JPS63228573A - Nonaqueous electrolytic lithium secondary cell - Google Patents

Nonaqueous electrolytic lithium secondary cell

Info

Publication number
JPS63228573A
JPS63228573A JP62061578A JP6157887A JPS63228573A JP S63228573 A JPS63228573 A JP S63228573A JP 62061578 A JP62061578 A JP 62061578A JP 6157887 A JP6157887 A JP 6157887A JP S63228573 A JPS63228573 A JP S63228573A
Authority
JP
Japan
Prior art keywords
lithium
manganese dioxide
battery
negative electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62061578A
Other languages
Japanese (ja)
Inventor
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Yukio Nishikawa
幸雄 西川
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62061578A priority Critical patent/JPS63228573A/en
Publication of JPS63228573A publication Critical patent/JPS63228573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To secure such a cell that is excellent in an over-discharge resisting characteristic, by mixing molybdenum trioxide as a subactive material in a manganese dioxide positive electrode, and making a quantity of electricity capable of charging and discharging of lithium larger than that of manganese dioxide but smaller than the sum total of the manganese dioxide and the molybdenum trioxide. CONSTITUTION:Manganese dioxide is used for a positive electrode 5 as a main active material and molybdenum trioxide is used for it as a sub-active material, while as a negative electrode 2, such one that sticks lithium 3 to a lead-cadmium or lead-indium-cadmium alloy, with pressure, is used, and a dischargeable quantity of electricity of the lithium 3 is made larger than that of the manganese dioxide but smaller than the sum total of the dischargeable quantity of electricity of the molybdenum trioxide. Thus the molybdenum trioxide is mixed in the positive electrode 5 as a proper compound working for an active material, whereby such a cell that is excellent in an over-discharge resisting characteristic is securable in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子機器のメモリー保持用電源として、正極に
酸化マンガンを用い、負極にリチウムを吸蔵、放出する
合金を用いる非水電解質リチウム二次電池の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous electrolyte lithium secondary battery that uses manganese oxide as a positive electrode and an alloy that absorbs and desorbs lithium as a negative electrode, as a memory storage power source for electronic equipment. It is about improvement.

従来の技術 近年電子機器の多機能化、特にメモリー機能を有する機
器の急増に伴い、そのメモリー保持用電源として非水電
解質リチウム電池が注目されている。
BACKGROUND OF THE INVENTION In recent years, as electronic devices have become more multi-functional, and in particular the number of devices with memory functions has rapidly increased, non-aqueous electrolyte lithium batteries have been attracting attention as power sources for memory retention.

すなわち、在来水溶液系電池とくらべ、貯蔵性。In other words, it has better storage performance than conventional aqueous batteries.

自己放電特性、耐漏液性にすぐれるなどの特徴を持ち、
例えばフッ化黒鉛、二酸化マンガン、塩化チオニルなど
を正極活物質とする電池がすでに実用化され、この用途
に供されている。
It has features such as self-discharge characteristics and excellent leakage resistance,
For example, batteries using fluorinated graphite, manganese dioxide, thionyl chloride, or the like as positive electrode active materials have already been put into practical use and are being used for this purpose.

これらはリチウム−次電池であるが、最近機器がより小
形化するにつれ、電池自体も小形化、薄形化が要求され
、電池の電気容量が十分に確保されないということj!
J1ら、リチウム電池の特徴を生かし、かつ充電しさえ
すれば何回でもくり返して使用できるという、非水電解
質リチウム二次電池への要望が強まりつつある。
These are rechargeable lithium batteries, but as devices have become smaller in recent years, the batteries themselves have been required to be smaller and thinner, making it difficult to ensure sufficient electrical capacity.
There is a growing demand for nonaqueous electrolyte lithium secondary batteries such as J1, which take advantage of the characteristics of lithium batteries and can be used repeatedly as long as they are charged.

リチウム二次電池の正極活物質としては、例えば特開昭
50−54836号公報、52−6423号公報では二
硫化チタン(T I S2 )が、また特開昭61−5
262号公報では二硫化モリブデン(MoS2)が提案
されており、それらの一部は実用化されているものの、
現状では、在来水溶液系二次電池とくらべ、充放電サイ
クル寿命特性の面で大きく劣っている。この最も大きな
原因として負極のリチウム極の充放電特性が挙げられる
As a positive electrode active material for lithium secondary batteries, for example, titanium disulfide (T I S2 ) is used in JP-A-50-54836 and JP-A-52-6423;
Molybdenum disulfide (MoS2) was proposed in Publication No. 262, and although some of them have been put into practical use,
At present, they are significantly inferior to conventional aqueous secondary batteries in terms of charge/discharge cycle life characteristics. The biggest cause of this is the charge/discharge characteristics of the lithium electrode of the negative electrode.

リチウム二次電池では、放電時にリチウムが負極から電
解質に溶解し、充電時に再び負極上に析出するという形
態をとる。問題はリチウムが負極上に析出する際にあり
、一つは樹脂状の生成物(いわゆるデンドライト)が生
成し、充放電サイクルをくり返すにつれてセパレータを
貫通して正極と接し、電池の内部短絡をおこすという現
象、もう一つはこの析出したリチウムが非常に活性でち
り、電解質と反応することにより、リチウムが徐々に消
耗され、やがては寿命がつきてしまうという現象である
。これらの問題を解決する手段として、特開昭59−1
63756号公報、69−163758号公報では、カ
ドミウム、鉛、スズ。
In a lithium secondary battery, lithium dissolves from the negative electrode into the electrolyte during discharge, and is deposited on the negative electrode again during charging. The problem is when lithium precipitates on the negative electrode, one of which is the formation of resin-like products (so-called dendrites), which penetrate the separator and come into contact with the positive electrode as the charge and discharge cycles are repeated, causing an internal short circuit in the battery. The other phenomenon is that this precipitated lithium is extremely active and reacts with dust and electrolyte, causing the lithium to be gradually consumed and eventually reaching the end of its life. As a means to solve these problems, JP-A-59-1
63756 and 69-163758, cadmium, lead, and tin.

ビスマス、アンチモン、水銀、インジウムなどの三元素
以上の合金、いわゆる低融点の可融合金が非水電解質中
で容易にリチウムを吸蔵、放出することを見い出し、こ
れらの合金を負極とする非水電解質リチウム二次電池が
提案された。
We discovered that alloys of three or more elements such as bismuth, antimony, mercury, and indium, so-called low-melting point fusible alloys, easily absorb and release lithium in non-aqueous electrolytes, and developed non-aqueous electrolytes using these alloys as negative electrodes. A lithium secondary battery was proposed.

すなわち、これらの合金を負極として用いた電池では、
放電の際合金内部に吸蔵されているリチウムが電解質中
に放出され、逆に充電の際は電解質中のリチウムイオン
が合金上に析出するとすみやかに合金と反応し、合金内
部に拡散し、吸蔵されるため、合金負極の表面に樹脂状
の生成物が生じることもなく、またその生成物が電解質
と反応することもないため、良好な充放電サイクル特性
を示すというものである。発明者らは種々検討の結果、
なかでも鉛、−カドミウムもしくは鉛−インジウム−カ
ドミウムの合金が、長期間の充放電特性、耐自己放電特
性の面で最もすぐれた特性を示すことを見い出した。
In other words, in batteries using these alloys as negative electrodes,
During discharging, the lithium occluded within the alloy is released into the electrolyte, and conversely, during charging, lithium ions in the electrolyte precipitate on the alloy, quickly react with the alloy, diffuse into the alloy, and become occluded. Therefore, no resin-like products are produced on the surface of the alloy negative electrode, and the products do not react with the electrolyte, resulting in good charge-discharge cycle characteristics. As a result of various studies, the inventors found that
Among them, it has been found that lead, -cadmium, or lead-indium-cadmium alloys exhibit the best characteristics in terms of long-term charge/discharge characteristics and self-discharge resistance.

従って、理論的には上記二硫化チタンもしくは二硫化モ
リブデンを正極とし、これらの合金負極と組み合せれば
、すぐれた特性を有するリチウム二次電池が得られるは
ずである。しかしこれら2種類の正極の放電電圧は、い
ずれもリチウムに対し2.4■程度から開始し、十分な
エネルギー密度を有するためには1.5■程度まで放電
することが必要であり、その平均電圧は約1.8■程度
である。
Therefore, theoretically, if the above-mentioned titanium disulfide or molybdenum disulfide is used as a positive electrode and combined with an alloy negative electrode of these, a lithium secondary battery with excellent characteristics should be obtained. However, the discharge voltage of these two types of positive electrodes starts from about 2.4 µm relative to lithium, and in order to have sufficient energy density, it is necessary to discharge to about 1.5 µm, and the average The voltage is about 1.8μ.

一方これら合金負極の放電電圧はリチウムに対し、0.
4〜0,5Vであり、これらの正負極の組み合せでは放
電平均電圧が1.3〜1.4■程度しか得られず、高電
圧であるが故の高エネルギー密度のリチウム二次電池と
はなり得ない。従って、これら合金負極と組み合すべき
正極は、すくなくともリチウムに対し3■以上の電圧で
放電するものでなければ意味がないと言える。
On the other hand, the discharge voltage of these alloy negative electrodes is 0.
4 to 0.5V, and with the combination of these positive and negative electrodes, the average discharge voltage is only about 1.3 to 1.4V, which is why a lithium secondary battery has a high energy density due to its high voltage. It can't be. Therefore, it can be said that the positive electrode to be combined with these alloy negative electrodes is meaningless unless it can be discharged at a voltage of at least 3μ or higher with respect to lithium.

一方、従来りチウム−次電池の正極活物質として用いら
れてきた二酸化マンガンをリチウム二次電池の活物質と
して用いるという提案が特開昭61−91864号公報
でなされている。ここでは同時に負極として、カドミウ
ムもしくは亜鉛のすくなくとも1つと、鉛、スズ、ビス
マス、インジウム。
On the other hand, Japanese Patent Application Laid-Open No. 91864/1983 proposes to use manganese dioxide, which has been conventionally used as a positive electrode active material in lithium secondary batteries, as an active material in lithium secondary batteries. Here, at least one of cadmium or zinc and lead, tin, bismuth or indium are used simultaneously as negative electrodes.

アルミニウムのすくなくとも1つからなる合金負極も提
案されている。二酸化マンガンはリチウムに対し3.2
〜3.3■の電圧で放電を開始するので、上記鉛、カド
ミウムもしくは鉛、インジウム、カドミウムの合金負極
と組み合せると、2.7〜2.8Vの電圧で放電が開始
され、リチウム電池の高電圧、高エネルギー密度という
要件に適合することになる。また二酸化マンガンは量的
に豊富であり、コスト的にも安価であることから、合金
負極と組み合せることにより、すぐれたリチウム二次電
池が期待でき5活物質であると言える。
Alloy negative electrodes comprising at least one of aluminum have also been proposed. Manganese dioxide is 3.2 compared to lithium.
Discharge starts at a voltage of ~3.3 V, so when combined with the lead, cadmium or lead, indium, cadmium alloy negative electrode, discharge starts at a voltage of 2.7 to 2.8 V, and the lithium battery It will meet the requirements of high voltage and high energy density. Furthermore, since manganese dioxide is abundant in quantity and inexpensive, it can be said to be an active material that can be expected to produce an excellent lithium secondary battery by combining it with an alloy negative electrode.

発明が解決しようとする問題点 このように二酸化マンガンを正極とし、鉛−カドミウム
もしくは鉛−インジウム−カドミウム合金を負極とする
電池はすぐれた特性を有する可能性のある二次電池であ
ると言えるが、この電池の主な用途として考えられるメ
モリー保持用電源として使用する場合、1つの大きな課
題が存在する。
Problems to be Solved by the Invention As described above, it can be said that a battery using manganese dioxide as a positive electrode and a lead-cadmium or lead-indium-cadmium alloy as a negative electrode is a secondary battery that may have excellent characteristics. There is one major problem when using this battery as a power source for memory retention, which is considered to be the main use of this battery.

すなわち、通常メモリー機能を有する機器に電池を組み
込む場合、その時点から電池は作動状態におかれるわけ
であり、機器を使用するまでの放置時間が長期にわたる
場合、電池が放電しつくしてしまう可能性がある。例え
ばこの電池が過放電に強いニッケルカドミウム電池など
の場合、たとえ電池の電圧がOvになるまで放電しつく
したとしても、その時点で機器を交流電源につなぐこと
により電池を充電してやれば、再びもと通り使用するこ
とができる。但し、非水電解質リチウム二次電池の場合
、これは非常に困難である。
In other words, when a battery is installed in a device that has a memory function, the battery is in an active state from that point on, and if the device is left unused for a long period of time, there is a possibility that the battery will be completely discharged. There is. For example, if this battery is a nickel-cadmium battery that is resistant to overdischarge, even if the battery is completely discharged until the voltage reaches Ov, if you connect the device to an AC power source at that point and recharge the battery, it will not work again. and can be used on the street. However, this is extremely difficult in the case of non-aqueous electrolyte lithium secondary batteries.

何故ならば、電池が放電しつくして電圧がoVになると
いうことは、電池の正極もしくは負極の容量のいずれか
が先につきてしまうということを示している。まず正極
の電気容量がつきる場合を考えると、一般的にリチウム
二次電池の正極活物質として用いられる無機化合物はあ
る一定の電圧以下になるまで放電すると結晶構造の変化
をおこし、再びもとの状態にもどらなくなる。上記の二
硫化チタン、二硫化モリブデン、二酸化マンガンも同様
であり、例えば二酸化マンガンの場合、その電位がリチ
ウムに対し、はぼ1.5v以下になるとこの現象が生じ
ることが実験的に認められた。
This is because when the battery is completely discharged and the voltage reaches oV, this indicates that either the positive electrode or the negative electrode of the battery will lose its capacity first. First, considering the case where the capacitance of the positive electrode increases, when the inorganic compound generally used as the positive electrode active material of a lithium secondary battery is discharged to a certain voltage or less, its crystal structure changes and it returns to its original state. It will not return to the state. The same applies to the above-mentioned titanium disulfide, molybdenum disulfide, and manganese dioxide. For example, in the case of manganese dioxide, it has been experimentally confirmed that this phenomenon occurs when the potential of manganese dioxide is about 1.5 V or less with respect to lithium. .

負極に用いる合金は上記した如く、リチウムに対し0.
4〜0.5vの電位にあるため、電池の電圧がOvにな
るということは、二酸化マンガンの電位を0.4〜o、
6Vまで引き下げるということであり、その結果二酸化
マンガンの結晶構造の変化をおこし、充電しても再びも
との状態にもどるということはない。
As mentioned above, the alloy used for the negative electrode has a lithium content of 0.
Since the potential of the battery is 4 to 0.5 V, the voltage of the battery is Ov, which means that the potential of manganese dioxide is 0.4 to 0.
This means that the voltage is lowered to 6V, and as a result, the crystal structure of manganese dioxide changes, and it will not return to its original state even after charging.

次に負極の容量がつきる場合を考えると、この場合は逆
にリチウムを放出しつくした合金が、二酸化マンガンの
電位、すなわちリチウムに対し3.2〜3.3vの電位
に引きあげられることになる。
Next, if we consider the case where the capacity of the negative electrode increases, in this case the alloy that has released all the lithium will be raised to the potential of manganese dioxide, that is, 3.2 to 3.3 V with respect to lithium. .

合金に使用されている鉛、インジウム、カドミウムなど
は、リチウムに対し2.7〜2.8vの電位で電解質中
に溶解し始め、更に高い電位に引き上げられると溶解反
応が急速に進行し、最終的には負極からなくなってしま
い、次に充電しても、もはやリチウムを吸蔵し得なくな
る。
Lead, indium, cadmium, etc. used in alloys begin to dissolve in the electrolyte at a potential of 2.7 to 2.8 V relative to lithium, and when the potential is raised to an even higher potential, the dissolution reaction proceeds rapidly and the final Eventually, the lithium will disappear from the negative electrode, and the next time it is charged, it will no longer be able to absorb lithium.

従って、二酸化マンガンを正極とし、鉛、カドミウムも
しくは鉛、インジウム、カドミウム合金を負極とする非
水電解質リチウム二次電池は、高電圧、高エネルギー密
度が期待できる電池系であるにもかかわらず、耐過放電
特性が要求される、メモリー保持用電源としては使用で
きない。
Therefore, non-aqueous electrolyte lithium secondary batteries with manganese dioxide as the positive electrode and lead, cadmium, or lead, indium, and cadmium alloy as the negative electrode are battery systems that can be expected to have high voltage and high energy density. It cannot be used as a power supply for memory retention, which requires overdischarge characteristics.

本発明はこのような問題点を解決するものであり、正極
に活物質として働く適切な化合物、この場合は三酸化モ
リブデンを混合することにより、耐過放電特性にすぐれ
た電池を提供することを目的とするものである。
The present invention solves these problems and provides a battery with excellent overdischarge resistance by mixing an appropriate compound that acts as an active material, in this case molybdenum trioxide, in the positive electrode. This is the purpose.

問題点を解決するための手段 この問題点を解決するために、本発明は正極に生活物質
として二酸化マンガンを、副活物質として三酸化モリブ
デンを用い、負極として鉛−カドミウム、もしくは鉛−
インジウム−カドミウム合金にリチウムを圧着したもの
を用い、かつそのリチウムの放電可能電気量を二酸化マ
ンガンの放電可能電気量よりも犬とし、かつ二酸化マン
ガンと三酸化モリブデンの放電可能電気量の合計よりも
小に設計したものを用いるものである。
Means for solving the problem In order to solve this problem, the present invention uses manganese dioxide as a living material in the positive electrode, molybdenum trioxide as a sub-active material, and uses lead-cadmium or lead-cadmium as the negative electrode.
An indium-cadmium alloy with lithium bonded is used, and the amount of electricity that can be discharged by the lithium is greater than that of manganese dioxide, and is greater than the sum of the amounts of electricity that can be discharged from manganese dioxide and molybdenum trioxide. A small design is used.

作  用 上記した如く電池の設計にあたっては、最初に正極の電
気容量を小とする(正極容量規制)か、負極の電気容量
を小とする(負極容量規制)かを決定しなければならな
い。二酸化マンガン正極と合金負極をそれぞれ単独で充
放電サイクルをおこなわせると、充放電サイクルに伴な
う容量劣化は明らかに合金負極が小さい。従って、充放
電サイクル寿命特性のすぐれた電池を得ようとするなら
ば、負極容量規制の電池を設計することが望ましい。す
なわち、負極の電気容量がつきた時に、負極のリチウム
に対する電位が、合金の溶解電位である2、7v以上に
上がらないように設計すれば良い。
Function As mentioned above, when designing a battery, it must first be determined whether to reduce the electric capacity of the positive electrode (positive electrode capacity regulation) or to reduce the electric capacity of the negative electrode (negative electrode capacity regulation). When charging and discharging the manganese dioxide positive electrode and the alloy negative electrode individually, the capacity deterioration accompanying the charge and discharge cycle is clearly smaller in the alloy negative electrode. Therefore, in order to obtain a battery with excellent charge/discharge cycle life characteristics, it is desirable to design a battery with limited negative electrode capacity. In other words, the design may be such that when the negative electrode reaches its capacity, the potential of the negative electrode relative to lithium does not rise above 2.7 V, which is the melting potential of the alloy.

本発明では基本的に、二酸化マンガン正極中にリチウム
に対し2.7v以上の電圧で放電する化合物(副活物質
)を混合し、二酸化マンガンの電気容量がつきて、副活
物質が放電している間に負極合金中のリチウムの電気容
量がつきるように電池設計をするというものである。こ
のように設計すれば、過放電し、電池電圧が0になった
時点で負極合金の電位はリチウムに対し2.7v以下で
あるため電解質中に合金が溶解することなくいつまでも
その状態を維持し得る。またこの二酸化マンガン−合金
の電池系では、放電開始電圧が2.8V程度であるため
、機器の設計上、放電の終止電圧は2V程度が望ましい
。すなわち、訓話物質として使用する化合物の放電電圧
が、負極合金に対して2v以下、リチウムに対しては2
.4v以下である必要がある。同時にその電位が二酸化
マンガンが構造変化をおこさないように訓話物質のリチ
ウムに対する放電電圧は1.5V以上、合金に対しては
1.1V以上であることが必要となる。
Basically, in the present invention, a compound (sub-active material) that discharges at a voltage of 2.7 V or more with respect to lithium is mixed in the manganese dioxide positive electrode, and the capacitance of the manganese dioxide increases and the sub-active material discharges. The idea is to design a battery so that the electrical capacity of the lithium in the negative electrode alloy increases while the battery is in use. With this design, when overdischarge occurs and the battery voltage reaches 0, the potential of the negative electrode alloy is less than 2.7V relative to lithium, so the alloy will not dissolve in the electrolyte and will maintain that state indefinitely. obtain. In addition, in this manganese dioxide-alloy battery system, the discharge start voltage is about 2.8V, so the final discharge voltage is preferably about 2V from the viewpoint of device design. That is, the discharge voltage of the compound used as a cautionary material is 2V or less for the negative electrode alloy, and 2V for the lithium.
.. It needs to be 4v or less. At the same time, in order to prevent the potential from causing structural changes in manganese dioxide, the discharge voltage for lithium, which is a teaching material, must be 1.5 V or higher, and for alloys, it must be 1.1 V or higher.

本発明で訓話物質として提案する三酸化モリブデンはリ
チウムに対し2.4V、 合金に対しては1.9〜2.
ovの放電電圧を持ち、理想的な化合物であると言える
Molybdenum trioxide, which is proposed as a teaching material in the present invention, has a voltage of 2.4 V against lithium and 1.9 to 2 V against alloys.
It has a discharge voltage of ov, and can be said to be an ideal compound.

従って、二酸化マンガンを主活物質とし、三酸化モリブ
デンを訓話物質とする正極とし、鉛、カドミウム、もし
くは鉛、インジウム、カドミウムからなる合金負極を活
物質とすることによって、高エネルギー密度で耐過放電
特性にすぐれた非水電解質リチウム二次電池を提供する
ことができる。
Therefore, by using manganese dioxide as the main active material, molybdenum trioxide as the cathode material, and lead, cadmium, or an alloy negative electrode made of lead, indium, and cadmium as the active material, we can provide high energy density and overdischarge resistance. A non-aqueous electrolyte lithium secondary battery with excellent characteristics can be provided.

実施例 正極活物質である二酸化マンガンと三酸化モリブデンの
混合物と導電材のカーボンブラックと結着剤の四フッ化
エチレンー六フッ化プロピレンの共重合体の水成ディス
パージョンをそれぞれ重量比で100 : 5 : 1
0の割合で混合し、乾燥後、直径16鴫、厚さ0.6椙
の円盤状に加圧成型し、正極とする。但し結着剤の混合
比率は水成ディスパーシロン中の固形分の割合とする。
Example: An aqueous dispersion of a mixture of manganese dioxide and molybdenum trioxide as a positive electrode active material, carbon black as a conductive material, and a copolymer of tetrafluoroethylene-hexafluoropropylene as a binder, each in a weight ratio of 100: 5:1
After drying, the positive electrode was formed into a disk shape with a diameter of 16 mm and a thickness of 0.6 mm. However, the mixing ratio of the binder is determined by the solid content in the aqueous dispersion.

活物質中の二酸化マンガンと三酸化モリブデンの混合比
率(重量比率)、それらの理論電気量および負極に圧着
したリチウムの理論電気量を第1表に示す。
Table 1 shows the mixing ratio (weight ratio) of manganese dioxide and molybdenum trioxide in the active material, their theoretical amounts of electricity, and the theoretical amount of electricity of lithium pressed onto the negative electrode.

第、   1   表 これら正極を用い第1図に示す扁平形電池を組み立てた
。それぞれの電池をA−Eとする。これら電池の負極と
しては、鉛、インジウム、カドミウムをそれぞれ重量比
で75:6:20の割合で溶融し、合金としたものを用
いたが、電icのみは鉛、カドミウムを重量比で80 
: 20の割合で溶融し、合金とした負極を用いた。
Table 1 A flat battery shown in FIG. 1 was assembled using these positive electrodes. Let each battery be A-E. For the negative electrodes of these batteries, an alloy made by melting lead, indium, and cadmium at a weight ratio of 75:6:20 was used, but for electric ICs, lead and cadmium were melted at a weight ratio of 80.
: A negative electrode was used which was melted and made into an alloy at a ratio of 20%.

第1図において、1はニッケルメッキしたステンレス鋼
よシなる封口板で、内面に合金負極2をスポット溶接し
である。更に合金負極上にリチウム3を圧着している。
In FIG. 1, reference numeral 1 denotes a sealing plate made of nickel-plated stainless steel, with an alloy negative electrode 2 spot-welded on its inner surface. Furthermore, lithium 3 is pressure bonded onto the alloy negative electrode.

4はポリプロピレン製のセパL/−夕f、プロピレンカ
ーボネートと1,2ジメトキシエタンを体積比で1:1
に混合した溶媒に過塩素酸リチウムを1モル/lの割合
で溶解させた電解液を含浸させている。6は上記円盤状
の正極テ、ステンレス製ケース6にスポット溶接したチ
タン裂集電体7に圧着しである。8はポリプロピレン製
ガスケットである。完成電池の寸法は直径20 mm 
、厚さ1.6簡である。なおこの電池を一定期間放置し
ておくことにより、リチウム3は合金負極2の内部に吸
蔵される。
4 is a polypropylene sepa L/-F, propylene carbonate and 1,2 dimethoxyethane in a volume ratio of 1:1
An electrolytic solution in which lithium perchlorate is dissolved at a ratio of 1 mol/l is impregnated in a mixed solvent. Reference numeral 6 denotes the disk-shaped positive electrode tip, which is crimped to a titanium cracked current collector 7 spot-welded to the stainless steel case 6. 8 is a polypropylene gasket. The dimensions of the completed battery are 20 mm in diameter.
, the thickness is 1.6 mm. Note that by leaving this battery for a certain period of time, lithium 3 is occluded inside the alloy negative electrode 2.

これら電池A−Eを20℃で、1 mAの電流で、放電
下限電圧は1.5V、充電上限電圧は3.4vの範囲で
5回充放電をくり返した後、充電し、電池の電圧がoV
になるまで放電した。この放電曲線を第2図に、更にこ
れらの電池A−Eをその状態のまま3ケ月放置し、充電
した後再び電池電圧がoVになるまで放電した。その際
の放電曲線を第3図に示す。
These batteries A-E were charged and discharged five times at 20°C with a current of 1 mA, with a lower discharge limit voltage of 1.5V and a charge upper limit voltage of 3.4V, and then charged. oV
It was discharged until This discharge curve is shown in FIG. 2. Further, these batteries A to E were left in that state for 3 months, charged, and then discharged again until the battery voltage reached oV. The discharge curve at that time is shown in FIG.

第2図から判るように、正極の二酸化マンガンと二酸化
モリブデンの合計の充填電気量およびリチウムの充填電
気量がいずれも20mAh以上であるのに、実際の電池
の放電電気量が20mAh以下であるのは、電池の充放
電中に、二酸化マンガン。
As can be seen from Figure 2, the total amount of electricity charged in manganese dioxide and molybdenum dioxide in the positive electrode and the amount of electricity charged in lithium are both 20mAh or more, but the actual amount of electricity discharged from the battery is less than 20mAh. is manganese dioxide during battery charging and discharging.

三酸化モリブデン、あるいは負極合金中に一定量のリチ
ウムが内蔵されて、充放電に関与しない部分ができるか
らである。
This is because a certain amount of lithium is built into molybdenum trioxide or the negative electrode alloy, creating a portion that does not participate in charging and discharging.

また電池B−Hの放電曲線が2段となるのは、最初二酸
化マンガラが放電し、次に三酸化モリブデンが放電して
いることを示している。電池B〜Eは三酸化モリブデン
の放電中に負極の充放電可能なリチウムが消費され、負
極の電位が三酸化モリブデンの放電電圧に達した結果、
電池電圧がOVとなる。一方、電池Aでは負極の充放電
可能なリチウム量が十分に存在するため、正極の二酸化
マンガンの放電電気量がつき、二酸化マンガンの電位が
負極合金の放電電圧に達した結果、電池電圧がoVとな
る。従って、第3図から明らかなように、負極合金の放
電電圧に留められた二酸化マンガンは構造変化をおこし
、充電されず、その結果電池Aは再び放電できなくなる
。一方、電池B〜Eは電池自体に変化をおこすことなく
、放電前と殆んど同じ電気量放電できる。
Moreover, the fact that the discharge curve of battery B-H has two stages indicates that mangala dioxide is first discharged, and then molybdenum trioxide is discharged. In batteries B to E, the chargeable and dischargeable lithium of the negative electrode was consumed during the discharge of molybdenum trioxide, and as a result, the potential of the negative electrode reached the discharge voltage of molybdenum trioxide.
The battery voltage becomes OV. On the other hand, in battery A, since there is a sufficient amount of chargeable and dischargeable lithium in the negative electrode, the amount of electricity discharged from the manganese dioxide in the positive electrode increases, and as a result, the potential of manganese dioxide reaches the discharge voltage of the negative electrode alloy, and as a result, the battery voltage increases to oV. becomes. Therefore, as is clear from FIG. 3, the manganese dioxide held at the discharge voltage of the negative electrode alloy undergoes a structural change and is not charged, so that battery A cannot be discharged again. On the other hand, batteries B to E can discharge almost the same amount of electricity as before discharge without causing any change in the batteries themselves.

以後、電池B、Eを電池電圧が0■になってからの放置
期間のみ1ケ月と短縮し、更に充電し、また放電、放置
するというパターンをくり返し、合計何回まで充放電が
可能であったかを、第2表に示す。
After that, the period of time batteries B and E were left unused after the battery voltage reached 0■ was shortened to one month, and the pattern of charging, discharging, and leaving them was repeated, and the total number of times they could be charged and discharged was determined. are shown in Table 2.

第   2   表 理論的には電池B−Eは何回でもくり返し可能であるは
ずであるが、正極活物質および負極中のリチウムの充放
電効率の微妙な違いにより、程度の差こそあれ、いずれ
も有限回数で寿命がつきる。
Table 2 Theoretically, batteries B-E should be able to be repeated any number of times, but due to subtle differences in the charging and discharging efficiency of lithium in the positive electrode active material and the negative electrode, it is possible to repeat them to varying degrees. The lifespan is limited to a finite number of times.

当然のことながら、負極中のリチウムの充放電可能電気
量が二酸化マンガンの充放電可能電気量より犬で二酸化
マンガンと三酸化モリブデンの充放電可能電気量の合計
よりも小に設定されているわけであるから、三酸化モリ
ブデン量が多い程その設定値の許容度が犬であり、電池
BまたはCよりもり、DよりもEの方が寿命が長いとい
う結果になっている。
Naturally, the amount of electricity that can be charged and discharged for lithium in the negative electrode is set to be smaller than the amount of electricity that can be charged and discharged for manganese dioxide. Therefore, the greater the amount of molybdenum trioxide, the greater the tolerance of the set value, and the life of battery E is longer than battery B or C, and longer than battery D.

しかし、機器の実際の使用において長時間使用しないで
放置しておくということは何回もあるわけではないから
、7多くとも2〜3回くり返し可能であれば十分である
と言える。
However, in actual use of a device, it is not often the case that the device is left unused for a long period of time, so it can be said that it is sufficient if it can be repeated 7 times at most two to three times.

次にこれら電池A、Eと同等の電池A′〜E′を20℃
、1tnAで上限電圧3.4V、下限電圧2.○■の間
でくり返し充放電をおこなった。充放電サイクル数と放
電容量の関係を第4図に示す。
Next, batteries A' to E' equivalent to these batteries A and E were heated at 20°C.
, 1tnA, upper limit voltage 3.4V, lower limit voltage 2. Charge and discharge were repeated between ○ and ■. FIG. 4 shows the relationship between the number of charge/discharge cycles and discharge capacity.

第4図から明らかなように、過放電の入らない通常の充
放電では電池A′〜E′すべてよい特性を示す。また負
極合金が同じであれば、リチウムの充填量の少ない方が
充放電のサイクル寿命特性がすぐれている。すなわち、
サイクルに容量劣化はA′→E′の順に少なくなる。こ
れは合金負極でリチウムの吸蔵、放出のくり返しにより
、合金が次第に微細化してくずれることによるものと考
えられ、リチウムの吸蔵、放出量の少ないものの劣化が
小さいことは当然であると言える。また電池B′とC′
を比較すると、インジウムを含まない合金負極を用いた
電池C′の劣化が大きいということは、合金の微細化防
止にインジウムが貢献しているものと考える。
As is clear from FIG. 4, all batteries A' to E' exhibit good characteristics during normal charging and discharging without overdischarging. Furthermore, if the negative electrode alloy is the same, the smaller the amount of lithium filled, the better the charge/discharge cycle life characteristics. That is,
During the cycle, capacity deterioration decreases in the order of A'→E'. This is thought to be because the alloy gradually becomes finer and crumbles due to repeated occlusion and desorption of lithium in the alloy negative electrode, and it is natural that the deterioration is small even though the amount of lithium intercalation and desorption is small. Also, batteries B' and C'
The fact that the battery C' using an alloy negative electrode that does not contain indium shows greater deterioration indicates that indium contributes to preventing the alloy from becoming finer.

発明の効果 以上のことから明らかな如く、本発明によれば、二酸化
マンガン正極と鉛、カドミウム、もしくは鉛、インジウ
ム、カドミウム合金にリチウムを圧着した負極を用いる
電池において、正極に訓話物質として三酸化モリブデン
を混合し、かつリチウムの充放電可能電気量が、二酸化
マンガンの充放電可能電気量よりも犬で、二酸化マンガ
ンと三酸化モリブデンの充放電可能電気量の合計よりも
小に電池設計することにより、電子機器のメモリー保持
用電源として必要な、耐過放電特性のすぐれた、高エネ
ルギー密度で長寿命の非水電解質リチウム二次電池を提
供できるという効果かえられる。
Effects of the Invention As is clear from the above, according to the present invention, in a battery using a manganese dioxide positive electrode and a negative electrode in which lithium is bonded to lead, cadmium, or a lead, indium, or cadmium alloy, trioxide is added to the positive electrode as a teaching material. To design a battery in which molybdenum is mixed, and the chargeable and dischargeable amount of electricity of lithium is larger than that of manganese dioxide and smaller than the sum of the chargeable and dischargeable amounts of electricity of manganese dioxide and molybdenum trioxide. As a result, it is possible to provide a nonaqueous electrolyte lithium secondary battery with excellent overdischarge resistance, high energy density, and long life, which is necessary as a power source for memory retention in electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いた扁平形電池の断面図、
第2図は本発明電池および在来電池の過放電特性図、第
3図は過放電放置後の放電特性図、第4図はこれらの電
池の充放電サイクル寿命を示す図である。 1・・・・・・封口板、2・・・・・・合金負極、3・
・・・・・リチウム、4・・・・・・セパレータ、5・
・・・・・正極、6・・・・・・ケース、7・・・・・
・集電体、8・・・・・・ガスケット。 /−It 口状 2−合金負極 3− ゾテヮム 4−・−セパレータ 8−ガスケット 第2図 Rf lq 0Lours) 第3図 放tvF間(火o(2hyJ 第4図 見大tvイクA/歎
FIG. 1 is a cross-sectional view of a flat battery used in an example of the present invention.
FIG. 2 is a diagram showing the overdischarge characteristics of the battery of the present invention and the conventional battery, FIG. 3 is a diagram showing the discharge characteristics after being allowed to overdischarge, and FIG. 4 is a diagram showing the charge/discharge cycle life of these batteries. 1...Sealing plate, 2...Alloy negative electrode, 3.
...Lithium, 4...Separator, 5.
...Positive electrode, 6...Case, 7...
・Current collector, 8...Gasket. /-It Opening 2-Alloy negative electrode 3-Zoteme 4-Separator 8-Gasket 2nd figure Rf lq 0Lours)

Claims (1)

【特許請求の範囲】[Claims] 二酸化マンガン(M_nO_2)を主活物質、三酸化モ
リブデン(M_oO_3)を副活物質とする正極と、鉛
−カドミウムもしくは鉛−インジウム−カドミウムから
なる合金にリチウムを圧着した負極とを備え、かつリチ
ウムの放電可能電気量が二酸化マンガンの放電可能電気
量よりも大きく、二酸化マンガンと三酸化モリブデンの
放電可能電気量の合計よりも小さいことを特徴とする非
水電解質リチウム二次電池。
It is equipped with a positive electrode having manganese dioxide (M_nO_2) as the main active material and molybdenum trioxide (M_oO_3) as the sub-active material, and a negative electrode in which lithium is pressed onto an alloy consisting of lead-cadmium or lead-indium-cadmium. A non-aqueous electrolyte lithium secondary battery characterized in that the amount of electricity that can be discharged is larger than the amount of electricity that can be discharged from manganese dioxide and smaller than the total amount of electricity that can be discharged from manganese dioxide and molybdenum trioxide.
JP62061578A 1987-03-17 1987-03-17 Nonaqueous electrolytic lithium secondary cell Pending JPS63228573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061578A JPS63228573A (en) 1987-03-17 1987-03-17 Nonaqueous electrolytic lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061578A JPS63228573A (en) 1987-03-17 1987-03-17 Nonaqueous electrolytic lithium secondary cell

Publications (1)

Publication Number Publication Date
JPS63228573A true JPS63228573A (en) 1988-09-22

Family

ID=13175149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061578A Pending JPS63228573A (en) 1987-03-17 1987-03-17 Nonaqueous electrolytic lithium secondary cell

Country Status (1)

Country Link
JP (1) JPS63228573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364995A2 (en) * 1988-10-21 1990-04-25 Sony Corporation Cell having current cutoff valve
JP2000106174A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364995A2 (en) * 1988-10-21 1990-04-25 Sony Corporation Cell having current cutoff valve
JP2000106174A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US6436573B1 (en) Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
US5601951A (en) Rechargeable lithium ion cell
KR19990007966A (en) Rechargeable Lithium Battery with Improved Reversible Capacity
CN101232094A (en) Lithium ion battery negative pole active materials and battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JPH01204361A (en) Secondary battery
JP3316225B2 (en) Manufacturing method of lithium ion secondary battery
JPH0425676B2 (en)
JPH03291862A (en) Lithium secondary cell
JPS63228573A (en) Nonaqueous electrolytic lithium secondary cell
US20040096741A1 (en) Non-aqueous electrolyte secondary battery, negative electrode, and method of manufacturing negative electrode
JP3404929B2 (en) Non-aqueous electrolyte battery
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2621182B2 (en) Non-aqueous electrolyte lithium secondary battery
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
JPH11111335A (en) Nonaqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
JP2002373646A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JPS63150855A (en) Nonaqueous electrolyte secondary cell
KR100303537B1 (en) Lithium ion secondary battery
JPH01144574A (en) Nonaqueous electrolyte lithium secondary cell
JPH01144573A (en) Nonaqueous electrolyte lithium secondary cell
JPS63166166A (en) Lithium secondary cell