ITO conductive thin film. Next, an aluminum conductive thin film having a thickness of 0.1 #m was provided by the same method as in Example 1.

この太陽電池の光電変換効率をAM−1,100m W
 /−のソーラーシミュレーターで測定した。
The photoelectric conversion efficiency of this solar cell is AM-1,100mW
Measured with a /- solar simulator.

この場合、光を基板側から照射した。In this case, light was irradiated from the substrate side.

その結果を第1表に示した。The results are shown in Table 1.

実施例6 実施例1で得た無色透明なポリイミドフィルムに代えて
、実施例2で得た無色透明なポリイミドフィルムを用い
た以外は実施例5と同様にしてアモルファスシリコン太
陽電池を作製した。得られた太陽電池の光電変換効率を
実施例゛5と同様に測定し、第1表に示した。
Example 6 An amorphous silicon solar cell was produced in the same manner as in Example 5 except that the colorless and transparent polyimide film obtained in Example 2 was used instead of the colorless and transparent polyimide film obtained in Example 1. The photoelectric conversion efficiency of the obtained solar cell was measured in the same manner as in Example 5, and is shown in Table 1.

実施例7 実施例1で得た無色透明なポリイミドフィルムに代えて
、実施例3で得た無色透明なポリイミドフィルムを用い
た以外は実施例5と同様にしてアモルファスシリコン太
陽電池を作製した。得られた太陽電池の光電変換効率を
実施例5と同様に測定し、第1表に示した。
Example 7 An amorphous silicon solar cell was produced in the same manner as in Example 5, except that the colorless and transparent polyimide film obtained in Example 3 was used instead of the colorless and transparent polyimide film obtained in Example 1. The photoelectric conversion efficiency of the obtained solar cell was measured in the same manner as in Example 5, and is shown in Table 1.

実施例8 実施例1で得た無色透明なポリイミドフィルムに代えて
、実施例4で得た無色透明なポリイミドフィルムを用い
た以外は実施例5と同様にしてアモルファスシリコン太
陽電池を作製した。得られた太陽電池の光電変換効率を
実施例5と同様に測定し、第1表に示した。
Example 8 An amorphous silicon solar cell was produced in the same manner as in Example 5, except that the colorless and transparent polyimide film obtained in Example 4 was used instead of the colorless and transparent polyimide film obtained in Example 1. The photoelectric conversion efficiency of the obtained solar cell was measured in the same manner as in Example 5, and is shown in Table 1.

比較例2 実施例5〜8と特性を比較するために、厚さ50μm1
表面粗さが8OAの非透光性ポリイミドフィルムを基板
とする従来型のアモルファスシリコン太陽電池を作成し
た。
Comparative Example 2 In order to compare the characteristics with Examples 5 to 8, a thickness of 50 μm1
A conventional amorphous silicon solar cell was fabricated using a non-transparent polyimide film with a surface roughness of 8OA as a substrate.

なお、この電池の基本的構造は実施例1と同様である。Note that the basic structure of this battery is the same as in Example 1.

この電池の具体的作成方法は以下の通りである。The specific method for making this battery is as follows.

比較例1と同様に基板上に厚みs、 o o o A 
のステンレス鋼製導電性薄膜、リンをドープした厚み5
oonのn形弁晶質シリコン薄膜反びノンドープで厚み
4500Åのi形弁晶質シリコン薄膜を各々堆積した。
As in Comparative Example 1, the thickness s, o o o A is formed on the substrate.
conductive thin film made of stainless steel, doped with phosphorus, thickness 5
An undoped n-type valvus crystalline silicon thin film and a non-doped i-type valvus crystalline silicon thin film having a thickness of 4500 Å were deposited.

更にi形弁晶質シリコン薄膜上に実施例5と同様に、は
う素をドープした厚み200Åのp形弁晶質炭化珪素薄
膜を堆積した後、該p形弁晶質炭化珪素薄膜とにITO
導電性薄膜を堆積した。
Furthermore, in the same manner as in Example 5, a p-type valvus silicon carbide thin film doped with boron and having a thickness of 200 Å was deposited on the i-type valvus silicon carbide thin film. ITO
A conductive thin film was deposited.

この電池の充電変換効率を実施例5と同様に測定した結
果を第1表に示した。
The charge conversion efficiency of this battery was measured in the same manner as in Example 5, and the results are shown in Table 1.

参考例2 基板として厚み0.5mmのパイレックスガラスを用い
る以外は、実施例5と同様の構造のアモルファスシリコ
ン太陽電池を製作し、実施例5と同種に光電変換効率を
測定した。
Reference Example 2 An amorphous silicon solar cell having the same structure as in Example 5 was manufactured except that Pyrex glass with a thickness of 0.5 mm was used as the substrate, and the photoelectric conversion efficiency was measured in the same manner as in Example 5.

第  1  表 第1表より、基板として無色透明なポリイミドフィルム
を用い、且つ該基板側から光を照射するようにした太v
a1!!!池は、非透光性のポリイミドフィルム基板を
用い、該基板と反対側から光を照射するようにしたもの
より極めて高い光1変換効率を示すことが認められる。
Table 1 From Table 1, it can be seen that a thick v-
a1! ! ! It is recognized that the pond exhibits extremely higher light 1 conversion efficiency than the one using a non-transparent polyimide film substrate and irradiating light from the side opposite to the substrate.

上記実施例は太陽電池について説明したが、本発明は、
これに代えて、。・光センサー等にも適用できるのであ
る。
Although the above embodiment described a solar cell, the present invention
Instead of this.・It can also be applied to optical sensors, etc.

(g)効果 本発明の光電変換装置はその基板に無色透明なポリイミ
ドフィルムを用い、該基板側、つまり膜質の優れた方何
より光を照射するようにしたから従来のものより光電変
換効率を著しく向とさせることができるのである。
(g) Effect The photoelectric conversion device of the present invention uses a colorless and transparent polyimide film as its substrate, and the light is irradiated on the substrate side, that is, the side with excellent film quality, so the photoelectric conversion efficiency is significantly higher than that of conventional devices. It is possible to direct

又、基板が無色透明なポリイミドフィルムで形成され、
該基板が可撓性であるからロール状に巻回した基板を連
続的に引き出しつつ連続的に光電変換装置を製造でき、
この結果、生産性が向上すると共に製造コストを下げる
ことができるのであり、しかも材料が安価であり、この
点からも製造コストの低減を図ることができるのである
In addition, the substrate is made of a colorless and transparent polyimide film,
Since the substrate is flexible, photoelectric conversion devices can be manufactured continuously by continuously pulling out the substrate wound into a roll,
As a result, productivity can be improved and manufacturing costs can be lowered.Moreover, the materials are inexpensive, and from this point of view as well, manufacturing costs can be reduced.

更に、基板にポリイミドフィルムを用いているから耐熱
性で熱収縮率が低いから温度変化に伴う歪みが小さく、
この結果、基板上に堆積した光電変換素子が温度変化に
よって割れたり、欠ける等の問題が少ないのである。
Furthermore, since polyimide film is used for the substrate, it is heat resistant and has a low heat shrinkage rate, so distortion due to temperature changes is small.
As a result, there are fewer problems such as the photoelectric conversion elements deposited on the substrate cracking or chipping due to temperature changes.

特に、基板が無色透明なポリイミドフィルムで形成され
ており、該基板が電気絶縁性であるから、該基板上を用
いて太陽電池を形成するにあたり、同一基板上に複数の
太陽電池素子の直・並列の接続が可能となり、各種タイ
プの太陽電池を簡単に製造できる等の効果を奏するので
ある。
In particular, since the substrate is made of a colorless and transparent polyimide film and is electrically insulating, when forming a solar cell using the substrate, it is difficult to directly connect multiple solar cell elements on the same substrate. Parallel connections are possible, and various types of solar cells can be manufactured easily.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に光エネルギーを電気エネルギーに変換す
る光電変換素子を設けた光電変換装置において、該基板
が一般式 ▲数式、化学式、表等があります▼・・・( I ) 〔式( I )において、X1〜X_4は−H、−CH_
3、−C_2H_5、−NO_2、−F、−COOHま
たは−Clである。〕 ▲数式、化学式、表等があります▼・・・(II) 〔式(II)において、X_5は−O−、−SO_2−、
−CH_2−、−S−、−CO−または▲数式、化学式
、表等があります▼である。〕 ▲数式、化学式、表等があります▼・・・(III) 〔式(III)において、X^6は−SO_2−、−C(
CH_3)_2または−C(CF_3)_2である。〕 で示される繰返し単位の少なくとも1つを主成分とする
ポリイミドフィルムで形成されていることを特徴とする
光電変換装置。
(1) In a photoelectric conversion device that has a photoelectric conversion element that converts light energy into electrical energy on a substrate, the substrate has a general formula ▲ Numerical formula, chemical formula, table, etc. ▼...(I) [Formula (I ), X1 to X_4 are -H, -CH_
3, -C_2H_5, -NO_2, -F, -COOH or -Cl. ] ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) [In formula (II), X_5 is -O-, -SO_2-,
-CH_2-, -S-, -CO- or ▲There are mathematical formulas, chemical formulas, tables, etc.▼. ] ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(III) [In formula (III), X^6 is -SO_2-, -C(
CH_3)_2 or -C(CF_3)_2. ] A photoelectric conversion device characterized by being formed of a polyimide film containing at least one of the following repeating units as a main component.
JP62067174A 1987-03-20 1987-03-20 Photoelectric conversion device Pending JPS63232468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067174A JPS63232468A (en) 1987-03-20 1987-03-20 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067174A JPS63232468A (en) 1987-03-20 1987-03-20 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS63232468A true JPS63232468A (en) 1988-09-28

Family

ID=13337265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067174A Pending JPS63232468A (en) 1987-03-20 1987-03-20 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS63232468A (en)

Similar Documents

Publication Publication Date Title
KR102305617B1 (en) Polyimide film having pores and method for producing same
TWI537315B (en) Polyimide film
KR101831009B1 (en) Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
CN104672477B (en) A kind of application of the preparation method of low roughness polyimide film, product and product
CN102030989B (en) Transparent polyimide film with improved solvent resistance
CN103240936A (en) Transparent flexible laminate and laminate roll
KR101735864B1 (en) Aromatic polyimide film, laminate, and solar cell
JP5733072B2 (en) Polyimide precursor resin composition for flexible device substrate, method for producing flexible device, and flexible device
JPS627733A (en) Colorless clear polyimide formed body and its production
JP3346228B2 (en) Aromatic polyimide film, laminate and solar cell
JP3937278B2 (en) Polyimide film for solar cell substrate and solar cell substrate using the same
CN114249906B (en) Transparent polyimide film and preparation method and application thereof
JPH0249475A (en) Manufacture of amorphous silicon solar cell
JPS61195130A (en) Production of aromatic polyimide film
JPS63232468A (en) Photoelectric conversion device
JPS6323928A (en) Production of modified polyimide
CN116425976A (en) Heat-resistant transparent polyimide film and preparation method and application thereof
JPH02181975A (en) Film solar cell
JPS63236372A (en) Photoelectric conversion device
JPH08225645A (en) Colorless clear polyimide molding and production thereof
JPS6236882A (en) Photoelectric converter
JP2004359931A (en) Polyimide precursor liquid composition and polyimide coating film
JP2001031866A (en) Polyimide composition and substrate for solar cell produced by using the composition
JPS6344546B2 (en)
CN114685786A (en) Polyimide film and preparation method and application thereof