JPS6323042B2 - - Google Patents

Info

Publication number
JPS6323042B2
JPS6323042B2 JP6580080A JP6580080A JPS6323042B2 JP S6323042 B2 JPS6323042 B2 JP S6323042B2 JP 6580080 A JP6580080 A JP 6580080A JP 6580080 A JP6580080 A JP 6580080A JP S6323042 B2 JPS6323042 B2 JP S6323042B2
Authority
JP
Japan
Prior art keywords
liquid nitrogen
nitrogen
contents
liquid
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6580080A
Other languages
Japanese (ja)
Other versions
JPS56161915A (en
Inventor
Michiaki Kameda
Eihiko Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Original Assignee
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd filed Critical Suntory Ltd
Priority to JP6580080A priority Critical patent/JPS56161915A/en
Publication of JPS56161915A publication Critical patent/JPS56161915A/en
Publication of JPS6323042B2 publication Critical patent/JPS6323042B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vacuum Packaging (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、薄肉の金属製罐、例えば0.15mm厚の
アルミニウム製罐またはプラスチツク製罐(以下
両者を併せて軟質罐という)を使用して、窒素を
封入した罐詰製品を製造する方法に関するもので
ある。 炭酸ガスを過飽和に溶解しているビール等を充
填した容器には、通常1Kg/cm2以上の内圧がかか
つており、軟質罐を使用しても、その内圧によつ
て形状が維持されるので、薄肉のアルミニウム罐
が使用されてきた。しかしながら、炭酸ガスを含
まない各種のジユース等の飲料は、加熱殺菌後ま
だ温度の高い中に密封すると、常温になつたと
き、中味の液体及びその上の空間を占める気体の
収縮によつて内部が減圧になり、軟質罐を使用す
ると大気圧によつて容器が変形するので、肉厚の
スチール罐が使用されてきた。 本発明は、より詳しくは、加熱殺菌後のまだ高
温の炭酸ガスを含まない飲料(以下「非炭酸飲
料」という)を軟質罐に充填し、更に、液体窒素
を充填して、巻締め密封後に気化した窒素で内圧
を上げることによつて、変形を防止するようにし
た罐詰製品の製法に関するものである。 〔従来の技術〕 従来から、非炭酸飲料、その他の罐詰製品にお
いて、軟質罐を使用した場合でも、液体窒素を封
入して、その気化によつて罐の内圧を高めること
により、輸送その他の取扱上における罐の変形や
破損を防止できることは、よく知られている。 例えば、特公昭42−23476号公報には、熱可塑
性樹脂製の薄肉の中空成形瓶に、内容物を充填
後、液体窒素を点滴した後密栓することによつ
て、瓶の変形を防止できることが開示されてい
る。 また、特開昭51−68382号公報、及び、特開昭
52−116384号公報には、薄肉の鋼製容器に、室温
より高温の内容物を充填後、蓋の巻締前に液体窒
素を添加し、または、蓋を巻締めた後に注射針で
液体窒素を添加することによつて、容器の変形を
防止できることが開示されている。 しかしながら、上述のように薄肉罐の変形や破
損を防止するため、加熱殺菌直後の高温の内容物
の入つた薄肉罐に、液体窒素を封入する方法は、
まだ工業化されておらず、また、このような方法
で製造された製品も市販されていない。 また、上述の公報は、まだ実際的な作業面を考
慮していない一般的な概念のみを開示したもので
あつて、実際に工場における具体的な方法を開示
したものではない。 例えば、蓋の巻締後に、注射針で液体窒素を添
加するとすれば、正確な量の液体窒素を添加する
ことができるが、注射針をさしうる特別な蓋が必
要となるだけではなく、注射針で窒素を添加する
ための特別な装置が必要になる。 また、蓋の巻締前に、内容物の上に液体窒素を
添加するにしても、極低温の液体窒素が、常温の
大気、又は、加温された内容物に接触して、急速
に気化するのに対して、どのようにして、添加さ
れた液体窒素の歩留りを上げ、バラツキを少なく
して、容器内に残留した液体窒素の量を一定にし
て、容器内の圧力を一定にするか等については、
全く開示されていない。 上述の公報の実施例について、液体窒素の歩留
りを考察してみると、特公昭42−23476号公報の
第1実施例においては、入目120c.c.の容器に100c.c.
の中味を入れた残りの20c.c.のヘツドスペースに、
0.5gの液体窒素を添加し、5秒後に密栓したとあ
る。肉圧0.8mmのプラスチツク容器が、ややふく
らみを有していたとあることから、容器の付加内
圧は、たかだか0.3Kg/cm2と推定される。そして、
この圧力を生じさせるために密封された液体窒素
は約10mgになる。また、液体窒素点滴後5秒後に
密封したとあることから、発明者らの実験結果か
らその間に約60%の液体窒素が気化するので、点
滴直後には、その約2.5倍の25mgの液体窒素が残
つていたと推定され、その歩留りは約5%と推定
される。 また、特開昭52−116384号公報の第実施例に
おいては、内容積379mlの容器に、341gの水を入
れた残りの約38c.c.のヘツドスペースに、1.0gの液
体窒素が添加されており、この容器の付加内圧が
24℃で1.7Kg/cm2になるように定められたと記載
されていることから、封入された窒素は、約136
mgと推定され、その歩留りは、約13.6%と推定さ
れる。 更に、特開昭51−68382号及び特開昭52−
116384号公報の第実施例においては、内容積
1462mlの容器に1305gの水を加えた残りの約57c.c.
のヘツドスペースに、2.5gの液体窒素が添加され
ており、この容器の付加内圧が24℃で0.77Kg/cm2
になるように定められたと記載されていることか
ら、封入された窒素は、約359mgと推定され、そ
の歩留りは約14.4%と推定される。 これら上述の公報には、液体窒素の歩留りやそ
のバラツキについて、まだ充分な配慮がなされて
いないことが判る。 〔発明が解決しようとする問題点〕 本発明が解決しようとする問題点は、加熱殺菌
直後の高温の内容物の入つた薄肉罐の変形や破損
を防止するため、上述のような高温の内容物の入
つた薄肉罐に液体窒素を封入する方法を工業的に
実用化することであり、より詳しくは、高温の内
容物に添加された極低温の液体窒素が、急速に気
化することから予想される液体窒素の歩留まりの
低下を、如何に低くするかということにある。 本発明者らが、液体窒素の歩留りの低下及びバ
ラツキについて種々調査したところ、一般的に予
想されるように、液体窒素の歩留りは、添加条件
が一定ならば、内容物の温度及び添加から密封ま
での時間等によつてほぼ一定になり、そのバラツ
キも少ないが、液体窒素の添加の条件の相違によ
つても、液体窒素の気化の量が、大きく変動する
ことを見出した。 一般的に予想されるように、内容物の温度が高
いほど液体窒素の歩留まりが低下し、また、密封
までの時間が長いほど液体窒素の歩留まりが低下
する。従つて、内容物の温度が高いほど、多量の
液体窒素を急速に添加し、添加後きわめて短い時
間内に直ちに巻締めることになりがちであるが、
本発明者らの研究の結果、必ずしも、高温の内容
物への液体窒素の急速添加は効果的ではなく、む
しろ、高温の内容物に対しては、窒素液体窒素添
加の際の線速度を低くして、歩留まりを向上させ
ることが効果的であること見出し、本発明を完成
した。 〔問題点を解決するための手段〕 本発明は、60℃以上の内容物が入つている未封
の軟質罐へ液体窒素を添加し、直ちに該軟質罐を
巻締等の方法により密封する窒素封入罐詰製品の
製法において、700mg以下の液体窒素を、200cm/
秒以下の液面到達時の落下速度で連続的に添加し
て、5秒以内に密封することを特徴とする窒素封
入罐詰製品の製法である。 なお、ここで、連続的に添加するとは、バルブ
等を開閉して間歇的に点滴するのではなく、ノズ
ルから継続してほぼ一定の流速で定常的に流下さ
せ添加することをいい、落下速度とは、この流の
水平断面上の平均の下方向の線速度をいう。 前述の特公昭42−23476号公報の第1実施例で
は、液体窒素を点滴したとの記載から判断して、
液体窒素が液滴状に細分化されたため、急速に気
化され、前述のように歩留まりが5%と低くなつ
たものと判断される。 また、前述の特開昭52−116384号公報の第実
施例、及び、特開昭51−68382号公報および特開
昭52−116384号公報の第実施例では、液体窒素
の添加条件が、本発明の添加条件とほぼ同一であ
ると仮定すれば、内容物の温度及び歩留まりから
推定して、液体窒素の液面到達時の落下速度は、
それぞれ、500cm/秒、及び、450cm/秒程度と推
定される。 〔作用〕 60℃以上の高温の内容物に直接液体窒素を添加
すれば、瞬時に窒素が蒸発するものと予測されて
いたが、本発明の方法によれば、予測に反して、
液面到達時の落下速度を調節することにより、添
加直後の液体窒素の残留率を高めることができた
ものである。その理由は正確には不明であるが、
次のように考えられる。 一般に、添加された液体窒素は、里芋の葉の上
の水滴のように一つに塊り、内容物の液面上で、
気化した窒素ガスをクツシヨンとして、その上に
比較的安定な状態で存在するものと考えられる。
しかしながら、液面到達時の落下速度が速い場合
には、液体窒素が、内容物の液面との衝突によつ
て、窒素ガスのクツシヨンを剥ぎ取られ、細分化
され、かつ、液中に深く潜り込むために、常温の
中味との接触面積が多くなり、液体窒素の気化が
促進されるものと考えられる。 従つて、気化を抑制するために、内容物の温度
に合せて液体窒素の内容物との相対速度、特に、
液面到達時の落下速度を調節する必要がある。 実施例 液体窒素の添加残留率の測定方法は、次の通り
である。 電子天秤の上に各種の温度に調整したサンプル
液を罐に入れておき、その上を底部に添加ノズル
の付いた液体窒素タンクを、一定のスピードで通
過させる。この時、液体窒素の流れが罐の中心に
くるように調整しておく。また、サンプル罐以外
に落ちた液体窒素が、天秤皿にのらないように、
カバーを設けておく。 液体窒素は、液体窒素タンクのノズルから、常
に一定量流下しており、これをサンプル罐の上を
一定スピードで通過させることにより、罐内に一
定量の液体窒素を添加することができる。 この時の状態を、電子天秤で測定し、記録計で
記録することにより、罐内に添加された液体窒素
の量を測定することができる。この時の測定値を
Qsとする。 また、ノズルから流下した液体窒素の量は、サ
ンプル罐の代わりに、液体窒素を入れた魔法瓶を
置いて測定した。なお、瓶の口径はサンプル罐と
同じに設定した。この時の測定値をQoとする。 このようにして得られた測定値から、液体窒素
の残存率は、Qs/Qoとして求められる。 一方、流下した液体窒素が、サンプル罐の液面
に到達する時の落下速度は、直接測定することが
できないので、次式で求めた。 v=√2(+) v:液体窒素の液面到達時の落下速度(cm/
sec) H:ノズルからサンプル液面までの高さ(cm) h:液体窒素タンク内の液面の高さ(cm) g:重力の加速度(cm/sec2) サンプル罐として、内径5.4cm、高さ13.3cmの
未封の金属製罐(以下単に罐という)を用い、こ
れに熱水250mlを入れ、その重量変化を調べる実
験を行つた。熱水の入つた罐を室温で放置すると
水が蒸発し時間の経過とともに一定の割合で重量
が減少する。これに液体窒素を添加すると液体窒
素の添加量に対応する残留量分の重量の増加があ
る。 この場合、液体窒素の液面到達時の落下速度を
変えた場合には、添加直後の重量増加(即ち添加
直後の窒素残留率)に変化がみられる。添加速度
が増大するにつれて残留率の低下がみられた。 次表に液体窒素の添加量(Qo)が340mg/罐の
場合について、液面到達時の落下速度及び内容物
の温度と添加直後の残留率との関係を示す。 なお、液面到達時の落下速度の変化は液体窒素
の添加ノズルを上下することによつて行つた。 また、ノズルの内径を変えて、添加量(Qo)
を200mg/罐、500mg/罐、700mg/罐と変えても
残留率には大きな変化はみられなかつた。ただし
700mg/罐を超えると、罐内の圧力が高くなり過
ぎて危険な状態になり実用的でなくなる。 この実験結果より明らかなように、95℃の内容
物の場合、液面到達時の落下速度を高め200cm/
秒を超える値にすると、添加時の損失が大で残留
率が急激に低下するが、液面到達時の落下速度を
200cm/秒以下にすると、95℃の内容物の場合で
も50%以上の残留率を示し、80℃の内容物では68
%以上、60℃の内容物では79%以上の残留率とす
ることができる。
[Industrial Field of Application] The present invention is a canning method that uses a thin metal can such as a 0.15 mm thick aluminum can or a plastic can (hereinafter referred to as a soft can) and fills it with nitrogen. It relates to a method of manufacturing a product. Containers filled with beer, etc. in which carbon dioxide is supersaturated usually have an internal pressure of 1 kg/cm2 or more , and even if a soft can is used, the internal pressure will maintain the shape. , thin-walled aluminum cans have been used. However, if drinks such as various drinks that do not contain carbon dioxide gas are sealed while still hot after heat sterilization, when they reach room temperature, the liquid inside and the gas occupying the space above it will shrink. If a soft can is used, the container will be deformed by the atmospheric pressure, so thick-walled steel cans have been used. More specifically, the present invention involves filling a soft can with a beverage that does not contain carbon dioxide gas (hereinafter referred to as a "non-carbonated beverage") that is still hot after heat sterilization, then filling it with liquid nitrogen, and sealing it by rolling it up. This invention relates to a method for manufacturing canned products that prevents deformation by increasing the internal pressure with vaporized nitrogen. [Prior Art] Conventionally, even when soft cans are used for non-carbonated beverages and other canned products, liquid nitrogen is filled in and vaporized to increase the internal pressure of the can, thereby making it easier for transportation and other purposes. It is well known that cans can be prevented from being deformed or damaged during handling. For example, Japanese Patent Publication No. 42-23476 discloses that deformation of the bottle can be prevented by filling a thin-walled thermoplastic resin hollow-molded bottle with the contents, dripping liquid nitrogen, and then sealing the bottle. Disclosed. Also, JP-A No. 51-68382 and JP-A-Sho 51-68382;
Publication No. 52-116384 discloses that after filling a thin-walled steel container with contents at a temperature higher than room temperature, liquid nitrogen is added before the lid is tightened, or liquid nitrogen is added with a syringe needle after the lid is tightened. It is disclosed that deformation of the container can be prevented by adding . However, as mentioned above, in order to prevent deformation and damage of the thin-walled can, there is a method of filling liquid nitrogen into the thin-walled can containing high-temperature contents immediately after heat sterilization.
It has not yet been industrialized, and products manufactured by this method are not commercially available. Moreover, the above-mentioned publications disclose only general concepts without considering practical work aspects, and do not disclose specific methods actually used in factories. For example, if you add liquid nitrogen with a syringe needle after tightening the lid, you can add the exact amount of liquid nitrogen, but not only do you need a special lid that allows you to insert the syringe needle. Special equipment is required to add nitrogen with a syringe needle. Furthermore, even if liquid nitrogen is added onto the contents before the lid is tightened, the extremely low temperature liquid nitrogen will rapidly vaporize when it comes into contact with the room temperature atmosphere or the heated contents. However, how can we increase the yield of added liquid nitrogen, reduce variation, keep the amount of liquid nitrogen remaining in the container constant, and keep the pressure inside the container constant? etc.,
Not disclosed at all. Considering the yield of liquid nitrogen in the examples of the above-mentioned publications, in the first example of Japanese Patent Publication No. 42-23476, 100 c.c.
In the remaining 20 c.c. head space with the contents of
It states that 0.5g of liquid nitrogen was added and the bottle was tightly capped after 5 seconds. Since the plastic container with a wall pressure of 0.8 mm was said to have some bulge, the additional internal pressure of the container is estimated to be at most 0.3 kg/cm 2 . and,
Approximately 10 mg of liquid nitrogen is sealed to create this pressure. In addition, since it is said that the liquid nitrogen was sealed 5 seconds after instillation, the inventors' experimental results show that about 60% of the liquid nitrogen vaporizes during that time. is estimated to have remained, and the yield is estimated to be approximately 5%. Furthermore, in the first example of JP-A No. 52-116384, 1.0 g of liquid nitrogen is added to the remaining head space of about 38 c.c. when 341 g of water is placed in a container with an internal volume of 379 ml. The additional internal pressure of this container is
Since it is stated that the nitrogen content is determined to be 1.7Kg/ cm2 at 24℃, the sealed nitrogen is approximately 136kg/cm2.
mg, and the yield is estimated to be about 13.6%. Furthermore, JP-A-51-68382 and JP-A-52-
In the first embodiment of Publication No. 116384, the internal volume
Adding 1305g of water to a 1462ml container leaves about 57c.c.
2.5g of liquid nitrogen is added to the head space of the container, and the additional internal pressure of this container is 0.77Kg/cm 2 at 24℃.
Since it is stated that the amount of nitrogen sealed is approximately 359 mg, the yield is estimated to be approximately 14.4%. It can be seen that in these above-mentioned publications, sufficient consideration has not yet been given to the yield of liquid nitrogen and its dispersion. [Problems to be Solved by the Invention] The problems to be solved by the present invention are as follows: In order to prevent deformation and breakage of thin-walled cans containing high-temperature contents immediately after heat sterilization, The purpose is to commercialize a method of sealing liquid nitrogen into thin-walled cans containing objects, and more specifically, it is expected that cryogenic liquid nitrogen added to high-temperature contents will quickly vaporize. The problem is how to reduce the drop in yield of liquid nitrogen. The present inventors conducted various investigations into the reduction and variation in the yield of liquid nitrogen, and found that, as is generally expected, the yield of liquid nitrogen varies depending on the temperature of the contents and the temperature of the contents. It has been found that the amount of vaporized liquid nitrogen varies greatly depending on the conditions for adding liquid nitrogen, although it remains almost constant depending on the time and the variation is small. As generally expected, the higher the temperature of the contents, the lower the yield of liquid nitrogen, and the longer the time until sealing, the lower the yield of liquid nitrogen. Therefore, the higher the temperature of the contents, the more rapidly a large amount of liquid nitrogen is added, and the more likely it is to immediately tighten the seal within a very short period of time after addition.
As a result of the research conducted by the present inventors, it has been found that rapid addition of liquid nitrogen to high-temperature contents is not necessarily effective; rather, it is recommended to reduce the linear velocity when adding liquid nitrogen to high-temperature contents. They discovered that it is effective to improve the yield, and completed the present invention. [Means for Solving the Problems] The present invention involves adding liquid nitrogen to an unsealed soft can containing contents at a temperature of 60°C or higher, and immediately sealing the soft can by a method such as searing. In the manufacturing method for sealed canned products, liquid nitrogen of 700 mg or less is
This is a method for manufacturing a nitrogen-filled canned product characterized by continuously adding the nitrogen at a falling speed when the liquid level reaches the liquid level of 2 seconds or less and sealing the product within 5 seconds. Note that the term "continuously added" here refers to adding by constantly dropping from a nozzle at a nearly constant flow rate, rather than intermittently dripping by opening and closing a valve, etc. is the average downward linear velocity on the horizontal cross section of this flow. Judging from the description that liquid nitrogen was dripped in the first example of the above-mentioned Japanese Patent Publication No. 42-23476,
It is considered that because the liquid nitrogen was fragmented into droplets, it was rapidly vaporized and the yield was as low as 5% as described above. Furthermore, in the above-mentioned embodiment of JP-A-52-116384 and the embodiments of JP-A-51-68382 and JP-A-52-116384, the conditions for adding liquid nitrogen are as follows. Assuming that the addition conditions are almost the same as in the invention, the falling speed of liquid nitrogen when it reaches the liquid level, estimated from the temperature and yield of the contents, is:
They are estimated to be about 500cm/sec and 450cm/sec, respectively. [Operation] It was predicted that if liquid nitrogen was directly added to contents at a temperature of 60°C or higher, the nitrogen would evaporate instantly, but according to the method of the present invention, contrary to predictions,
By adjusting the falling speed upon reaching the liquid level, it was possible to increase the residual rate of liquid nitrogen immediately after addition. The exact reason is unknown, but
It can be considered as follows. Generally, the added liquid nitrogen clumps together like water droplets on a taro leaf, and rises above the liquid surface of the contents.
It is thought that the vaporized nitrogen gas is used as a cushion and exists in a relatively stable state on top of it.
However, if the falling speed when reaching the liquid level is high, the liquid nitrogen collides with the liquid surface of the contents, stripping off the nitrogen gas cushion and fragmenting it, and deep into the liquid. It is thought that because the liquid nitrogen penetrates, the contact area with the contents at room temperature increases, and the vaporization of the liquid nitrogen is promoted. Therefore, in order to suppress vaporization, the relative velocity of liquid nitrogen to the contents should be adjusted to match the temperature of the contents, in particular,
It is necessary to adjust the falling speed when the liquid level is reached. Example The method for measuring the addition residual rate of liquid nitrogen is as follows. Sample liquids adjusted to various temperatures are placed in a can on an electronic balance, and then passed over the can at a constant speed through a liquid nitrogen tank with a dosing nozzle at the bottom. At this time, adjust the flow of liquid nitrogen so that it is centered in the can. Also, make sure that liquid nitrogen that falls outside of the sample can does not land on the balance pan.
Set up a cover. A constant amount of liquid nitrogen always flows down from the nozzle of the liquid nitrogen tank, and by passing this over the sample can at a constant speed, a constant amount of liquid nitrogen can be added into the can. By measuring the state at this time with an electronic balance and recording it with a recorder, it is possible to measure the amount of liquid nitrogen added into the can. The measured value at this time
Let it be Qs. In addition, the amount of liquid nitrogen flowing down from the nozzle was measured by placing a thermos flask containing liquid nitrogen in place of the sample can. The diameter of the bottle was set to be the same as that of the sample can. Let the measured value at this time be Qo. From the measured values thus obtained, the residual rate of liquid nitrogen is determined as Qs/Qo. On the other hand, since the falling velocity of the liquid nitrogen when it reaches the liquid level of the sample can cannot be directly measured, it was determined using the following equation. v=√2(+) v: Falling speed of liquid nitrogen when it reaches the liquid level (cm/
sec) H: Height from the nozzle to the sample liquid level (cm) h: Height of the liquid level in the liquid nitrogen tank (cm) g: Acceleration of gravity (cm/sec 2 ) As a sample can, the inner diameter is 5.4 cm, Using an unsealed metal can (hereinafter simply referred to as the can) with a height of 13.3 cm, an experiment was conducted to investigate the weight change by pouring 250 ml of hot water into the can. When a can containing hot water is left at room temperature, the water evaporates and the weight decreases at a constant rate over time. When liquid nitrogen is added to this, the weight increases by a residual amount corresponding to the amount of liquid nitrogen added. In this case, if the falling speed of liquid nitrogen when it reaches the liquid level is changed, a change is seen in the weight increase immediately after addition (that is, the nitrogen residual rate immediately after addition). A decrease in residual rate was observed as the addition rate increased. The following table shows the relationship between the falling speed when reaching the liquid level, the temperature of the contents, and the residual rate immediately after addition, when the amount of liquid nitrogen added (Qo) is 340 mg/can. The falling speed upon reaching the liquid level was changed by moving the liquid nitrogen addition nozzle up and down. In addition, by changing the inner diameter of the nozzle, the amount of addition (Qo)
Even when the amount was changed to 200mg/can, 500mg/can, and 700mg/can, no significant change was observed in the residual rate. however
If it exceeds 700 mg/can, the pressure inside the can becomes too high and becomes dangerous, making it impractical. As is clear from this experimental result, in the case of contents at 95℃, the falling speed when reaching the liquid level is increased to 200cm/
If the value exceeds seconds, the loss during addition will be large and the residual rate will drop sharply, but the falling speed when reaching the liquid level will be reduced.
When the speed is 200cm/sec or less, the residual rate is more than 50% even for contents at 95℃, and 68% for contents at 80℃.
% or higher, and for contents at 60°C, the residual rate can be 79% or higher.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述したように、高温の内容物に液
体窒素を添加するに当たり、液体窒素の液面到達
時の落下速度を内容物の液温に合わせて調節する
方法であつて、内容物が60℃以上の高温であつて
も、添加速度を200cm/秒以下にすることによつ
て、液体窒素の残留率が50%以上になり、効率よ
く窒素を封入することが可能になる。 また、注射針をさしうる蓋や注射針で液体窒素
を添加する機械、又は、小型の中味充填機のよう
な液体窒素添加機のような特別な装置を使用しな
くても、単に、巻締機の直前で、コンベア上の走
行中の罐に液体窒素を添加するだけで、容器の変
形等を防止するために充分な量の液体窒素を、効
率よく軟質罐に封入することが可能になる。
As described above, the present invention is a method of adjusting the falling speed of liquid nitrogen when it reaches the liquid level in accordance with the liquid temperature of the contents when adding liquid nitrogen to high-temperature contents. Even at high temperatures of 60°C or higher, by setting the addition rate to 200 cm/sec or less, the residual rate of liquid nitrogen becomes 50% or more, making it possible to efficiently seal in nitrogen. In addition, it is possible to simply roll the liquid without using a special device such as a cap that can insert a syringe needle, a machine that adds liquid nitrogen with a syringe needle, or a liquid nitrogen adding machine such as a small-sized filling machine. By simply adding liquid nitrogen to the can running on the conveyor just before the tightening machine, it is possible to efficiently fill the soft can with a sufficient amount of liquid nitrogen to prevent the container from deforming. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる方法を実施するため
の一つの装置の断面図である。この図では、保冷
のための部品等は省略してあり、1は液体窒素タ
ンク(供給口近辺のみ図示)、2は二重の隔壁、
3はニードルバルブ、4は取付筒、5は受器、6
は未封の罐、7はコンベア、8は雌ねじ、9は雄
ねじ、10は六角形の把持部、11はタンク内の
液体窒素、12はニードルバルブから流下する液
体窒素、13は受器内の液体窒素、14は受器か
ら流下する液体窒素、15は非炭酸飲料を示す。
FIG. 1 is a sectional view of an apparatus for carrying out the method according to the invention. In this figure, parts for cooling are omitted, and 1 is a liquid nitrogen tank (only the vicinity of the supply port is shown), 2 is a double partition wall,
3 is a needle valve, 4 is a mounting tube, 5 is a receiver, 6
is an unsealed can, 7 is a conveyor, 8 is a female thread, 9 is a male thread, 10 is a hexagonal grip, 11 is liquid nitrogen in the tank, 12 is liquid nitrogen flowing down from the needle valve, 13 is in the receiver Liquid nitrogen, 14 indicates liquid nitrogen flowing down from the receiver, and 15 indicates a non-carbonated beverage.

Claims (1)

【特許請求の範囲】[Claims] 1 60℃以上の内容物が入つている未封の軟質罐
へ液体窒素を添加し、直ちに該軟質罐を巻締等の
方法により密封する窒素封入罐詰製品の製法にお
いて、700mg以下の液体窒素を、200cm/秒以下の
液面到達時の落下速度で連続的に添加し、5秒以
内に密封することを特徴とする窒素封入罐詰製品
の製法。
1. In the manufacturing method for nitrogen-filled canned products, in which liquid nitrogen is added to an unsealed soft can containing contents at a temperature of 60°C or higher, and the soft can is immediately sealed by a method such as crimping, liquid nitrogen of 700 mg or less is added. A method for producing a nitrogen-filled canned product characterized by continuously adding the following at a falling speed of 200 cm/sec or less upon reaching the liquid level and sealing within 5 seconds.
JP6580080A 1980-05-16 1980-05-16 Manufacture of canned product into which nitrogen is enclosed Granted JPS56161915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6580080A JPS56161915A (en) 1980-05-16 1980-05-16 Manufacture of canned product into which nitrogen is enclosed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6580080A JPS56161915A (en) 1980-05-16 1980-05-16 Manufacture of canned product into which nitrogen is enclosed

Publications (2)

Publication Number Publication Date
JPS56161915A JPS56161915A (en) 1981-12-12
JPS6323042B2 true JPS6323042B2 (en) 1988-05-14

Family

ID=13297461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6580080A Granted JPS56161915A (en) 1980-05-16 1980-05-16 Manufacture of canned product into which nitrogen is enclosed

Country Status (1)

Country Link
JP (1) JPS56161915A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174076A (en) * 1981-04-20 1982-10-26 Toyo Seikan Kaisha Ltd Preparation of canned provisions
DE3369495D1 (en) * 1982-04-22 1987-03-05 Daiwa Can Co Ltd Method of manufacturing gas-sealed containered food
JPS6043370A (en) * 1983-08-22 1985-03-07 Hokkai Can Co Ltd Production of can containing liquefied gas
JPH0633118B2 (en) * 1985-04-12 1994-05-02 アサヒビール株式会社 Beer filling method
JP5771732B1 (en) * 2014-10-24 2015-09-02 株式会社フジクラ Optical fiber fusion splicer and optical fiber fusion splicer including the same

Also Published As

Publication number Publication date
JPS56161915A (en) 1981-12-12

Similar Documents

Publication Publication Date Title
US3726106A (en) Self-refrigerating and heating food containers and method for same
EP0421597B1 (en) A liquid dispensing system and packaging apparatus which includes such a system
US4607489A (en) Method and apparatus for producing cold gas at a desired temperature
US20130239522A1 (en) Controlled container headspace adjustment and apparatus therefor
US5231816A (en) Method of packaging a beverage
JPS6323042B2 (en)
JPS6366736B2 (en)
US3406079A (en) Packaging of salad oils and the like
US4947650A (en) Method and apparatus for liquid cryogen pressurization of containers of particulates
US20040000127A1 (en) Method for extending the effective life of an oxygen scavenger in a container wall
JPH0241317B2 (en)
JPS643734B2 (en)
JPS6233198Y2 (en)
JPS5999198A (en) Low-temperature liquefied-gas dripping apparatus
US5423186A (en) Process and device for freezing substances contained in receptacles
JPS6344609B2 (en)
US3358825A (en) Pharmaceutical package
JPH04173521A (en) Enclosure of nitrogen gas into can or other vessel
JPS591899A (en) Supply method of liquefied inactive gas
US2361588A (en) Method and apparatus for packaging beverages
JPH0380067A (en) Cooling of can thermally sterilized with steam under high pressure
SU547608A1 (en) Cooling method
KR19990069789A (en) A method and apparatus for self cooling a product containing liquid contents in a container.
US20010014366A1 (en) Method of packaging perishable material
JPH0146450B2 (en)