JPS63232338A - Chemical vapor phase epitaxy method - Google Patents

Chemical vapor phase epitaxy method

Info

Publication number
JPS63232338A
JPS63232338A JP6657687A JP6657687A JPS63232338A JP S63232338 A JPS63232338 A JP S63232338A JP 6657687 A JP6657687 A JP 6657687A JP 6657687 A JP6657687 A JP 6657687A JP S63232338 A JPS63232338 A JP S63232338A
Authority
JP
Japan
Prior art keywords
substrate
electron beam
chemical vapor
reactive gas
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6657687A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hisamune
義明 久宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6657687A priority Critical patent/JPS63232338A/en
Publication of JPS63232338A publication Critical patent/JPS63232338A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve the higher growth speed of a film by a method wherein a reactive gas is employed as a raw material and a pulse electron beam is applied to the reactive gas to form a film on the substrate CONSTITUTION:A reactive gas is employed as a raw material and a pulse electron beam is applied to form a film on a substrate 108. The pulse electron beam is applied to the reactive gas or to the reactive gas and the substrate 108. Further, ultraviolet rays may be applied while the pulse electron beam is applied to the reactive gas or to the reactive gas and the substrate 108. Moreover, the pulse electron beam may be applied under the conditions wherein a static field toward the substrate 108 is formed. With this constitution, a thin film free from damage can be formed under a low temperature and with a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学気相成長法に関し、特に400℃以下の低
温で反応ガスを分解し基板上に半導体デバイスに用いら
れる薄膜膜形成する化学気相成長法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a chemical vapor deposition method, in particular a chemical vapor deposition method that decomposes a reactive gas at a low temperature of 400°C or less to form a thin film on a substrate for use in semiconductor devices. It is related to phase growth method.

〔従来の技術〕[Conventional technology]

半導体デバイスに用いられる薄@を低温で形成するため
の従来の技術としては、プラズマ化学気相成長法(例え
ば、管野卓雄編著二半導体プラズマプロセス技術、産業
図書、1980年)あるいは光化学気相成長法(例えば
、K、 Hamano et 。
Conventional techniques for forming thin films used in semiconductor devices at low temperatures include plasma chemical vapor deposition (for example, 2 Semiconductor Plasma Process Technology, edited by Takuo Kanno, Sangyo Tosho, 1980) and photochemical vapor deposition. (For example, K. Hamano et.

al 、Jpn、 J、 Appl 、 Phy、 2
3 (1984) 1209−1215 )がある。
al, Jpn, J, Appl, Phy, 2
3 (1984) 1209-1215).

プラズマ化学気相成長法は、ガス導入部、真空酸すべき
基板をのせた電極と高周波電極とを対向させて配置し、
両電極間に高周波電圧を印加することによp反応ガスを
放電し分解させることによリーー         −
−基板上 に成膜する。
In the plasma chemical vapor deposition method, a gas inlet, an electrode carrying the substrate to be vacuum-oxidized, and a high-frequency electrode are placed facing each other.
By applying a high frequency voltage between both electrodes, the p-reactive gas is discharged and decomposed.
- Depositing a film on a substrate.

また、光化学気相成長法はガス導入部、真空排気系、お
よび光源部を備えた反応炉を用いて行なわれる。通常、
光源部からの紫外光を光照射窓を通し反応炉内の反応ガ
スに照射し、このガスを光分解することによって中性ラ
ジカルを生成することにより反応炉内に設置された基板
上に成膜を行う。
Further, the photochemical vapor deposition method is performed using a reactor equipped with a gas introduction section, a vacuum exhaust system, and a light source section. usually,
Ultraviolet light from the light source is irradiated through the light irradiation window onto the reactant gas inside the reactor, and this gas is photolyzed to generate neutral radicals, thereby forming a film on the substrate installed inside the reactor. I do.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のプラズマ化学気相成長法では、電極間に
ダロー放電が生じた状態で、電極板上に置かnた基板上
に薄膜を成長するため、電極近傍に形成された7°ラズ
マ・シースによって加速されたイオンおよび電子が、基
板および基板上に形成された薄膜に損傷を与えるため形
成される薄膜の物理的・電気的特性が劣化するという欠
点がある。
In the conventional plasma chemical vapor deposition method described above, in order to grow a thin film on a substrate placed on an electrode plate with a Darrow discharge occurring between the electrodes, a 7° lasma sheath formed near the electrodes is used. The accelerated ions and electrons damage the substrate and the thin film formed on the substrate, resulting in deterioration of the physical and electrical properties of the formed thin film.

また、上述した従来の光化学気相成長法は、プラズマ化
学気相成長法にみられる基板損傷はほとんど無いが、光
励起される反応ガス分子数が少ないため膜の成長速度が
小さいという欠点がある。
Furthermore, although the above-described conventional photochemical vapor deposition method causes almost no damage to the substrate as seen in plasma chemical vapor deposition, it has the disadvantage that the film growth rate is low because the number of reactive gas molecules that are photoexcited is small.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の化学気相成長法は、反応ガスを原料として使用
し、パルス電子線を照射した状態で、基板上に膜形成全
行なっている。
In the chemical vapor deposition method of the present invention, a reaction gas is used as a raw material, and a film is entirely formed on a substrate under irradiation with a pulsed electron beam.

このパルス電子縁は、反応ガスあるいは反応カスと基板
に照射される。
This pulsed electron beam irradiates the reaction gas or reaction residue and the substrate.

このようにパルス電子#1−反応ガスあるいは反応ガス
と基板とに照射した状態でさらに基板に紫外光を照射す
ることもできる。
It is also possible to further irradiate the substrate with ultraviolet light while the pulsed electron #1-reactant gas or the reaction gas and the substrate are irradiated in this manner.

また、基板に向かう静電場が形成された状態で、パルス
電子線を照射することもできる。
Further, the pulsed electron beam can also be irradiated with an electrostatic field directed toward the substrate.

〔作用〕[Effect]

本発明による手法によれば、反応ガス中に0.1〜lO
MeVの高エネルギー電子紛ヲパルス的に入射すること
Kよジ、数’l’ o r r〜数百Torr圧力下で
高密度の電離気体をつくることができる。その結果、成
膜反応に必要な分子ラジカルを効率よく生成で、きるこ
とから高速度の膜成長を行うことができる。しかも、通
常のプラズマ化学気相成長法においては電極板上に基板
を設置するため電極板近傍の高電場のプラズマ・シース
で加速された高エネルギー荷電粒子の損傷を受けるが、
本発明の化学気相成長法では1JL離気体と基板間に高
電場をかけずに反応ガスを電離するため荷電粒子による
基板損傷を全く受けず電気的特性の優れた膜を形成する
ことができる。
According to the method according to the invention, 0.1 to 1O
By injecting MeV high-energy electron particles in a pulsed manner, it is possible to create a high-density ionized gas under a pressure of several liters to several hundred Torr. As a result, the molecular radicals necessary for the film-forming reaction can be efficiently generated, allowing high-speed film growth. Moreover, in the normal plasma chemical vapor deposition method, the substrate is placed on the electrode plate, so it is damaged by high-energy charged particles accelerated by the high electric field plasma sheath near the electrode plate.
In the chemical vapor deposition method of the present invention, the reactive gas is ionized without applying a high electric field between the 1JL separating gas and the substrate, so it is possible to form a film with excellent electrical properties without causing any damage to the substrate due to charged particles. .

同時に1基板表面に紫外光を照射すること、あるいは静
電場を用いて電離気体中のイオンに一定ションを促進す
るため、よシ緻密な腺を形成することができる。
At the same time, a very dense gland can be formed by irradiating the surface of one substrate with ultraviolet light or by using an electrostatic field to promote a certain amount of ions in the ionized gas.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例において、化学気相成長
を行うための装置の縦断面図である。膜成長を行う反応
炉101.パルス電子線を発生する電子線加速器102
.低圧水銀灯103.合成石英窓104.ヒータ105
.ガス導入口106゜カス排気口107.基板108.
原料ガスボンベ109.110を備えている。
FIG. 1 is a longitudinal sectional view of an apparatus for performing chemical vapor deposition in a first embodiment of the present invention. Reactor 101 for film growth. Electron beam accelerator 102 that generates a pulsed electron beam
.. Low pressure mercury lamp 103. Synthetic quartz window 104. Heater 105
.. Gas inlet port 106° Waste exhaust port 107. Substrate 108.
It is equipped with raw material gas cylinders 109 and 110.

本実施例により窒化珪素膜全形成する手順について述べ
る。基板108tヒータ105上に設置し、ヒータ10
5によシ300℃に加熱した後、シラ7k 10〜50
5ecfn 、アンモニアを100〜3 Q Q SC
Cmガス導入口106よシ流入し、ガス排気口107か
らの排気速度を調節することによって、反応炉101内
のガス圧が一数Torrの定常流を形成する。
The procedure for forming the entire silicon nitride film according to this embodiment will be described. The heater 10 is installed on the substrate 108t and the heater 105.
5 After heating to 300℃, Shira 7k 10-50
5ecfn, ammonia from 100 to 3 Q Q SC
By adjusting the speed of Cm gas flowing in through the gas inlet 106 and exhausting from the gas exhaust port 107, a steady flow with a gas pressure of several Torr in the reactor 101 is formed.

次に、電子線加速器102により、0.6 M e V
Next, by the electron beam accelerator 102, 0.6 M e V
.

IQKA、パルス幅5nsのパルス電子iを照射し、反
応炉101内の反応ガスを励起すると同時に、低圧水銀
灯103を点灯し基板108に垂直に紫外光を照射し基
板108表面を励起し、基板108上に窒化硅素膜を成
長した。
IQKA irradiates pulsed electrons i with a pulse width of 5 ns to excite the reaction gas in the reactor 101. At the same time, the low-pressure mercury lamp 103 is turned on and ultraviolet light is irradiated perpendicularly to the substrate 108 to excite the surface of the substrate 108. A silicon nitride film was grown on top.

以上の様にして形成した窒化硅素膜の膜質を密度、バッ
フアート弗酸に対するエツチング速度。
The quality of the silicon nitride film formed as described above is determined by its density and etching rate with respect to buffered hydrofluoric acid.

電流−電圧特性、容量−電圧特性から評価し、通常のプ
ラズマ化学気相成長による窒化硅素膜と比較したところ
、上記評価において格段に優れた特性を示した。
When evaluated from the current-voltage characteristics and capacitance-voltage characteristics and compared with a silicon nitride film produced by ordinary plasma chemical vapor deposition, it showed significantly superior characteristics in the above evaluation.

すなわち、密度は3.01 g/Cm3と高く、エツチ
ング速度は0.3 nm/m i nと小さく、電界強
度2MV/cmでのリーク′シ流は2 ×l OA/ 
cm2+界面電荷密度は2 X 10−10−1O”と
低い値であった。
That is, the density is high at 3.01 g/Cm3, the etching rate is low at 0.3 nm/min, and the leakage current at an electric field strength of 2 MV/cm is 2 × l OA/cm.
The cm2+ interfacial charge density was as low as 2 x 10-10-1 O''.

このように本発明の化学気相成長法によ)形成した窒化
硅素膜は通常のプラズマ化学気相成長による窒化硅素膜
に比べより緻密で電気的特性の優れた膜であった。また
、成長速腿も100 n Ill/m 1 nと通常の
光化学気相成長法に比べ約十倍の大きさである。
As described above, the silicon nitride film formed by the chemical vapor deposition method of the present invention was denser and had better electrical characteristics than a silicon nitride film formed by ordinary plasma chemical vapor deposition. Furthermore, the growth rate is 100 nIll/m 1 n, which is about ten times as fast as that of ordinary photochemical vapor deposition.

第2図は本発明の第2の実施例を説明するための装置の
縦断面図である。反応炉201.を子線加速器202.
ヒータ203.ガス導入口204゜ガス排出口205.
基板206.原料ガスボンベ207、電界を生じさせる
ためのグリッド208゜サセプター209を備えている
FIG. 2 is a longitudinal sectional view of an apparatus for explaining a second embodiment of the present invention. Reactor 201. The particle accelerator 202.
Heater 203. Gas inlet 204° Gas outlet 205.
Substrate 206. It is equipped with a raw material gas cylinder 207, a grid 208 for generating an electric field, and a susceptor 209.

次にこの装置を用いてアルミニウム膜を形成することと
し、その手順について述べる。基板206をヒータ20
3上に設置し設定温度に加熱する。
Next, this apparatus will be used to form an aluminum film, and the procedure will be described. The substrate 206 is connected to the heater 20
3 Place it on top and heat it to the set temperature.

原料ガスAl(CH3)sを導入し、反応炉201内の
圧力が1Torr程度の定常流で安定したところで、グ
リッド208とサセプター209との間に静電場e加、
t、0.5MeV、10KA 、パhス幅5nsのパル
ス電子線を電子線加速器202より照射して、アルミニ
ウム膜成長を行った。
After introducing the raw material gas Al(CH3)s and stabilizing the pressure inside the reactor 201 at a steady flow of about 1 Torr, an electrostatic field e is applied between the grid 208 and the susceptor 209.
A pulsed electron beam of 0.5 MeV, 10 KA, and a path width of 5 ns was irradiated from an electron beam accelerator 202 to grow an aluminum film.

以上の様にして形成したアルミニウム膜は抵抗2.4μ
Ωcmと通常のスパッタ膜と同程度の値であった。かつ
、二次イオン質量分析の結果から炭素等不純物が混入し
ていないことがわかった3、さらに、走査型電子顕微鏡
で表面観察したところ、ヒロックや粒界等の成長のない
表面モホロジーの優扛た金属機であった。また、グリッ
ド208とサセプター209との間に印加する電圧を0
−1kVと変化させたところ、200Vできわめて段差
被羨件のすぐれた膜が得られた。このとき成長速度は最
大となF)120nm/minであった。
The aluminum film formed as described above has a resistance of 2.4μ.
The value was Ωcm, which was comparable to that of a normal sputtered film. In addition, the results of secondary ion mass spectrometry revealed that no impurities such as carbon were mixed in. Furthermore, when the surface was observed using a scanning electron microscope, it was found that the surface morphology was excellent, with no growth of hillocks or grain boundaries. It was a metal machine. Also, the voltage applied between the grid 208 and the susceptor 209 is set to 0.
When the voltage was changed to -1kV, a film with extremely high level difference resistance was obtained at 200V. At this time, the growth rate was maximum, F) 120 nm/min.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、パルス寛子線照射し反応
ガスを電離することにより、無損傷の薄膜形成を低温に
て高速度で行うことができる効果がある。
As explained above, the present invention has the effect of being able to form a damage-free thin film at a low temperature and at a high speed by ionizing a reactive gas by irradiating a pulsed Hiroton beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に用いる化学気相成長装
置の断面図、第2図は本発明の第2の実施例に用いる化
学気相成長装置の断面図である。 101・・・・・・反応炉、102・・・・・・電子線
加速器、103・・・・・・低圧水銀灯、104・・・
・・・合成石英窓、105゛・°・°°上ヒータ106
・・・・・・ガス導入口、107・・・・・・ガス排気
口、108・・・・・・基板、109,110・・・・
・・原料ガスボンベ、201・パ・°°反応炉、202
・・・・・・電子線加速器、203・・・・・・ヒータ
、204・・・・・・ガス導入口、205・・・・・・
ガス排出口、206・・・°°°基板、207”°゛°
゛°原料ガスボンベ、208・・・・・・グリッド、2
o9・・・・・・サセプター。
FIG. 1 is a sectional view of a chemical vapor deposition apparatus used in a first embodiment of the invention, and FIG. 2 is a sectional view of a chemical vapor deposition apparatus used in a second embodiment of the invention. 101... Reactor, 102... Electron beam accelerator, 103... Low pressure mercury lamp, 104...
...Synthetic quartz window, 105゛・°・°°upper heater 106
...Gas inlet, 107...Gas exhaust port, 108...Substrate, 109, 110...
・・Raw material gas cylinder, 201・Pa・°°reactor, 202
...Electron beam accelerator, 203...Heater, 204...Gas inlet, 205...
Gas outlet, 206...°°° Board, 207"°°
゛°Raw material gas cylinder, 208...Grid, 2
o9... Susceptor.

Claims (4)

【特許請求の範囲】[Claims] (1)反応ガスを原料として使用し、該反応ガスにパル
ス電子線を照射して基板上に膜形成を行なうことを特徴
とする化学気相成長法。
(1) A chemical vapor deposition method characterized in that a reactive gas is used as a raw material and a film is formed on a substrate by irradiating the reactive gas with a pulsed electron beam.
(2)前記パルス電子線は、前記反応ガス及び前記基板
に照射することを特徴とする特許請求の範囲第1項記載
の化学気相成長法。
(2) The chemical vapor deposition method according to claim 1, wherein the pulsed electron beam is irradiated onto the reaction gas and the substrate.
(3)前記パルス電子線の前記反応ガスへの照射は、前
記基板に紫外線を照射した状態で行うことを特徴とする
特許請求の範囲第1項記載の化学気相成長法。
(3) The chemical vapor deposition method according to claim 1, wherein the pulsed electron beam is irradiated onto the reaction gas while the substrate is irradiated with ultraviolet rays.
(4)前記パルス電子線の前記反応ガスへの照射は前記
基板に向かう静電場が形成された状態で、行なわれるこ
とを特徴とする特許請求の範囲第1項記載の化学気相成
長法。
(4) The chemical vapor deposition method according to claim 1, wherein the pulsed electron beam is irradiated onto the reaction gas while an electrostatic field directed toward the substrate is formed.
JP6657687A 1987-03-19 1987-03-19 Chemical vapor phase epitaxy method Pending JPS63232338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6657687A JPS63232338A (en) 1987-03-19 1987-03-19 Chemical vapor phase epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6657687A JPS63232338A (en) 1987-03-19 1987-03-19 Chemical vapor phase epitaxy method

Publications (1)

Publication Number Publication Date
JPS63232338A true JPS63232338A (en) 1988-09-28

Family

ID=13319918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6657687A Pending JPS63232338A (en) 1987-03-19 1987-03-19 Chemical vapor phase epitaxy method

Country Status (1)

Country Link
JP (1) JPS63232338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147807A1 (en) * 2008-12-15 2010-06-17 Samsung Electronics Co., Ltd. Electron beam annealing apparatuses and annealing methods using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147807A1 (en) * 2008-12-15 2010-06-17 Samsung Electronics Co., Ltd. Electron beam annealing apparatuses and annealing methods using the same
US8445366B2 (en) * 2008-12-15 2013-05-21 Samsung Electronics Co., Ltd. Electron beam annealing apparatus and annealing methods using the same

Similar Documents

Publication Publication Date Title
JP2020514554A (en) Plasma reactor and diamond-like carbon deposition or treatment in plasma reactor
US10964528B2 (en) Integration of materials removal and surface treatment in semiconductor device fabrication
US10950416B2 (en) Chamber seasoning to improve etch uniformity by reducing chemistry
JP2749630B2 (en) Plasma surface treatment method
WO2012060325A1 (en) Plasma annealing method and device for same
JP2000068227A (en) Method for processing surface and device thereof
WO2020046547A1 (en) Oxide removal from titanium nitride surfaces
US20050271831A1 (en) Surface treating method for substrate
JP2009290025A (en) Neutral particle irradiation type cvd apparatus
JPS63224233A (en) Surface treatment
JPS63232338A (en) Chemical vapor phase epitaxy method
JPH01207930A (en) Surface modification
RU2476373C1 (en) Method of making superconducting single-photon detectors
JPS58101429A (en) Dry etching method
JPH02115379A (en) Device for forming thin film
Segers et al. Thin Film Deposition Using a Dielectric‐barrier Discharge
JP4674777B2 (en) Method for forming silicon carbide film
JPS59216625A (en) Photochemical vapor phase growing method
JPH06151331A (en) Method and apparatus for formation of semiconductor diamond
JP3378909B2 (en) Dry etching method and apparatus
JPS63152120A (en) Thin film formation
JPH01307225A (en) Systems for negative ion generation and substrate processing
JPS619577A (en) Plasma chemical vapor phase growing method
JPH1081588A (en) Semiconductor diamond and its formation
JPS62213118A (en) Formation of thin film and device therefor