JPS63229337A - Method and apparatus for measuring optical anisotropy - Google Patents

Method and apparatus for measuring optical anisotropy

Info

Publication number
JPS63229337A
JPS63229337A JP6244787A JP6244787A JPS63229337A JP S63229337 A JPS63229337 A JP S63229337A JP 6244787 A JP6244787 A JP 6244787A JP 6244787 A JP6244787 A JP 6244787A JP S63229337 A JPS63229337 A JP S63229337A
Authority
JP
Japan
Prior art keywords
optical
light
measured
polarizing plate
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6244787A
Other languages
Japanese (ja)
Other versions
JPH0531097B2 (en
Inventor
Junichi Mori
淳一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNITIKA RES RABO KK
Unitika Ltd
Original Assignee
UNITIKA RES RABO KK
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNITIKA RES RABO KK, Unitika Ltd filed Critical UNITIKA RES RABO KK
Priority to JP6244787A priority Critical patent/JPS63229337A/en
Publication of JPS63229337A publication Critical patent/JPS63229337A/en
Publication of JPH0531097B2 publication Critical patent/JPH0531097B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure optical anisotropy within a short time, by partially adding the interference image due to an optical lens to the interior of the color image of a specimen to be measured formed by optical arrangement by an orthogonal circular polarization method. CONSTITUTION:When the diffused beam from a plane beam source 1 is converted to circular polarized beam by a polarizing plate 3 and a 1/4 wavelength plate 4 to be incident to a specimen 5 to be measured, said beam passes the center of the refractive index oval body due to the specimen, and advances and passes while separated into both axial directions of the oval of the cut end cut along the surface vertical to the incident beam to generate interference. Only a part of the beam passing through the specimen 5 is allowed to pass through an optical lens 6 and a color image having an interference color is formed along with non-passed beam by a 1/4 wavelength plate 7 and a polarizing plate 8 to be observed by a camera or eye 9. This interference color is the color phase determined only by the retardation value of the specimen 5 and not affected by the direction of an optical main axis. By this method, the magnitude or distribution of optical anisotropy in the wide area of the specimen can be easily and accurately measured within a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、透明あるいは半透明なフィルム、シート等の
広い面積における光学主軸方向(屈折率の最も大きい方
向)とレターデーション値(retardat、ion
光路差)とを測定する方法およびその装置に関するもの
である。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to the optical principal axis direction (direction with the highest refractive index) and retardation value (retardation, ion) in a wide area of a transparent or translucent film, sheet, etc.
The present invention relates to a method and apparatus for measuring optical path difference (optical path difference).

〔従来の技術] フィルムやシート等は通常光学異方性を有しており、そ
の広い面積をながめてみると、光学異方性の程度や光学
主軸の方向が異なった値をもって分布しているのが常で
ある。従って、それが強度、伸度、皺、平面性、加工段
階での寸法安定性等の物性に多大な影響を与えることと
なるため、光学異方性の大きさやそのバラツキ度合を正
確に知ることが重要である。
[Prior art] Films, sheets, etc. usually have optical anisotropy, and when looking at a wide area of the film, the degree of optical anisotropy and the direction of the optical principal axis are distributed with different values. It is usual. Therefore, it has a great influence on physical properties such as strength, elongation, wrinkles, flatness, and dimensional stability during processing, so it is important to accurately know the magnitude of optical anisotropy and its degree of variation. is important.

従来このような広い面積における光学異方性の大きさや
分布を正確に測定する方法および装置として、光学歪み
検査器や光弾性実験装置等による測定が知られている。
Conventionally, methods and devices for accurately measuring the magnitude and distribution of optical anisotropy in such a wide area include measurements using an optical distortion tester, a photoelasticity experiment device, and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来法では、正確なレターデーション値や
光学主軸方向を求め・るには、コンペンセーター(co
mpensator補償器)や検板を使ってこれらを回
転させたり、あるいは被測定試料を回転させたりしなが
ら、干渉色や干渉縞の変動状況を詳細に観察しなければ
ならないため、測定時間が長くなり、しかも操作が煩雑
であって、?熟練者でなければ精度よく測定できないと
いう問題点があった。
In the conventional method described above, in order to obtain accurate retardation values and optical principal axis directions, a compensator (co
The measurement time becomes longer because it is necessary to observe the fluctuations of the interference colors and interference fringes in detail while rotating these using a mpensator compensator or a test plate, or rotating the sample to be measured. , and the operation is complicated? There was a problem in that accurate measurements could only be made by an experienced person.

[問題点を解決するための手段〕 本発明は、このような問題点を解決するために光学異方
性をもつ被測定試料に白色の円偏光を照射し、透過した
光のうち一部は光学レンズを通過させ、残部は光学レン
ズを通過させないで、前記円偏光との組み合わせで直交
円偏光法の光学配置となる円偏光板に入射し、その透過
した光が示す干渉色のカラー画像から被測定試料内にお
ける光学主軸方向とレターデーション値とを求めること
を特徴とする光学異方性の測定方法、光学異方性をもつ
被測定試料に白色の円偏光を照射し、透過した光を前記
円偏光との組み合わせで直交円偏光法の光学配置となる
円偏光板に入射し、その透過した光を一部は光学レンズ
を通過させ、残部は光学レンズを通過させないで得られ
た干渉色のカラー画像から被測定試料内における光学主
軸方向とレターデーション値とを求めることを特徴とす
る光学異方性の測定方法および照度が比較的均一な白色
の拡散光を発生する面状の光源と白色光を円偏光に変換
する第一の円偏光板(偏光板と1/4波長板とから構成
される)と、被測定試料を透過した光のうち一部が通過
するように分散して配置した少なくとも1個以上の光学
レンズと、光学レンズを通過する光と通過しない光がと
もに入射する第二の円偏光板(1/4波長板と偏光板と
から構成される)とからなることを特徴とする光学異方
性の測定装置である。
[Means for Solving the Problems] In order to solve these problems, the present invention irradiates a measurement sample having optical anisotropy with white circularly polarized light, and some of the transmitted light is The remaining light is passed through an optical lens, and the remaining light is not passed through the optical lens and is incident on a circularly polarizing plate, which is an optical arrangement for orthogonal circular polarization method in combination with the circularly polarized light, and from the color image of the interference color shown by the transmitted light. A method for measuring optical anisotropy characterized by determining the optical principal axis direction and retardation value in a sample to be measured, which involves irradiating a sample to be measured with optical anisotropy with white circularly polarized light and measuring the transmitted light. In combination with the circularly polarized light, the light enters a circularly polarizing plate, which is the optical arrangement of the orthogonal circular polarization method, and part of the transmitted light passes through an optical lens, while the remaining part does not pass through the optical lens, resulting in an interference color. A method for measuring optical anisotropy characterized by determining the optical principal axis direction and retardation value in a sample to be measured from a color image of A first circularly polarizing plate (consisting of a polarizing plate and a quarter wavelength plate) converts white light into circularly polarized light, and a first circularly polarizing plate (consisting of a polarizing plate and a quarter wavelength plate) disperses the light transmitted through the sample to be measured so that a part of it passes through. Consisting of at least one or more arranged optical lenses and a second circularly polarizing plate (consisting of a quarter wavelength plate and a polarizing plate) into which both light passing through the optical lens and light not passing through the optical lens are incident. This is an optical anisotropy measurement device characterized by:

〔作用〕[Effect]

直交円偏光法の光学配置によって形成される被測定試料
のカラー画像の中へ、光学レンズにより形成される干渉
像を部分的に加・えることにより、被測定試料を回転し
たり、光学系を動かしたりすることなく、またコンペン
セーターや検板を使うごとなく、被測定試料の光学異方
性を容易にかつ短時間で正確に測定することができる。
By partially adding the interference image formed by the optical lens to the color image of the measured sample formed by the optical arrangement of the orthogonal circular polarization method, it is possible to rotate the measured sample or change the optical system. The optical anisotropy of a sample to be measured can be easily and accurately measured in a short time without moving it or using a compensator or test plate.

さらに、光学レンズを複数使用する場合には、光学主軸
方向などの分布をも正確に測定することができる。
Furthermore, when a plurality of optical lenses are used, the distribution in the direction of the optical principal axis can also be accurately measured.

これらの光学異方性のデータにより、強度、伸度、しわ
、平面性、加工段階での寸法安定性等の物性に対する重
要な知見を得ることができる。
These optical anisotropy data can provide important knowledge about physical properties such as strength, elongation, wrinkles, flatness, and dimensional stability during processing.

〔実施例] 以下、本発明を図示の実施例にもとすいて詳細に説明す
ることとする。
[Examples] Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図において、■は白色光を発する面光源にして、こ
の1面光源1は拡散板2を備えており、これにより、照
度が比較的均一な面状の白色拡散光が得られる。次に、
この拡散光を偏光板3とl/4波長板4とから構成され
る第一の円偏光板にて円偏光とし、これを被測定試料5
に入射すると、円偏光は被測定試料5が構成する屈折率
楕円体の中心を通って入射光に垂直な面で切った切り口
である楕円の長短両軸方向に各々分かれて進行し、被測
定試料5を通過後、干渉することとなる。被測定試料5
を通過した光の一部は光学レンズ6を通過せしめ、残部
は光学レンズ6を通過せしめないようにする。光学レン
ズ6は1個以上であり、複数の場合には被測定試料5と
平行な同一面上に分散して配置する。光学レンズ6とし
ては、第3図に示すように種々の方位角及び傾斜角で被
測定試料5を通過した光ができる限り広角度範囲まで入
射できるようにするため、0.2≦(焦点距離/直径)
≦2の短焦点レンズを用いることが望ましい。もちろん
、組み合わせレンズにてこの条件を満たしても良い。更
に、被測定試料の表面とこれと面する光学レンズ面との
距離PはO≦l≦(焦点距離×20)となる範囲で、で
きるだけ被測定試料に近い位置が望ましい。このように
して、光学レンズ6を通過した光と通過しない光は、1
/4波長板7と偏光板8とから構成された第二の円偏光
板に入射され、これを透過した光は、−例として第2図
のような状態となり、干渉色のカラー画像が形成され、
カメラまたは測定者の目9に観察される。この干渉色は
直交円偏光の光学配置になっているため、被測定試料の
レターデーション値によってのみ定まる色相であり、光
学主軸の方向にはまったく影ツされないものである。被
測定試料のレターデーション値の分布に基づき第2図の
ような色相の変化が見られる。また、光学レンズを通過
した部分には、第2図の10および第4図のような干渉
像が形成され、光学レンズが複数の場合には光学レンズ
の各々に被測定試料の部分の光学異方性に店づく異なる
干渉像が形成される。干渉像において、中心から対象位
置に現れた2点の黒色、灰色あるいは白色部分は、既知
であるi−1のレターデーション値と干渉色との関係か
らレターデーション値が0〜約250nmの入射点であ
ると決定することができる。また、これらの2点は、被
測定試料の光学主軸方向と等しい方位角で光が入射した
点に相当する。その理由は、屈折率楕円体に対して光学
主軸に平行な方位角をもつ光のうち、傾斜角が0°から
大きなものまでをも含めた光が入射すると、その中に屈
折率楕円体の切り口が概ね円とみなせる部分の光が傾斜
角の比較的大きなところに存在する。その結果、その部
分のレターデーション値は、極めて小さくなるため、干
渉色が黒色、灰色あるいは白色を呈するわけである。従
って、この二点を結んだ直線方向が、光学主軸方向と決
定でき、きわめて簡単に求まることになる。また、これ
らの点から光学レンズの中心部分までの干渉色干渉縞の
変化量を表−1のレターデーション値と干渉色との関係
表に照らして、被測定試料における個々の光学レンズ通
過部分のレターデーション値が容易かつ正確に測定でき
る。さらに、被測定試料の全測定面積において、光学レ
ンズ通過部分以外のレターデーション値は、その近傍に
ある光学レンズ通過部分のレターデーション値の測定済
みの光学レンズ中心部分の干渉色を基準として、表−1
に照らしながらそこからの干渉色の変化量を読むことに
より、容易かつ正確に求めることができる。すなわち、
光学レンズ通過部分と非通過部分とがレターデーション
値の正確な決定およびその分布の状態を知るのに役立つ
のである。
In FIG. 1, ``■'' is a surface light source that emits white light, and this single surface light source 1 is equipped with a diffuser plate 2, whereby planar white diffused light with relatively uniform illuminance can be obtained. next,
This diffused light is converted into circularly polarized light by a first circularly polarizing plate consisting of a polarizing plate 3 and a 1/4 wavelength plate 4, and this is converted into circularly polarized light by a sample to be measured 5.
When the circularly polarized light is incident on the sample to be measured 5, the circularly polarized light passes through the center of the refractive index ellipsoid formed by the sample to be measured 5, and travels separately in the long and short axes of the ellipsoid, which is a cut plane perpendicular to the incident light, and passes through the center of the refractive index ellipsoid that the sample to be measured 5 constitutes. After passing through sample 5, interference will occur. Sample to be measured 5
A part of the light that has passed is allowed to pass through the optical lens 6, and the remaining part is not allowed to pass through the optical lens 6. The number of optical lenses 6 is one or more, and in the case of a plurality of optical lenses 6, they are distributed and arranged on the same plane parallel to the sample 5 to be measured. As shown in FIG. 3, the optical lens 6 has a focal length of 0.2≦(focal length /diameter)
It is desirable to use a short focal length lens of ≦2. Of course, this condition may be satisfied with a combination of lenses. Further, the distance P between the surface of the sample to be measured and the optical lens surface facing the surface is preferably within the range of O≦l≦(focal length×20), and is preferably located as close to the sample to be measured as possible. In this way, the light that has passed through the optical lens 6 and the light that has not passed through the optical lens 6 are 1
The light that is incident on the second circularly polarizing plate composed of the /4 wavelength plate 7 and the polarizing plate 8 and transmitted through it is in a state as shown in FIG. 2, and a color image of interference colors is formed. is,
It is observed by the camera or the measurer's eye 9. Since this interference color has an optical arrangement of orthogonal circularly polarized light, the hue is determined only by the retardation value of the sample to be measured, and is completely unaffected by the direction of the optical principal axis. Based on the distribution of retardation values of the sample to be measured, a change in hue as shown in FIG. 2 can be seen. In addition, interference images such as those shown at 10 in Fig. 2 and Fig. 4 are formed in the part that has passed through the optical lens, and when there are multiple optical lenses, each optical lens has an optical difference in the part of the sample to be measured. Different interference images are formed that are directional. In the interference image, the two black, gray, or white parts that appear from the center to the target position are the incident points with retardation values of 0 to about 250 nm, based on the relationship between the known i-1 retardation value and the interference color. It can be determined that Furthermore, these two points correspond to points where light is incident at an azimuth angle equal to the optical principal axis direction of the sample to be measured. The reason for this is that when light with an azimuth angle parallel to the principal optical axis enters the refractive index ellipsoid, including light with an inclination angle of 0° to a large angle, the refractive index ellipsoid will enter the refractive index ellipsoid. Light from a portion whose cut end can be regarded as approximately circular exists at a relatively large angle of inclination. As a result, the retardation value of that portion becomes extremely small, so that the interference color appears black, gray, or white. Therefore, the straight line direction connecting these two points can be determined as the optical principal axis direction, which can be determined very easily. In addition, by comparing the amount of change in the interference color interference fringes from these points to the central part of the optical lens with the relationship table between retardation value and interference color in Table 1, we can calculate the amount of change in the interference color interference fringes from these points to the center part of the optical lens, and calculate the amount of change in the interference color interference fringes of each part of the measured sample passing through the optical lens. Retardation values can be measured easily and accurately. Furthermore, in the entire measurement area of the sample to be measured, the retardation values of areas other than the area passing through the optical lens are expressed based on the interference color at the center of the optical lens, where the retardation value of the area passing through the optical lens in the vicinity has already been measured. -1
It can be determined easily and accurately by reading the amount of change in interference color from there. That is,
The portion that passes through the optical lens and the portion that does not pass through the optical lens are useful for accurately determining the retardation value and knowing the state of its distribution.

また、第1図の構成において、被測定試料の表面とこれ
に面する光学レンズの面との距離pが0≦2≦(焦点距
離×20)を満足する範囲内であれば、光学レンズの位
置を第2の円偏光板の後へ移動して配置しても同様の効
果が得られる。
In addition, in the configuration shown in Fig. 1, if the distance p between the surface of the sample to be measured and the surface of the optical lens facing it is within the range satisfying 0≦2≦(focal length x 20), the optical lens A similar effect can be obtained by moving the position behind the second circularly polarizing plate.

[具体例] 第1回に示した装置を用いて、ポリエステルフィルムの
光学主軸方向の分布とレターデーション値の分布とを測
定した。その際、光源として昼光色用の蛍光灯10Wを
2本用い、拡散板にて拡散させ、24 X 30 Cm
の面積をもつ面光源とした。
[Specific Example] Using the apparatus shown in Part 1, the distribution in the optical principal axis direction and the distribution of retardation values of a polyester film were measured. At that time, two 10W daylight fluorescent lamps were used as the light source, and they were diffused with a diffuser plate to form a 24 x 30 cm
A surface light source with an area of .

そして、24 X 30 cmの面積をもつ第一の円偏
光板を通過させて、24 x30cmの面積をもつポリ
エステルフィルムに照射するようにした。また、光学レ
ンズとして直径1 cmで焦点路i%’10.74cm
の球形レンズを35個用意し、24 X 30 cmの
面積をもつガラス板上に第2図の10のように分散して
配置させ、更に球形レンズを取り付けたガラス仮には角
度を読み取るための目盛を刻印した。
The light was then passed through a first circularly polarizing plate with an area of 24 x 30 cm to illuminate a polyester film with an area of 24 x 30 cm. Also, as an optical lens, the focal path i%'10.74 cm with a diameter of 1 cm.
Prepare 35 spherical lenses and arrange them on a glass plate with an area of 24 x 30 cm, as shown in 10 in Figure 2. engraved.

この光学レンズを取り付けたガラス板は、フィルムと比
較的近い約2〜4 cmの所に設置した。そして、光は
、第一の円偏光板と直交円偏光の光学配置となる2 4
 X 30 crmの面積をもつ第二の円偏光板を通過
させた。第5図に測定結果を示す。
The glass plate to which this optical lens was attached was placed relatively close to the film at a distance of approximately 2 to 4 cm. Then, the light has an optical arrangement of orthogonal circularly polarized light with the first circularly polarizing plate 2 4
A second circularly polarizing plate having an area of X 30 crm was passed. Figure 5 shows the measurement results.

この図において、光学レンズ部分の中にある直線は、そ
の方向が光学主軸方向を示し、またその長さがレターデ
ーション値に比例した大きさを示す。
In this figure, the direction of the straight line in the optical lens portion indicates the optical principal axis direction, and the length thereof indicates a size proportional to the retardation value.

また、レターデーション値は、概ね同一色とみなせる干
渉色毎に示す。さらに、表−1に照らして干渉色をより
細かく色分けすれば、より正確なレターデーション値が
得られることになる。この測定結果から、24X30c
mと比較的広い面積におけるポリエステルフィルムの光
学主軸方向の分布とレターデション値の分布とが比較的
容易に明らかとなった。
Further, the retardation value is shown for each interference color that can be considered to be approximately the same color. Furthermore, if the interference colors are classified more finely in accordance with Table 1, more accurate retardation values can be obtained. From this measurement result, 24X30c
The distribution in the optical principal axis direction and the distribution of retardation values of the polyester film in a relatively wide area of m are relatively easily clarified.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、被測
定試料を回転したり、光学系を動かしたりすることなく
、またコンペンセーターや検板を使うことなく、被測定
試料の広い面積における光学異方性の大きさやその分布
を容易かつ正確に測定することができ、フィルム等の物
性の重要な知見を得ることができるなどの実用上におけ
る優れた作用効果を奏しうる。
As is clear from the above description, according to the present invention, it is possible to measure a large area of a sample to be measured without rotating the sample to be measured or moving the optical system, and without using a compensator or a test plate. The magnitude of optical anisotropy and its distribution can be easily and accurately measured, and excellent practical effects can be achieved, such as being able to obtain important knowledge about the physical properties of films and the like.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施例を示すものにして、第1図は測
定装置の概略説明図、第2図は第1図におけるカメラま
たは測定者の目の位置9で観察される被測定試料のカラ
ー画像の一例を示す観察図、第3図は第1図における被
測定試料5と一つの光学レンズ6との間の光の進行状況
を示す説明図、第4図は第2図における個々の光学レン
ズ通過部分IOに形成される干渉像の一例の拡大図、第
5図は具体例の測定結果を示す観察図である。 1:面光源    2:拡散板 3.8:偏光板  4,7:l/4波長板5:被測定試
料  6:光学レンズ 9:カメラまたは測定者の目の位置 lO:光学レンズ通過部分 11:干渉像 特許出願人 株式会社ユニチカリサーチラボ代  理 
 人  大  島  道  男 しも同     沖 
 野  佐  市     。 同     岩  木  謙  二  、−□l゛、て
・ 第1図 第2図 第3図 n鳴党遣 第4図 箔5図 手続補正書 昭和62年10月31日 特許庁長官  小 川 邦 夫 殿 1、事件の表示 昭和62年特 許 191  第62447号2、発明
の名称 光学異方性の測定方法およびその装置 3、補正をする者 事件との関係 特許出願人 住所 京都府宇治市宇治小桜23番地 名称 株式会社 ユニチカリサーチラボ代表者 中足 
肇 4、代理人 〒105  電話501−4552住所 
東京都港区虎ノ門1丁目2番14号島崎ビル4階 自発補正です 6、補正により増加する発明の数 マ、補正の対象 明細書の「特許請求の範囲」、「発明の詳細な説明 「特許請求の範囲」を別紙のとおり補正します。 (2)、明細書第2頁第13行ないし第14行の「にお
ける光学主軸方向(屈折率の最も大きい方向)」を「に
おいてその垂線方向から見た光学軸の存在する方向Jと
、第20行の「光学主軸の」を「光学軸の存在する」と
、それぞれ補正します。 (3)、明細書第3頁第12行の「光学主軸方向」を「
光学軸の存在する方向」と補正します。 (4)、明細書第4頁第7行ないし第8行および第15
行の「被測定試料内における光学主軸方向」を「被測定
試料面内におけるその垂線方向から見た光学軸の存在す
る方向Jと、それぞれ補正します。 (5)、明細書第5頁第15行の「光学主軸方向」を[
光学軸の存在する方向Jと補正します。 (6)、明細書第7頁第14行の「光学主軸の」を「光
学軸の存在する」と補正します。 (7)、明細書第8頁第7行の「光学主軸方向」を「光
学軸の存在する方向」と、第9行の「光学主軸」を「光
学軸」と、第17行の「光学主軸方向」を「垂線方向か
ら見た光学軸の存在する方向」と、それぞれ補正します
。 (8)、明細書第10頁第20行の「光学主軸方向」を
「光学軸の存在する方向」と補正します。 (9)、明細書第11頁第18行の「光学主軸方向」を
「垂線方向から見た光学軸の存在する方向」と補正しま
す。 00)、明細書第12頁第6行の「光学主軸方向」を「
光学軸の存在する方向」と補正します。 01)、明細書第13頁第7行の「観察図」を「マツプ
図」と補正します。 0り1図面の第5図を別紙のように補正します。 〔別紙〕 2、特許請求の範囲 (1)、光学異方性をもつ被測定試料に白色の円偏光を
照射し、透過した光のうち一部は光学レンズを通過させ
、残部は光学レンズを通過させないで、前記円偏光との
組み合わせで直交円偏光法の光学配置となる円偏光板に
入射し、その透過した光が示す干渉色のカラー画像から
被測定試料皿前C,にいてその垂線方向から見た光学軸
の存在する方向とレターデーション値とを求めることを
特徴とする光学異方性の測定方法。 (2)、光学異方性をもつ被測定試料に白色の円偏光を
照射し、透過した光を前記円偏光との組み合わせで直交
円偏光法の光学配置となる円偏光板に入射し、その透過
した光の一部は光学レンズを通過させ、残部は光学レン
ズを通過させないで得られた干渉色のカラー画像から被
測定試料面干「ζ1ps−でその垂線方向から見た光学
軸の存在する方向とレターデーション値とを求めること
を特徴とする光学異方性の測定方法。 (3)、照度が比較的均一な白色の拡散光を発生する面
状の光源と、白色光を円偏光に変換する第一の円偏光板
(偏光板と174波長板とから構成される)と、被測定
試料を透過した光のうち一部が通過するように分散して
少なくとも1個以上の光学レンズと、光学レンズを通過
する光と通過しない光がともに入射する第二円偏光板(
l/4波長板と偏光板とから構成される)とからなるこ
とを特徴とする光学異方性の測定装置。 第5図 手続補正書 昭和62年12月25日 特許庁長官  小 川 邦 夫 殿 光学異方性の測定方法およびその装置 3、補正をする者 事件との関係 特許出願人 住所 京都府宇治市宇治小桜23番地 名称 株式会社 ユニチカリサーチラボ代表者 生尾 
肇 4、代理人 〒105 電話501−4552住所 東
京都港区虎ノ門1丁目2番14号島崎ビル4階 自発補正です 6、補正により増加する発明の数 7、補正の対象 明細書の「特許請求の範囲」の欄です 8、補正の内容 (3)、照度が比較的均一な白色の拡散光を発生する〔
別紙〕 2、特許請求の範囲 (1)、光学異方性をもつ被測定試料に白色の円偏光を
照射し、透過した光のうち一部は光学レンズを通過させ
、残部は光学レンズを通過させないで、前記円偏光との
組み合わせで直交円偏光法の光学配置となる円偏光板に
入射し、その透過した光が示す干渉色のカラー画像から
被測定試料面内においてその垂線方向から見た光学軸の
存在する方向とレターデーション値とを求めることを特
徴とする光学異方性の測定方法。 (2)、光学異方性をもつ被測定試料に白色の円偏光を
照射し、透過した光を前記円偏光との組み合わせで直交
円偏光法の光学配置となる円偏光板に入射し、その透過
した光の一部は光学レンズを通過させ、残部は光学レン
ズを通過させないで得られた干渉色のカラー画像から被
測定試料面内においてその垂線方向から見た光学軸の存
在する方向とレターデーション値とを求めることを特徴
とする光学異方性の測定方法。 円偏光板(偏光板と1/4波長板とから構成される)と
、被測定試料を透過した光のうち一部が通過するように
分散して+Y T L 六2少なくとも1個以上の光学
レンズと、光学レンズを通過する光と通過しない光がと
もに入射する第二円偏光板(1/4波長板と偏光板とか
ら構成される)とからなることを特徴とする光学異方性
の測定装置。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic explanatory diagram of a measuring device, and FIG. An observation diagram showing an example of a color image, FIG. 3 is an explanatory diagram showing the progress of light between the sample to be measured 5 and one optical lens 6 in FIG. 1, and FIG. FIG. 5 is an enlarged view of an example of an interference image formed in the optical lens passing portion IO, and FIG. 5 is an observation view showing the measurement results of a specific example. 1: Surface light source 2: Diffusion plate 3.8: Polarizing plate 4, 7: l/4 wavelength plate 5: Sample to be measured 6: Optical lens 9: Camera or measurer's eye position lO: Optical lens passing portion 11: Interference image patent applicant Unitika Research Lab Co., Ltd. Representative
Michio Oshima Shimo Oki
Nosa City. Kenji Iwaki, -□l゛, te. Figure 1 Figure 2 Figure 3 n Meijitsu Figure 4 Haku Figure 5 Procedural amendments October 31, 1986 Mr. Kunio Ogawa, Commissioner of the Patent Office 1. Indication of the case 1986 Patent No. 191 No. 62447 2. Name of the invention Method and apparatus for measuring optical anisotropy 3. Person making the amendment Relationship to the case Patent applicant address 23 Ujikozakura, Uji City, Kyoto Prefecture Address Name Unitika Research Lab Representative Nakatashi
Hajime 4, Agent 105 Telephone 501-4552 Address
This is a voluntary amendment, 4th floor, Shimazaki Building, 1-2-14 Toranomon, Minato-ku, Tokyo. "Scope of Claims" will be amended as shown in the attached document. (2) In the specification, page 2, lines 13 to 14, "principal optical axis direction (direction with the largest refractive index)" is defined as "the direction J in which the optical axis exists when viewed from the perpendicular direction to Correct "principal optical axis" in line 20 to "exists optical axis". (3), "Optical principal axis direction" on page 3, line 12 of the specification is changed to "
Correct the direction in which the optical axis exists. (4), page 4 of the specification, lines 7 to 8 and line 15
Correct the "principal optical axis direction within the sample to be measured" in the row with "the direction J in which the optical axis exists as viewed from the perpendicular direction within the surface of the sample to be measured. (5), page 5 of the specification. Change the “principal optical axis direction” on line 15 to [
Correct the direction J where the optical axis exists. (6), "of the principal optical axis" on page 7, line 14 of the specification is corrected to "exists an optical axis." (7), "Principal optical axis direction" on page 8, line 7 of the specification is replaced with "direction in which the optical axis exists", "principal optical axis" on line 9 is replaced with "optical axis", and "optical axis" on line 17 Correct the ``principal axis direction'' and ``the direction in which the optical axis exists as seen from the perpendicular direction.'' (8) Correct the "principal optical axis direction" on page 10, line 20 of the specification to "the direction in which the optical axis exists." (9) Correct the "principal optical axis direction" on page 11, line 18 of the specification to "the direction in which the optical axis exists as seen from the perpendicular direction." 00), the “principal optical axis direction” on page 12, line 6 of the specification is changed to “
Correct the direction in which the optical axis exists. 01), "Observation diagram" on page 13, line 7 of the specification is corrected to "map diagram." Correct Figure 5 of the 01 drawing as shown in the attached sheet. [Attachment] 2. Claim (1): A sample to be measured having optical anisotropy is irradiated with white circularly polarized light, a portion of the transmitted light is passed through an optical lens, and the remainder is transmitted through the optical lens. Without passing the light, it enters a circularly polarizing plate that forms an optical arrangement for the orthogonal circular polarization method in combination with the circularly polarized light, and from the color image of the interference color shown by the transmitted light, the perpendicular line to C in front of the sample plate to be measured is detected. A method for measuring optical anisotropy characterized by determining a direction in which an optical axis exists and a retardation value as viewed from the direction. (2) The sample to be measured, which has optical anisotropy, is irradiated with white circularly polarized light, and the transmitted light is combined with the circularly polarized light to enter a circularly polarizing plate, which forms an optical arrangement for orthogonal circular polarization method. A part of the transmitted light passes through the optical lens, and the remaining part does not pass through the optical lens. From the interference color image obtained, it is possible to determine the existence of the optical axis seen from the perpendicular direction of the surface of the sample to be measured at ζ1 ps. A method for measuring optical anisotropy characterized by determining the direction and retardation value. (3) A planar light source that generates white diffused light with relatively uniform illuminance and converting the white light into circularly polarized light. A first circularly polarizing plate (consisting of a polarizing plate and a 174 wavelength plate) to be converted, and at least one or more optical lenses for dispersing and dispersing the light so that a part of the light transmitted through the sample to be measured passes through. , a second circularly polarizing plate (
1. An optical anisotropy measuring device comprising: a 1/4 wavelength plate and a polarizing plate. Figure 5 Procedural amendment December 25, 1988 Director General of the Japan Patent Office Kunio Ogawa Measuring method and device for optical anisotropy 3, relationship with the case of the person making the amendment Patent applicant address Uji, Uji City, Kyoto Prefecture Kozakura 23 Name Unitika Research Lab Representative Ikuo
Hajime 4, Agent Address: 105 Phone: 501-4552 Address: 4th Floor, Shimazaki Building, 1-2-14 Toranomon, Minato-ku, Tokyo This is a voluntary amendment 6. The number of inventions will increase due to the amendment 7. 8. Correction details (3): Generate white diffused light with relatively uniform illuminance.
Attachment] 2. Claim (1): A sample to be measured with optical anisotropy is irradiated with white circularly polarized light, and part of the transmitted light passes through an optical lens, and the rest passes through the optical lens. In combination with the circularly polarized light, the light enters a circularly polarizing plate, which forms the optical arrangement of the orthogonal circular polarization method. A method for measuring optical anisotropy characterized by determining the direction in which an optical axis exists and a retardation value. (2) The sample to be measured, which has optical anisotropy, is irradiated with white circularly polarized light, and the transmitted light is combined with the circularly polarized light to enter a circularly polarizing plate, which forms an optical arrangement for orthogonal circular polarization method. A part of the transmitted light passes through the optical lens, and the rest does not pass through the optical lens. From the interference color image obtained, the direction and letter of the optical axis as seen from the perpendicular direction within the surface of the sample to be measured are determined. A method for measuring optical anisotropy, characterized by determining the dation value. A circularly polarizing plate (consisting of a polarizing plate and a quarter-wave plate) and at least one optical device that disperses and transmits a portion of the light that has passed through the sample to be measured. An optical anisotropic device characterized by comprising a lens and a second circularly polarizing plate (consisting of a 1/4 wavelength plate and a polarizing plate) into which both light passing through the optical lens and light not passing through the optical lens are incident. measuring device.

Claims (3)

【特許請求の範囲】[Claims] (1)光学異方性をもつ被測定試料に白色の円偏光を照
射し、透過した光のうち一部は光学レンズを通過させ、
残部は光学レンズを通過させないで、前記円偏光との組
み合わせで直交円偏光法の光学配置となる円偏光板に入
射し、その透過した光が示す干渉色のカラー画像から被
測定試料内における光学主軸方向とレターデーション値
とを求めることを特徴とする光学異方性の測定方法。
(1) A sample to be measured with optical anisotropy is irradiated with white circularly polarized light, and a portion of the transmitted light passes through an optical lens.
The remaining light does not pass through the optical lens, but enters the circularly polarizing plate, which forms the optical arrangement of the orthogonal circular polarization method in combination with the circularly polarized light, and from the color image of the interference color shown by the transmitted light, the optical information in the sample to be measured is determined. A method for measuring optical anisotropy characterized by determining a principal axis direction and a retardation value.
(2)光学異方性をもつ被測定試料に白色の円偏光を照
射し、透過した光を前記円偏光との組み合わせで直交円
偏光法の光学配置となる円偏光板に入射し、その透過し
た光の一部は光学レンズを通過させ、残部は光学レンズ
を通過させないで得られた干渉色のカラー画像から被測
定試料内における光学主軸方向とレターデーション値と
を求めることを特徴とする光学異方性の測定方法。
(2) The sample to be measured, which has optical anisotropy, is irradiated with white circularly polarized light, and the transmitted light is combined with the circularly polarized light to enter a circularly polarizing plate, which forms the optical arrangement of the orthogonal circular polarization method, and the transmitted light is A part of the light is passed through an optical lens, and the remaining part is not passed through the optical lens, and the optical principal axis direction and retardation value in the sample to be measured are determined from a color image of interference colors. How to measure anisotropy.
(3)照度が比較的均一な白色の拡散光を発生する面状
の光源と、白色光を円偏光に変換する第一の円偏光板(
偏光板と1/4波長板とから構成される)と、被測定試
料を透過した光のうち一部が通過しするように分散して
配置した少なくとも1個以上の光学レンズと、光学レン
ズを通過する光と通過しない光がともに入射する第二の
円偏光板(1/4波長板と偏光板とから構成される)と
からなることを特徴とする光学異方性の測定装置。
(3) A planar light source that generates white diffused light with relatively uniform illuminance, and a first circularly polarizing plate that converts the white light into circularly polarized light (
(composed of a polarizing plate and a quarter wavelength plate), at least one optical lens disposed in a dispersed manner so that a part of the light transmitted through the sample to be measured passes through, and the optical lens. An optical anisotropy measuring device comprising a second circularly polarizing plate (consisting of a quarter-wave plate and a polarizing plate) into which both passing light and non-passing light are incident.
JP6244787A 1987-03-19 1987-03-19 Method and apparatus for measuring optical anisotropy Granted JPS63229337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6244787A JPS63229337A (en) 1987-03-19 1987-03-19 Method and apparatus for measuring optical anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244787A JPS63229337A (en) 1987-03-19 1987-03-19 Method and apparatus for measuring optical anisotropy

Publications (2)

Publication Number Publication Date
JPS63229337A true JPS63229337A (en) 1988-09-26
JPH0531097B2 JPH0531097B2 (en) 1993-05-11

Family

ID=13200471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244787A Granted JPS63229337A (en) 1987-03-19 1987-03-19 Method and apparatus for measuring optical anisotropy

Country Status (1)

Country Link
JP (1) JPS63229337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147984A (en) * 1992-11-10 1994-05-27 Moritetsukusu:Kk Polarized light measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUNDAMENTALS OF OPTICS FOURTH EDITION=1981 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147984A (en) * 1992-11-10 1994-05-27 Moritetsukusu:Kk Polarized light measuring method

Also Published As

Publication number Publication date
JPH0531097B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
Schneider et al. Measurement of submicron laser beam radii
US7239388B2 (en) Retardance measurement system and method
US3565568A (en) Method and apparatus for ascertaining geometric deviations from an ideal surface by optical means
JPH1062303A (en) Device for measuring luminous intensity and chromaticity of object
Hsia et al. Bidirectional Reflectometry. Part I.: A High Resolution Laser Bidirectional Reflectometer With Results on Several Optical Coatings
Wei et al. Measurement of base angle of an axicon lens based on auto-collimation optical path
EP0128183B1 (en) Inspection apparatus and method
JPS63229337A (en) Method and apparatus for measuring optical anisotropy
Webber Method for the measurement of transparency of sheet materials
Williams Establishment of absolute diffuse reflectance scales using the NPL Reference Reflectometer
TW202348954A (en) Optical detecting system and operating method thereof
TW503314B (en) Automated system for measurement of an optical property
Millikan A study of the polarization of the light emitted by incandescent solid and liquid surfaces
JPH0797064B2 (en) Optical fiber structure measurement method
US4637720A (en) Lens meter having a focusing indication system with divided-image registration focusing
JPS60142204A (en) Dimension measuring method of object
Tadrous Use of a refractive index–coupled diffuser to both generate and measure high‐numerical aperture illumination for light microscopy
Allen et al. Photoelectric measurement of small fluctuating retardations in weakly birefringent, light-scattering biological objects: I. The revolving tilted compensator method
TW414814B (en) Measure-device and measure-method for the orientation-degree of a fiber
WO2021039900A1 (en) Sample measurement device and sample measurement method
JP2678465B2 (en) Lens refractive index distribution measurement method
JPH04143641A (en) Method for measuring see-through characteristics of plastic film
JPS59214730A (en) Lens-decentering measuring device
Kalinowski et al. A bifunctional system for measuring geometrical parameters and stress distribution in fiber optic preforms
JPS5839916A (en) Measuring method for density of photographic film